
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2004-5 

2004-03-10 

Service Oriented Computing Imperatives in Ad Hoc Wireless Service Oriented Computing Imperatives in Ad Hoc Wireless 

Settings Settings 

Rohan Sen, Radu Handorean, Gruia-Catalin Roman, and Christopher Gill 

Service oriented computing is a new paradigm that is gaining popularity in dis-tributed 

computing environments due to its emphasis on highly specialized, modular and platform-

agnostic code facilitating interoperability of systems. It borrows concepts from more mature 

paradigms such as object-oriented and component computing. This results in a progression 

from object-oriented computing to component computing and finally to service oriented 

computing, a new paradigm for designing and delivering software. Just as an object 

encapsulates state and behavior at a fine level of granularity, a service offers similar 

encapsulation at a larger scale. This evolution raises the level of abstraction at... Read complete Read complete 

abstract on page 2. abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Sen, Rohan; Handorean, Radu; Roman, Gruia-Catalin; and Gill, Christopher, "Service Oriented Computing 
Imperatives in Ad Hoc Wireless Settings" Report Number: WUCSE-2004-5 (2004). All Computer Science 
and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/1023 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233234232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1023?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1023 

Service Oriented Computing Imperatives in Ad Hoc Wireless Settings Service Oriented Computing Imperatives in Ad Hoc Wireless Settings 

Rohan Sen, Radu Handorean, Gruia-Catalin Roman, and Christopher Gill 

Complete Abstract: Complete Abstract: 

Service oriented computing is a new paradigm that is gaining popularity in dis-tributed computing 
environments due to its emphasis on highly specialized, modular and platform-agnostic code facilitating 
interoperability of systems. It borrows concepts from more mature paradigms such as object-oriented 
and component computing. This results in a progression from object-oriented computing to component 
computing and finally to service oriented computing, a new paradigm for designing and delivering 
software. Just as an object encapsulates state and behavior at a fine level of granularity, a service offers 
similar encapsulation at a larger scale. This evolution raises the level of abstraction at which systems are 
engineered, while preserving beneficial properties such as modularity, substitution and encapsulation. 
Every participant in a service oriented computing system is a provider or user of a service, or both. The 
service oriented computing paradigm is characterized by a minimalist philosophy, in that a user needs to 
carry only a small amount of code in its local storage, and exploits other services by discovering and 
using their capabilities to complete its assigned task. This chapter is the result of our experiences with 
designing and building service oriented computing frameworks for ad hoc wireless networks (Handorean 
& Roman, 2002). It examines the salient imperatives required to deliver a service oriented computing 
frame-work for ad hoc wireless networks. Ad hoc wireless networks are collections of hosts capable of 
wireless communication. Hosts within proximity of each other opportunistically form a network which 
changes due to host mobility. An ad hoc wireless network is a dynamic environment by necessity, which 
exhibits transient interactions, decoupled computing, physical mobility of hosts, and logical mobility of 
code. The network infrastructure is supported by the participating hosts themselves and there is no 
dependence on external, fixed resources. Ad hoc wireless environments are especially challenging to 
program when compared against other classes of fixed wireless environments because of the 
implications of mobility, i.e., frequent disconnections and inherent dynamism of the network on program 
execution. An important class of ad hoc mobile systems is based on small, portable devices, and this 
class of systems is the focus of this chapter. Such devices have limited storage capacity and battery 
power, which restricts the number of programs they can store and run locally. Service oriented computing 
offers a solution to this problem. By its very nature, service oriented computing is designed to facilitate 
sharing of capabilities while minimizing the amount of functionality a single host needs to maintain. Such 
a design is especially effective in ad hoc networks where storage space on individual hosts is at a 
premium, yet where the open environment allows a large number of hosts to contribute small functions 
resulting in a rich set of capabilities being available in the network as a whole. Service oriented computing 
has received much attention from researchers worldwide. However, most of this work has been focused 
on architectures and implementations for wired networks. Migrating service oriented computing to ad hoc 
networks is non-trivial and requires a systematic rethinking of core concepts. Many lessons have been 
learned from the work done in the wired setting, especially regarding description and matching of 
services. However, the more demanding environment of an ad hoc wireless network requires novel 
approaches to advertising, discovering and invoking services. We envision such ad hoc networks being 
used in a range of application domains, such as response coordination by firemen and police at disaster 
sites, or command and control of military units in a battlefield. Such scenarios demand reliability despite 
the dynamic nature of the underlying network. The motivation for this chapter is to understand the unique 
imperatives for a viable service oriented computing framework in ad hoc wireless settings, and to 

https://openscholarship.wustl.edu/cse_research/1023?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1023?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages


illustrate selected solution strategies. We begin by examining current technologies, algorithms and 
capabilities that have been implemented for use in wired networks as a baseline. We then extend these 
concepts to cater to the special challenges of service oriented computing in ad hoc networks and direct 
the reader’s attention to research issues in this area, presenting some of our own contributions in the 
process. The rest of the chapter is organized as follows. We describe existing service oriented computing 
architectures and the Semantic Web effort in the Background section. The section on Ad Hoc Wireless 
Network Perspective on Service Oriented Computing represents the main thrust of this chapter and 
discusses the elements of a service oriented computing framework, examining current technologies 
alongside our ideas on how these concepts may be applied to ad hoc networks. We cover potential areas 
of research in the Future Trends section. Finally, we summarize our findings in the Conclusion section. 



Service Oriented Computing Imperatives
in Ad Hoc Wireless Settings

Rohan Sen, Radu Handorean, Gruia-Catalin Roman,
and Christopher Gill

Department of Computer Science and Engineering
Washington University in St. Louis

Campus Box 1045, One Brookings Drive
St. Louis, MO 63130-4899, USA

{rohan.sen, radu.handorean, roman, cdgill}@wustl.edu

Introduction

Service oriented computing is a new paradigm that is gaining popularity in dis-
tributed computing environments due to its emphasis on highly specialized, modular and
platform-agnostic code facilitating interoperability of systems. It borrows concepts from
more mature paradigms such as object-oriented and component computing. This results
in a progression from object-oriented computing to component computing and finally to
service oriented computing, a new paradigm for designing and delivering software. Just
as an object encapsulates state and behavior at a fine level of granularity, a service offers
similar encapsulation at a larger scale. This evolution raises the level of abstraction at
which systems are engineered, while preserving beneficial properties such as modularity,
substitution and encapsulation. Every participant in a service oriented computing system
is a provider or user of a service, or both. The service oriented computing paradigm is
characterized by a minimalist philosophy, in that a user needs to carry only a small amount
of code in its local storage, and exploits other services by discovering and using their
capabilities to complete its assigned task.

This chapter is the result of our experiences with designing and building service
oriented computing frameworks for ad hoc wireless networks (Handorean & Roman, 2002).
It examines the salient imperatives required to deliver a service oriented computing frame-
work for ad hoc wireless networks. Ad hoc wireless networks are collections of hosts capable
of wireless communication. Hosts within proximity of each other opportunistically form
a network which changes due to host mobility. An ad hoc wireless network is a dynamic
environment by necessity, which exhibits transient interactions, decoupled computing,
physical mobility of hosts, and logical mobility of code. The network infrastructure is
supported by the participating hosts themselves and there is no dependence on external,



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 2

fixed resources. Ad hoc wireless environments are especially challenging to program when
compared against other classes of fixed wireless environments because of the implications
of mobility, i.e., frequent disconnections and inherent dynamism of the network on program
execution.

An important class of ad hoc mobile systems is based on small, portable devices,
and this class of systems is the focus of this chapter. Such devices have limited storage
capacity and battery power, which restricts the number of programs they can store and
run locally. Service oriented computing offers a solution to this problem. By its very
nature, service oriented computing is designed to facilitate sharing of capabilities while
minimizing the amount of functionality a single host needs to maintain. Such a design
is especially effective in ad hoc networks where storage space on individual hosts is at a
premium, yet where the open environment allows a large number of hosts to contribute
small functions resulting in a rich set of capabilities being available in the network as a whole.

Service oriented computing has received much attention from researchers worldwide.
However, most of this work has been focused on architectures and implementations for
wired networks. Migrating service oriented computing to ad hoc networks is non-trivial
and requires a systematic rethinking of core concepts.

Many lessons have been learned from the work done in the wired setting, especially
regarding description and matching of services. However, the more demanding environment
of an ad hoc wireless network requires novel approaches to advertising, discovering and
invoking services. We envision such ad hoc networks being used in a range of application
domains, such as response coordination by firemen and police at disaster sites, or command
and control of military units in a battlefield. Such scenarios demand reliability despite the
dynamic nature of the underlying network.

The motivation for this chapter is to understand the unique imperatives for a viable
service oriented computing framework in ad hoc wireless settings, and to illustrate selected
solution strategies. We begin by examining current technologies, algorithms and capabilities
that have been implemented for use in wired networks as a baseline. We then extend these
concepts to cater to the special challenges of service oriented computing in ad hoc networks
and direct the reader’s attention to research issues in this area, presenting some of our
own contributions in the process. The rest of the chapter is organized as follows. We
describe existing service oriented computing architectures and the Semantic Web effort in
the Background section. The section on Ad Hoc Wireless Network Perspective on Service
Oriented Computing represents the main thrust of this chapter and discusses the elements
of a service oriented computing framework, examining current technologies alongside our
ideas on how these concepts may be applied to ad hoc networks. We cover potential areas of
research in the Future Trends section. Finally, we summarize our findings in the Conclusion
section.



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 3

Background

In this section, we define the elements that make up a service oriented computing
framework and then review some of the existing models that have been proposed using
these elements. Finally, we highlight the Semantic Web as an example of an effort to
establish and implement standards for service oriented computing in the wired setting.

Characterizing the Service Elements

A service oriented computing framework is a conglomerate of elements, each element
fulfilling a very specific role in the overall framework. We list the salient elements required
for a viable service oriented computing framework and the criteria used to judge their
quality. We use this list as a basis for future discussions.

• The service description element is responsible for describing a service in a compre-
hensive, unambiguous manner that is machine interpretable to facilitate automation, and
human-readable to facilitate rapid formulation by users. The aim is to specify the functions
and capabilities of a service declaratively using a known syntax. A good service description
mechanism must have a clear syntax and well defined semantics which facilitate matching
of services at the semantic level.

• The service advertisement element is responsible for advertising a given service
description on a directory service or directly to other hosts in the network. The effectiveness
of an advertisement is measured as a combination of the extent of its outreach and the
specificity of information it provides up front about a service, which can help determine
whether a user would like to exploit that service.

• The service discovery element is the keystone of a service oriented computing frame-
work and carries out three main functions. It formulates a request, which is a description
of the needs of a user. This request is formatted in a similar manner to the service de-
scription. This element also provides a matching function that pairs requests with similar
service descriptions. Finally, it provides a mechanism for the user to communicate with the
service provider. A good discovery mechanism provides a flexible algorithm that matches
advertisements and requests based on their semantics and maximizes the number of positive
matches giving the user a more eclectic choice of services for his or her needs.

• The service invocation element is responsible for facilitating the use of a service.
Its functions include transmitting commands from the user to the service provider and
receiving results. It is also responsible for maintaining the connection between the user and
the provider for the duration of their interaction. A good invocation mechanism abstracts
communication details from the user and, in the case of network failure, redirects requests
to another provider or gracefully terminates.

• The service composition element provides mechanisms to merge two or more ser-
vices into a single composite service, which combines and enhances the functions of the
services being composed. A good service composition mechanism leverages each of the
elements listed above to provide automatic composition of services without human inter-
vention.



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 4

Using Service Elements to Build Models

The elements described previously form the building blocks for most service oriented
computing models. Various models entail the use of some or all of the elements described,
depending on their complexity. We review some of the more popular models as background
to our work and highlight features unique to each model. The Service Location Protocol
(SLP) is designed for use on corporate LANs. Universal Description, Discovery and
Integration (UDDI) and Universal Plug and Play (UPnP) are designed for use on the
Semantic Web. Salutation is a general service model originally created with communication
between appliances and other equipment in mind. Jini is a more general model that can
be used on the web and with a wide range of applications.

The Service Location Protocol (SLP) (Kempf & Pierre, 1999) was developed
by the SRVLOC working group of the Internet Engineering Task Force (IETF) with the
idea of creating a service oriented computing standard that was platform independent for
the Internet community. In SLP, every entity is represented as an agent. There are three
kinds of agents - User Agents, which perform service discovery on behalf of clients, Service
Agents, which advertise locations and capabilities on the behalf of services and register
them with a central directory, and Directory Agents, which accumulate service information
received from Service Agents in their repositories and handle service requests from User
Agents. An interesting feature of SLP is that it can operate without the presence of
a Directory Agent, i.e., it does not require a central service registry to function. User
Agents search for a Directory Agent by default but if they do not receive any replies, they
continue to interoperate directly with peer agents. If a Directory Agent starts operating
at some point in the future, it advertises its presence and the User and Service Agents
that receive the advertisement automatically start using the Directory Agent as a central
service repository.

SLP registers services using templates which follow a specific pattern. Requests
are made using a similar template though the parameters differ slightly. SLP’s ability
to operate in the absence of a Directory Agent makes it especially useful in ad hoc
environments where it is not feasible to have a central service registry. Overall, SLP offers
a clean model that is easy to conceptualize and, due to its design, it can be implemented
readily in modern languages like C++ and Java.

Universal Description, Discovery and Integration (UDDI) (UDDI-
Organization, 2000) was formulated jointly by IBM Corp., Ariba Inc., and Microsoft
Corp. UDDI technology is aimed at promoting interoperability among web services. It
specifies two frameworks, one to describe services and another to discover them. UDDI
uses existing standards such as Extensible Markup Language (XML) (XML-Core-Working-
Group, 2000), Hypertext Transfer Protocol (HTTP) (Fielding et al., 1999) and Simple
Object Access Protocol (SOAP) (XML-Protocol-Working-Group, 2003).

The UDDI model envisions a central repository which is called the UDDI Business
Registry (UBR). A simple XML document is used to specify the properties and capabilities



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 5

of a service. Registration with the UBR is done using SOAP. Information present in a
service description can include things like the name of the business that provides the
service, contact information for people in charge of administering the service, and identifiers
for the service. The UBR acts as a mediator between businesses and services, and assigns
a unique identifier to each business and each service. Marketplaces, search engines and
enterprise level applications query the UBR for services, which they use to integrate their
software better with other business entities like suppliers, dealers, etc.

The UDDI model is distinctive in that its approach looks at service oriented
computing from a business process perspective. It envisions electronic interactions between
businesses, resulting in trading of goods and services much like the business-to-business
(B2B) model today but with enhanced capabilities and features. With the backing of
industry giants like Microsoft and IBM, the future of this technology looks promising.

Universal Plug and Play (UPnP) (Microsoft-Corporation, 2000) was developed
by Microsoft Corp. to facilitate seamless communication between networked devices
in close proximity to each other. UPnP leverages TCP/IP and the Internet for its
communication needs. It assumes a network that is dynamic, with devices frequently
joining or leaving. A device, on joining a network, conveys its own capabilities upon
request and learns about the capabilities of other devices. When it leaves the network, a
device does so without leaving behind any explicit evidence that it was there. Entities
in the network may be controllable devices or controllers. Controllers actively search for
devices in proximity. The network is ”unmanaged” in that there is no DNS or DHCP ca-
pability. Instead, a mechanism called AutoIP (Miller, 2003) is used to allocate IP addresses.

In UPnP a client, also called a control point, can undertake five kinds of actions.
The discovery action is based on the Simple Service Discovery Protocol (SSDP) (Goland,
Cai, Leach, & Gu, 1998). It exchanges information about the device type, an identifier,
and a URL for more detailed information. During the description action, the control point
uses the URL obtained during the discovery action to get a detailed XML description of
the device. The control point then sends a control message encoded in XML to a Control
URL using SOAP to discover the actions and parameters to which the discovered device
responds. The event action consists of a series of events formatted in XML using the
General Event Notification Architecture (GENA) (Cohen & Aggarwal, 1998) which reports
changes in the state of the service. The presentation action consists of publishing a URL
that can be retrieved by a control point, presumably in a format that allows an end user
to control the discovered device. At this point UPnP assumes some external architecture
and protocol exist to handle subsequent interactions with the device.

UPnP uses multicast for discovery and unicast for service utilization and event
notification. Services and controllers are written using an asynchronous, multithreaded
application model. UPnP requires a web server to transmit device and control descriptions,
though this server is not required to be on the device itself. This requirement means that
UPnP works best on the web and porting it to other environments, especially those with
low-power hosts, is non-trivial.



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 6

Salutation (Salutation-Consortium, 2003) is an open standard service discovery
and utilization model formulated by the Salutation Consortium. The vision for Salutation
is not on the same scale as the world wide web. Instead, Salutation hopes to promote
interoperability among heterogenous devices in settings such as corporate LANs where
there is permanent connectivity from either wired networks or wireless gateways and
disconnection is rarely an issue. In addition, Salutation strives to be platform, processor,
and protocol agnostic.

Salutation has two major components (1) the Salutation Manager (SLM) which
presents a transport independent API called the SLM-API and (2) The Transport Manager
(TM) which is dependent on the network transport and presents an SLM-TI interface
between the Salutation Manager and the Transport Manager. Services are registered via a
local SLM or by a nearby SLM connected to a client. Service discovery occurs when SLMs
find other SLMs and the services registered with them. Capability exchange is done by
type and attribute matching. The SLM protocol uses Sun’s ONC RPC (Srinivas, 1995).
Periodic checks by the client ensure that it has the most current list of available services.

Salutation is interesting in that it solves a highly focused but widely relevant problem.
An ideal environment for a Salutation deployment is a busy office space where there are a
lot of computers, printers, fax machines and other electronic devices. Using Salutation to
automatically discover and use devices within range eliminates the effort of individually
configuring every single device. This makes Salutation a useful productivity enhancing tool.

Jini (Edwards, 1999) is a distributed service-oriented model developed by Sun
Microsystems. Services in a Jini system can be hardware devices, software components,
or a combination of the two. A Jini system has three types of entities; service providers,
lookup services and users. A service provider multicasts a request for a lookup service or
directly requests a remote lookup service known to it a priori. Once the handle to a lookup
service has been obtained, the service provider registers a proxy object and its attributes
with the lookup service. The proxy object serves as a client side handle to the actual
service. The user makes a request for a service by specifying a Java type (or interface that
the desired service must implement) and desired attributes. Matching is done based on
type and values. Once a candidate service is found, the proxy object registered by the
service provider is copied to the client using RMI (Sun-Microsystems, 2003b). Clients then
use the proxy object to interact with the service.

The Jini model is designed for ubiquitous computing and is intrinsically scalable.
It is language and protocol independent (though Java and TCP/IP seem to be natural
choices for an implementation) and is resilient because multiple lookup services ensure that
there is no single point of failure. Jini holds much promise for middleware developers that
use the Java programming language, and has been formulated with Java-like languages
in mind. Also, Jini is unique in that it introduces the idea of shipping a proxy object to
the client where it is used as a handle to the actual service. The proxy approach allows
complex services to reside on a server at a well known location. The service then simply



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 7

has to encode its well known location within its proxy, and can then be called from any
client without that client having any knowledge of the actual location of the service. It
also mitigates the issue of establishing the protocol between the service and the user since
the proxy object hides all such communication from the end user.

These five models illustrate how various elements must come together and work as
a cohesive whole to deliver the promise of service oriented computing. We now highlight
the practical feasibility of such models by focusing on a model that promises to evolve the
world wide web into a service oriented Semantic Web. While much work has already been
done on this model, efforts continue to refine and augment its core.

Standardizing SoC for Wired Networks: The Semantic Web

The largest deployment of a service oriented computing model is the Semantic Web
(Berners-Lee, Hendler, & Lassila, 2001). The Semantic Web effort aims to add logic to
the current world wide web so that machines can infer the meaning and spirit of the
content they handle. The vision is to evolve the web into a marketplace for services, where
users and providers of services may conduct exchanges. The key technologies needed to
deliver the Semantic Web concept are (1) innovative naming systems that provide simple
constructs to describe complex objects, (2) relations that are machine interpretable, and
(3) flexible matching algorithms that can match user requests with services based on
the meanings of the request and service advertisement. Some issues of service oriented
computing such as providing a central service registry and reliable links between user and
provider are mitigated in this context, since one can leverage the existing infrastructure
of the worldwide web. Hence the discovery and invocation elements are not especially
significant in the web setting.

The Semantic Web uses a layered naming system. Lower level languages such as
the Web Services Description Language (WSDL) (W3C-XML-Activity-On-XML-Protocols,
2003) describe how the data is sent across the wires. This layer handles all application layer
protocol issues. Higher level languages describe what is being sent across and why. High level
description languages are required to be clear and concise, and to support easy matching
between two entities. Ontologies are high level languages that capture the semantics of an
entity and its relation to other entities. An ontology is often itself structured into layers.
DAML+OIL (Horrocks, 2002) is a combination of a markup language to construct ontologies
(DAML) and an ontology inference layer (OIL) to interpret the semantics of the description.
It is currently the language of choice for formulating ontologies for web services. The lowest
layer of the system provides the syntax and is encoded in XML (XML-Core-Working-Group,
2000), since it is a W3C standard and hence has maximum acceptance in the market. Above
the syntax layer a framework provides a basic set of constructs to describe entities and
relations. In DAML+OIL, the Resource Description Framework (RDF) (W3C-Semantic-
Web-Activity, 2003), also a W3C standard, fulfils this functionality. However, RDF is not
powerful enough to describe entire ontologies. DAML+OIL fills this gap by extending the
RDF concept to provide more constructs and relations. Finally, DAML-S (Ankolekar et al.,
2002) is an ontology specific to web services that has been built using DAML+OIL.



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 8

DAML-S can be used to encode both service advertisements and service requests.
The only remaining element is an algorithm that matches a service advertisement to a
request. Conventional matching algorithms perform exact matches, which are considered
too rigid for this purpose. Many inexact matching algorithms have been proposed to date,
but due to constraints of space we discuss just one suggested by Paolucci et al. (Paolucci,
Kawmura, Payne, & Sycara, 2002) for the Semantic Web. Their algorithm compares
requests and advertisements and assigns a degree of similarity to each pair. Valid degrees
of similarity are (from strongest to weakest): exact, plugIn, subsumes and fail. For every
request, the algorithm returns the request-advertisement pair that has the strongest degree
of matching. This allows inexact matches to be returned, which improves the flexibility of
the system.

The Semantic Web, though still in its early stages, is a concerted effort towards
introducing standards for service oriented computing in wired networks with the aim of
unlocking its promise of unhindered interoperability between systems. In the next section,
we explore the potential of service oriented computing in ad hoc wireless networks and
discuss the imperatives, issues, technical challenges and benefits of enriching this new
environment with flexible service oriented capabilities.

The Ad Hoc Wireless Network Perspective on Service
Oriented Computing

In the previous section, we described the salient elements of a service oriented
computing framework and reviewed some existing models. In this section, we revisit the
same elements, but from an ad hoc wireless networking perspective. We discuss issues
relevant to ad hoc networks and offer solutions in certain cases. From our discussion, we
distill imperatives for service oriented computing in ad hoc wireless settings. To facilitate
our discussion, we make use of an example and highlight how each element plays a unique
and key role in the illustrated interaction.

Example: A Team of Surveyors

The Environmental Standards Compliance Group (ESCG) is responsible for ensuring
that BigPower Inc., a power company with multiple power plants across the country does
not violate any environmental standards. As part of their job function, ESCG is required to
generate detailed maps showing the level of various pollutants in the soil surrounding every
power plant. ESCG accomplishes this task by sending out teams of surveyors equipped with
PDAs that collaboratively generate the required maps. Each PDA carries highly specialized
software. For example, some PDA might carry software that interprets input from a GPS
receiver while another PDA may carry a program that reads information from a soil probe.



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 9

Our example focuses on Robert, a member of the team of surveyors whose carries a
PDA that has software that can map a set of given parameters. Robert’s task today is to
measure the level of pollutants in the soil. To achieve this, Robert pre-programs a query
for a service that can provide soil analysis data and a service that can provide location
data. When the team meets at a staging point, Robert’s PDA executes the query and
reports that David’s PDA has a soil analysis data service. Robert keys in the names of
the chemicals that he is interested in. Next, his PDA verifies that Sam’s PDA can provide
a GPS data service. However, Robert is only interested in the location and time stamp
from the GPS data. He directs his PDA to filter out the extraneous data - the request
is transmitted to the GPS data service on Sam’s PDA which appropriately customizes
the data sent to Robert. Data starts flowing in from both Sam’s and David’s PDA. By
correlating the time stamp from the GPS data and the time stamp on the soil data,
the software on Robert’s PDA generates an accurate table of chemical levels and various
locations. The remaining task is that of generating a graphic. Since Robert’s PDA does
not have a graphic tool, he enters a request for a map generating service. His PDA reports
that Tom’s PDA has a service that can take a data table and generate a graphic. Robert
then directs his PDA to push his generated data to Tom’s PDA which responds with a map
in JPEG format which can be viewed by Robert on his PDA. Thus, using a complex set
of services, Robert was effectively able to generate the required map with relative ease. In
the following subsections, we show how each element fulfills a portion of the functionality
required to deliver such services to users.

Description

The description element is responsible for dealing with issues related to creating
a profile, a comprehensive and unambiguous description of a service. A comprehensive
description of a service ensures the service can be used to the maximum extent of
its capabilities. The unambiguous characteristic of the service description will ensure
consistent interpretation of the data in the profile. The profile must be machine readable
to facilitate the automation of the search process.

To make a profile machine readable, a well defined syntax must be imposed on the
service description. Some service discovery infrastructures use simple data structures to
describe their service profiles but most use markup languages like the Resource Description
Framework (RDF) (W3C-Semantic-Web-Activity, 2003) and DAML (Horrocks, 2002).
XML (XML-Core-Working-Group, 2000) is used for syntactic purposes. In some cases, the
service profile can be replaced with an introspective analysis of the code. Using a technique
called reflection, the code of a service can be inspected and its capabilities inferred from
the list of methods it contains and their parameters. This technique is useful in languages
that have reflection built in, as this mitigates the overhead of formulating a service profile.

Once a common syntax for the description has been established, the information in
a service description can be broken into tokens and automatically processed by algorithms.
However, the tokens have no value unless they have semantics associated with them. Se-



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 10

mantics can be defined by introducing a type system and establishing relationships between
entities. RDF (W3C-Semantic-Web-Activity, 2003) describes relations between entities
using directed graph-like data structures. Its Resource Description Framework Schemas
(RDFS) (W3C-Metadata-Activity, 2000) extension provides additional basic notions such
as classes. Details of the protocol to communicate with the service, if required, can be
described using languages like WSDL (W3C-XML-Activity-On-XML-Protocols, 2003).

Syntax and semantics are combined in ontologies. Ontologies define specific terms
for certain contexts and encode relationships between elements of a service description
that help in matching the client’s request to the right service profile. For example,
the “Environmental Survey” ontology may have the SoilData class be a child of the
EnvironmentalData class but the “GPS Location Provider” ontology may not even contain
the EnvironmentalData class. The parties involved in the transaction need to make
sure they understand the same semantics from the information represented in the service
profile, i.e., they need to share a common ontology. There is an ongoing effort to develop
ontologies for specific fields of activity building up a global scale standardization system.
The reader is directed to http://www.daml.org/ontologies/ for samples of such ontologies.

The mechanics of describing a service essentially do not change when we move
to ad hoc networks. Certainly the syntax can be reused and the semantics remain the
same. However, it would be remiss to say that a service profile tailored for use in a wired
network would work as effectively in an ad hoc environment. This is because the ad
hoc network is a more demanding and dynamic environment. The service profile has to
be enhanced to account for these differences. Examples of enhancements include adding
location information, motion profiles (if the service provider is mobile), possible alternate
providers in case a provider moves out of communication range, battery power remaining,
trust certificates and other such details.

A example of an enhancement to a service profile for ad hoc networks is the addition
of a motion profile. In the mobile ad hoc networking environment, motion information
is an important component of a service profile since having the motion profile of a
service provider can help schedule interactions, maintain or resume connectivity, schedule
message delivery, etc. With this in mind, we developed a set of algorithms that compute
windows of opportunity (Handorean & Gill, 2004) by comparing the motion profiles of
the client and the service provider. Windows of opportunity represent a set of time
intervals during which the client and service provider can interact (most likely because
they are co-located or are within wireless communication range). During this time, they
can schedule data or code exchanges. They can also use the information provided by the
windows of opportunity algorithm to plan the nature of future interactions, which may
include suspending computations while disconnected or choosing to delay an interaction to
avoid unexpected termination.

Distilled Imperatives for Description in ad hoc settings

• The service profile must be comprehensive, unambiguous and machine inter-
pretable.

• A common ontology is required to ensure that both user and provider infer the



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 11

same semantics for an entity.
• The profile should be enhanced with details pertaining to the mobility and available

resources of the service provider.

Advertisement

In our example, Robert’s PDA automatically discovered that Sam’s PDA provided
a GPS location service and that David’s PDA provided a soil analysis data service. This
was a two-way process by which Robert’s PDA requested such services and the services
advertised themselves. In this subsection, we discuss issues pertaining to advertising a
service. Simply put, advertisement is the process of putting the service profile and its
ancillaries in a place where it can be read by anyone, so that users are made aware of the
services’ existence and can use them when they need to.

Advertisements come in many different flavors, ranging from simple text to complex
objects. The simplest kind of advertisement is a plain text description of a service,
e.g., encoded in XML (XML-Core-Working-Group, 2000). This kind of advertisement is
used widely on the Semantic Web. Next in order of complexity is the two-step form of
advertisement used by the UPnP (Microsoft-Corporation, 2000) system. The first step
conveys information about the existence of the service and offers a Uniform Resource
Identifier (URI) for a more comprehensive description. On obtaining this URI, the user
connects to the specified location to get a complete description. The most advanced kind of
advertisement is the proxy object approach used by the Jini (Edwards, 1999) system. The
proxy object is advertised along with the service profile text. The proxy object behaves
like a client side handle to the provider of the service and is used to control interactions
between the user and provider.

Services may advertise themselves in two ways: on a central service registry or
directly to users in a peer-to-peer fashion. The central registry is easier to maintain and
configure. However, this design may introduce single points of failure. In such a setting,
the complete failure of a lookup service could paralyze an entire community of hosts trying
to interact. Another issue inherent in central directories is services that become suddenly
unavailable (e.g., due to their host crashing or disconnecting) but which leave behind their
advertisements in the registry. Lease agreements for services can be used to mitigate this
issue but do not eliminate it. Finally, using a central registry means that the location
of this registry may need to be disseminated using other channels. Using our example,
Robert would have to know how to contact a local broker to obtain the address of the
registry and would have to configure his PDA before he could discover the soil analysis
service. While this is not unreasonable, it does add an extra step to the process of discovery.

The second approach to advertisement is the registry-less technique used by SSDP
(Goland et al., 1998). Clients and servers advertise their needs and/or presence directly
using unicast (when the location of the party is known), or multicast. The announcements
happen when the process comes up, and possibly periodically thereafter. The advantage
of this approach is that it eliminates the need for a third party mediator. Orphan



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 12

advertisements cannot exist due to the simple nature of the mechanism. The downside of
the approach is the higher bandwidth usage and the limited scope of users an advertisement
can reach. In the context of our example, the GPS location service would advertise itself
individually to Robert’s PDA and everyone else in proximity, whether they asked for such
a service or not. Hybrid approaches exist that use both service directories and direct
announcements. Users would then try to contact a service registry manager process and, if
it were not available, they would start interacting in a peer-to-peer fashion.

An effective advertisement mechanism for the ad hoc setting needs to consider two
main issues. The first is the size of the advertisement. Advertisements need to be as small
as possible so that they do not monopolize bandwidth and can be transmitted in the short
periods of time in which connectivity may exist. The second is the manner of advertising.
Services should be advertised in a transiently shared space that adapts to host mobility.
Neither of the approaches discussed previously, e.g., central registry or peer-to-peer are
suitable. By nature of the network, a central well-known registry is not feasible and direct
peer-to-peer advertisements use up a lot of bandwidth and battery power on resource-poor
hosts.

A solution to the problem lies in the use of global virtual data structures. Lime
(Murphy, Picco, & Roman, 2001) is a Java implementation of the Linda (Gerlenter, 1985)
coordination model, adapted for ad hoc networking. The mechanism used for advertising
services is based on transient sharing of a local service registry (Handorean & Roman,
2002) (Storey, Blair, & Friday, 2002). The content of the service registry is distributed
across participating hosts and processes. Each process has its own local registry which it
shares with local registries held by other processes, forming a federated service registry.
The content of the federated registry is atomically updated as processes join or leave a
defined community. When a process leaves the community, the advertisements in its local
registry become inaccessible but the remaining processes are not affected. The approach
guarantees the consistency of the service registry content at all times in that a service
cannot be discovered if it is not available. Returning to our example, the GPS location
service would put its service advertisement in its local registry. When Robert turned on
his PDA, the local registry on Robert’s PDA would merge with the GPS location registry
and exchange data. Once the data transfer was completed, the two registries could separate.

Distilled Imperatives for Advertisement in ad hoc settings

• The size in bytes of the advertisement should be minimized.
• Advertisements should be placed in a transiently shared space that is accessible by

all interacting parties.
• The advertisements in the registry should be consistent and there should be no

advertisements without there being an associated active service.

Discovery

The process by which a user finds a service provider is called service discovery.
Service providers do the best they can to get their advertisements out to interested



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 13

users. However, as mentioned in the previous subsection, there is essentially a two-part
process of (1) advertising by the provider and (2) requesting by the user. Without
the user’s request, there is no relation established between the user and provider. Re-
quests are also referred to as templates that describe the required characteristics of a service.

Like advertisements, requests also have varying levels of complexity. The simplest
kind of request contains the identifier of a service the client already knows. This scenario
assumes that the client knows the protocol and the semantics of interacting with the
provider and only needs to discover the provider’s presence. When the client runs for
the first time in a new environment or needs to search for a service it has never used
before, the request becomes more detailed. Such a request is formulated as a template
that describes the capabilities and performance parameters that the service must provide,
in the form of attribute-value pairs. The formulation of a request follows the same
guidelines that apply to the description of a service. A more advanced request breaks up
the required list of attributes into “must have” and “can have” attributes. A candidate
service is rejected if it does not have any of the “must have” attributes while the “can
have” attributes behave like bonuses and are used as tie-breakers by the matching algorithm.

Like a service advertisement, a service request can be broadcast or multicast as
repetitive or periodic messages. Indirect requests unicast their messages to a central service
registry and obtain results from there. Models such as Salutation (Salutation-Consortium,
2003) support service brokers which are processes that manage service registries. The
servers contact these brokers to advertise their services while the clients contact them to
address their requests for services. If the model is based on service repositories and service
brokers (lookup services), both clients and servers need to discover these special services
first.

The most critical piece of the discovery mechanism is the algorithm that matches
requests to advertisements. Matching algorithms themselves constitute a comprehensive
research area: due to limitations of space, we mention them only briefly here. Matching
can take two forms: exact matching and inexact matching. Exact matching is based on
the logical equivalence operator. Exact matching can be a value match, where values
of an object are compared, e.g., String greeting = “Hello” matches String salutation =
“Hello” since their values are equivalent. Type matching is also a form of exact matching
where the objects “greeting” and “salutation” are equivalent since they share the same
type, i.e., “String.” Exact matching is the kind of matching that is most commonly in
use today. Inexact matching seeks to discover essential commonality of features of the
two entities being matched. Even when two entities are not equivalent, a positive match
is returned if the differences do not matter. This is a nontrivial process since teaching
a machine to make correct judgements calls is a very complex task. The simplest kind
of inexact matching is polymorphic matching. Polymorphic matching returns a positive
result if one object is a subclass of the other. For example, a polymorphic comparison
between a LinkedList object and a DoubleLinkedList object would return a positive
match since DoubleLinkedList was a subclass of LinkedList. A more advanced kind of
inexact matching called semantic matching is discussed later in this section.



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 14

An exact matching policy is in many circumstances considered too rigid for the
purpose of matching services. Consider our example where Robert’s PDA made a request
for “Soil Analysis Data services” whereas the advertisement was for a “Constituents of
Soil service.” An exact matching algorithm would not return a match, but in fact the
two are a good match for each other even though they do not use the same terms. A
first step towards a more general matching policy is to allow for polymorphic matching,
e.g., a client looking for a soil analysis service could be given a handle to a soil moisture
content service if a soil moisture content service is in fact a subclass of a soil analysis
service. Another type of inexact matching is inexact value matching or approximation,
e.g., Robert may be looking for a soil moisture service but would accept a comprehensive
soil data service if the soil moisture service were not available. The client can specify a
range or set of values for a certain attribute rather than a single rigid value. It is also
important for the client to be able to specify what the best match looks like in these
cases. In some cases the lower value is better while in other cases the higher value is
better. The best choice is the result of optimizing a function over the range or set of
values allowed by the client. Semantic matching as discussed in (Paolucci et al., 2002) is
an inexact method for matching services based on their semantics, and holds much promise.

In an ad hoc networking environment, clients must be more flexible in requesting
and using services. Allowing flexible or inexact matching is extremely important in an
environment where all interactions are opportunistic and many of the participants may be
resource poor. While an inexact matching policy seems very important in ad hoc networks,
it comes at a cost. Exact matching can return the first match and terminate. Inexact
matching needs not only to verify the relationship between the advertised value and the
acceptable range, but it also needs to compare each match against all other available
matches. Simply discovering a match doesn’t mean that another advertisement, not yet
considered, couldn’t yield a better match. These enhancements to the requests formulated
by clients and to the matching algorithms may lead to costly searches. In ad hoc networks
this can be critical. While in a wired setting a client can afford to browse a service
repository, in ad hoc settings the connectivity may not be guaranteed for such a long
period of time. This constraint affects the type of search a client performs. A synchronous
search usually assumes reliable connectivity, but for an ad hoc networking environment an
asynchronous approach can be better for several reasons. The client delegates the effort
to perform the search to another party (possibly a searching service) and, if possible,
continues execution while waiting for a notification. This approach abstracts issues of
consistency of the data in the service registry away from the client. The result of a match
is usually a handle to a service. Returning multiple handles forces the client to filter them
locally and to choose the best fit. In ad hoc networks with low power hosts this can become
a problem as discovering multiple services and filtering them can be resource intensive.
Hence, matching algorithms designed for ad hoc networks must be designed to operate in a
distributed fashion, so that the filtering occurs on the provider side rather than the client
side.

When a service handle is returned, it is paired with a service identifier. This can be



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 15

used by the client to access the service in the future, provided it is within communication
range. The service provisioning framework ensures that the ID is globally unique. Beside
the service ID, the client can receive the provider’s profile, a URI to the provider’s profile,
or a proxy object that represents the provider locally to the client. The simpler the return
type, the more complex the processing on the client side. This requires more sophisticated
clients which are able to filter the results themselves, learn communication protocols, and
so forth. The advantage is reduced bandwidth consumption and framework simplification
at the expense of more complex clients. An alternate solution is the proxy object approach.
At the expense of higher bandwidth usage, the client retrieves a proxy object that abstracts
details of communication with the provider. When it is no longer needed, the proxy object
can be discarded, thus saving memory space. The proxy idea is implemented in Jini
(Edwards, 1999). Jini uses RMI (Sun-Microsystems, 2003b) to download the proxy object
locally to the client and then to mediate the interaction between the proxy and its server,
even though they may communicate without using RMI (Sun-Microsystems, 2003b). The
proxy object approach is more elegant but it brings its own challenges, e.g., it implies
a mechanism for code mobility as suggested in µCode (Picco, 1998). From the ad hoc
perspective, the tradeoff between bandwidth and power is a challenge as both commodities
are in short supply in the ad hoc setting. In general, solutions differ appropriately from
system to system.

Distilled Imperatives for Discovery in ad hoc settings

• The request should be comprehensive to enable semantic matching which can max-
imize hits, which is useful in environments with transient interactions and decoupled com-
puting.

• The matching algorithm should be flexible and should return the fewest possible
results to reduce client side processing.

• The handle to the service should have a small footprint but should be able to
abstract details of communication and coordination in ad hoc networks away from the user
of the service.

Invocation

The next step after discovering a service is to use or invoke it. This step is one of
the most challenging in the ad hoc wireless setting. Consider the scenario in our example
where Robert is downloading soil analysis data from the soil analysis service. When the
download is half completed, Robert unknowingly walks out of range of David’s PDA. This
breaks the connection and terminates the download. This scenario is typical of an ad hoc
network where frequent and unannounced disconnections abound.

The biggest challenge is to maintain connectivity for a sufficiently long period of
time. If we could assume that the connectivity lasts for the entire duration of the service
discovery and invocation, the dynamic character of an ad hoc network would be reduced
to that of a reliable wired network. A solution which mitigates this problem is the notion
of context-sensitive bindings (Sen & Roman, 2003). Context sensitive bindings create a
binding between the user and provider of the service and try to maintain it for the duration



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 16

of some interaction between them. If the provider goes out of range, the framework tries
automatically to redirect the user to another similar provider or else to fail gracefully. In
addition to maintaining the binding between the client and the service, context-sensitive
binding mitigates the effect of frequent disconnections by periodically caching the state
of the interaction between the client and the service. Context-sensitive bindings can also
use the notion of a motion profile published by a service provider in its advertisement to
estimate disconnections before they occur and to judge how long the disconnection will
last. If an imminent disconnection seems to be permanent, a service invocation may be
cancelled. However, if the analysis of the motion profile indicates possible future contact
between the two parties, an asynchronous type of interaction can be employed. The client
only needs connectivity initially until the method execution is launched, that is until the
parameters of the call are shipped and the call is made on the remote host. The connection
between the two ends can be dropped after that, until some result is ready for the client.
Some notification mechanism must tell the client that there is a result ready or the client
will need to poll for the result when the connection is restored. A more sophisticated
version of the above example can entail result delivery to a remote location. It is possible
to deduce from motion profiles that the client moves towards a certain destination while
its task is being processed. Geocast (Ko & Vaidya, 1998) protocols can help deliver the
result in a certain physical area while Mobicast (Huang, Lu, & Roman, 2003) can help
coordinate both the time and the place of result delivery.

Context sensitive binding can be realized in the form of middleware that supports
the functionality. We developed a basic middleware to demonstrate proof of that concept.
A programmer can specify an interface (analogous to a service request) that he may be
interested in. The middleware then searches a repository for providers that fulfil all the
needs specified by the programmer. A connection is then created between the client and
the provider and maintained for as long as there is wireless connectivity between them. In
the event of a disconnection, the middleware automatically looks for an alternate candidate
and rebinds to it in a manner transparent to the application on the client side. Periodic
images of the state of the interaction are cached on the client so that when there is a switch
between providers, the cached state can be pushed to the new provider to ensure that the
interaction does not have to revert to the first step.

Once the provision for a connection is made, the next consideration is the protocol
that is to be used. The simplest discovery mechanisms use well known remote procedure call
protocols like RMI (Sun-Microsystems, 2003b) or SOAP (XML-Protocol-Working-Group,
2003). At the next level lie services that can learn the communication protocol described
in the advertised service profile. The clients need to share an ontology with the provider
offering the services, to be sure they understand the description of the protocol. WSDL
(W3C-XML-Activity-On-XML-Protocols, 2003) is an example of an XML-based language
for describing services and how to access them. The last category consists of models in
which clients do not need to know anything about the communication protocol. They use
proxy objects as local representations of services. These proxy objects may be sophisticated
enough to implement the entire service themselves, or they may be client side handles to
the server providing the service. Each proxy is used by the client to interact with the



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 17

actual implementation of the service. The proxy handles the communication with the
provider and the client only needs to have knowledge of the interface the proxy offers. We
observe again that the client and the provider’s proxy need to adhere to the same ontology.
The service provider needs to address issues like the communication protocol, how to
handle disconnections, and dynamic rebinding of the proxy to another instance of the
service running on a different machine while the framework offers support for downloading
code and possibly introspection. An example of an implementation of this model is Jini
(Edwards, 1999). Support for proxy downloading and remote method invocation is ensured
by RMI (Sun-Microsystems, 2003b), while the client is expected to know how to interact
with the proxy object (e.g., it may use a given Java interface which the proxy object
implements). We stress that Jini represents one possible implementation of this model.
Alternate implementations of over-the-air-downloading of software exist, the m-services
(Paurobally, Turner, & Jennings, 2003) architecture being a good example.

Distilled Imperatives for Invocation in ad hoc settings

• Provide a mechanism that mitigates the problem of frequent and unannounced
disconnections.

• Use motion profiles to predict where a certain host will be at a given time and plan
interactions using this information.

• Have a sophisticated proxy that can hide communication protocol details from the
user and perform tasks like rebinding to better service providers without user intervention.

Composition

Service composition is the notion of taking two or more autonomous services and
combining them to behave like one composite service. We illustrate the usefulness of
this concept by referring back to our original example. Recall that Robert’s task was to
generate a map of soil pollutants. To achieve this, Robert initially requested a service
which gave him soil analysis data. However, as he started receiving information from
the service, he realized that he would require location data to generate a map. The
soil analysis service did not have location data so he went to a GPS location service
to find the relevant data. Even with location information, there is not enough data
to build a map. Hence, Robert composed the soil analysis service and the location
service with the mapping service to generate a map with all the relevant data. Service
composition is a powerful concept that allows multiple stand-alone services, each of which
is highly specialized to a particular task, to be combined into a single service which can
then offer an interlocked collection of services under a single umbrella. The benefit of
the composed service is generally greater than the sum of benefits yielded by its constituents.

Composition promotes separation of concerns in the development of services. In our
example, if the soil analysis service had to develop its own location generating program, it
would most likely be inferior to that of a dedicated GPS location service. By composing
itself with a third party location service, it effectively “outsources” the problem of gathering
location data, saving the cost of development of a location data gathering tool while at the
same time providing a better quality of service. Composed services can differ based on the



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 18

way they are constructed and used. We first discuss ways of building a composed service,
followed by ways a composed service may be used.

The two main approaches for composing services are the distributed approach and
the integrated approach. In the distributed approach, the composed service behaves like a
distributed application with component services residing on different machines. The com-
posing mechanism may use the Façade design pattern (Gamma, Helm, Johnson, & Vlissides,
1994) to provide a single, common interface to the user (Mennie & Pagurek, 2000). The
user makes local method calls to the interface which determines which of the component
services can handle the request and uses a protocol such as RMI (Sun-Microsystems, 2003b)
to call that service. Results are returned to the interface which disburses them to the
user locally. In the integrated approach, the code for all the services is aggregated by the
composing entity and runs locally. Regardless of the approach for composing a service, it is
critical to ensure that the elements of the composed services neither conflict with each other
nor cause the composed service to deadlock. In essence, if we have n services that have been
successfully composed, adding the n + 1st service should not violate the integrity of the n
original services (Kirner, 2002). This can be verified in some cases through formal reasoning.

Composed services can be used in two ways. In automatic composition, the user
makes some request to a specific service, e.g., Robert requests a table of locations and
soil makeup from the soil analysis service. The soil analysis service checks its data and
discovers that it can service the request for the soil analysis but it cannot provide location
information. Hence, to fulfil the request, it automatically requests that a location service
provide location data on its behalf. In object oriented terms, this process is analogous
to a method call on an external object. Notice that to Robert, all the data seems to be
coming from a single source, the soil analysis service. In manual composition, the user
manually selects a list of services that he or she believes will yield a useful result when
combined. These services are then integrated according to the specific request. They
do not seek out additional services to help them complete their tasks if they are lack-
ing in some capability. The onus is on the user to ensure that such a situation does not arise.

We now discuss the merits of each approach as it pertains to ad hoc networks. The
distributed approach to composing services is less reliable in ad hoc networks because a
single element moving out of range can affect the entire composed service whereas if the
services are hoarded, the connectivity needs to be preserved for a shorter period of time
during which the services are be copied over to the composing host. However, the downside
of hoarding services is that everything needs to be run locally which can drain power or tie
up crucial memory. Another scenario is that where a certain resource is available only on
the provider host, e.g., a specialized sensor. The best compromise in such situations is to
exploit the notion of motion profiles as mentioned in the previous subsection, hoard only
those services which are likely to move out of range, and use the stable proximal ones in a
distributed fashion.

For composed services, the automatic composition approach is more user-friendly but
it does raise a concern that affects all composed services, that of security and confidentiality.



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 19

Issues of security and privacy come to the fore in automatic service composition, especially
if there is an exchange of personal information, e.g., Robert might be willing to share
authentication information with the soil analysis service since he knows it is reliable and
has appropriate security measures to safeguard his information. However, he may not
want his information transmitted to the location service since he does not trust its security
system. Such an event could lead to loss of privacy without the individual being aware
of it. With manual composition, one can presume that the user would select only those
services that he or she trusted.

Service composition is critical in the ad hoc wireless setting for two reasons. An ad
hoc network by definition, is an “anytime, anywhere” network. This means that an ad hoc
network encounters a dynamic environment with its own nuances, requiring customized,
situation specific services. Having large, indivisible services which cater to specific needs is
not flexible enough for such dynamic environments. It is much more effective to have a set
of smaller services and select a subset of them to form a customized service on demand.
Composition supports such a capability. The second reason why composition is an essential
feature of ad hoc networks is that it allows for highly specialized services with potentially
smaller footprints. This means that such services can run on small devices like PDAs or
cellphones, increasing the number of devices in the network that can potentially be service
providers, and thereby increasing the number of basic and composed services available in
the network.

The final issue we discuss is related to the control of a composed service with an
eye toward security issues. Note that the elements of a composed service are provided by
many different providers. Also observe that to use a provided service in a composition,
the composing entity has to obtain some degree of control over the provided service. The
provider may not necessarily want to relinquish control over its service and hence a middle
ground must be found. We envision the use of management software like Java Management
Extension (Sun-Microsystems, 2003a), which can manage services from different providers
and yet allow them to retain some degree of autonomy.

Distilled Imperatives for Composition in ad hoc settings
• The approach to composing services should consider a hybrid strategy of integrated

and distributed composition, which exploits the state of the network and services to the
fullest.

• Composable services should be designed so as not to conflict with other services,
to increase the range of allowable compositions.

• Security and management systems should be compatible to maximize interoper-
ability.

Future Trends

While service oriented computing has reached a certain level of maturity in wired
networks, it remains a nascent area of research in ad hoc wireless networks. Much
potential for future research exists. In this section, we briefly describe some of the key



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 20

research issues which we feel hold technical challenges and/or promise beneficial impact.
Service descriptions can be enhanced to include motion profiles, battery power levels and
composability attributes. The content of a description could also be made dynamic to
incorporate the current status of a service, e.g., a printer would reliably advertise how
much paper is remaining in its trays. In the area of service advertisements, one can
envision active advertisements where services do not wait for a request but actively solicit
jobs. The idea of a client advertising jobs rather than providers advertising services is
also one that could be explored. Providers would examine a pool of jobs and pick up
ones that they could perform. A provider would send a notification to the client when
the job was completed. Another novel idea is time limited advertisements, analogous to
limited time discount offers. A provider could offer lower cost or higher quality services at
certain times when the load on the network is low and the service is not being fully exploited.

In the arena of discovery, approximate matching functions based on semantics is an
open area of investigation. These algorithms could be tailored to ad hoc networks, with
decision making based on the available content and urgency of requests. This direction of
study could extend work on metrics for service discovery and usage - functions that help
a user decide which is the better of two or more given services. Service invocation also
poses some interesting problems, e.g., the notion of “follow-me” services is one in which
the client holds the service proxy but the providing host changes over time due to physical
mobility. This work can be related to resource leasing - pushing services onto resource rich
hosts and controlling them through proxy objects and delivering results remotely, e.g., a
client requests a job in St. Louis, shuts down, restarts in New York and receives the result
from a local access point. The concept of context sensitive binding can be applied as well,
to facilitate active resource monitoring and load balancing based on network traffic.

The concept of composing multiple instances of a service for parallel processing
and performance gains is extremely useful in ad hoc networks when the connection may
exist for short periods of time only. This would require specification of dependencies
between services with a hierarchy ranging from required to preferred. It also raises issues
of combining code from various sources seamlessly and ensuring that the result exhibits
correct and expected behavior.

Other than work related to enhancing the elements of service oriented computing,
there are some broader trends that can improve service oriented computing as a whole. One
such idea is the use of virtual currency, a version of which has been proposed in (Buttyan
& Hubaux, 2001). Another concept is that of a language independent representation of
services, where the skeleton of the description highlights the semantics of the service and
appropriate words from any language can be used to describe those semantics. This would
allow the framework to understand requests in any language as long as the semantics of
the service remained consistent. Lastly, one cannot ignore the security implications of such
a framework which will require much research into online security, especially in scenarios
where two programs can interact with each other without human intervention.



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 21

Conclusion

We began this chapter by introducing the notion of service oriented computing and its
applicability in ad hoc wireless networks. We discussed existing service oriented computing
models and highlighted the Semantic Web as an example of service oriented computing at
work. We then discussed issues of service oriented computing in ad hoc wireless networks
as they pertain to each of the salient elements of a service oriented computing framework,
viz. description, advertisement, discovery, invocation and composition. For each of these
elements, we distilled a set of imperatives for the ad hoc wireless setting. Finally, we
highlighted key research issues and enhancements which we see as defining the next steps
for research in this area. We hope this chapter has given a perspective on the issues,
challenges and imperatives of designing and implementing a service oriented computing
framework for ad hoc wireless settings, one that will serve as a guide for future research.

Acknowledgements

This research was supported in part by the Office of Naval Research under MURI
research contract N00014-02-1-0715. Any opinions, findings, and conclusions or recommen-
dations expressed in this paper are those of the authors and do not necessarily represent
the views of the research sponsors.

References

Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., Martin, D., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Payne, T., & Sycara, K. (2002). Daml-s: Web service description
for the semantic web. In Proceedings of the 1st international semantic webconference.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001, May). The semantic web. Scientific American.

Buttyan, L., & Hubaux, J. (2001). Nuglets: a virtual currency to stimulate cooperation in self-
organized ad hoc networks (Tech. Rep.). EPFL.

Cohen, J., & Aggarwal, S. (1998, July). General event notification architecture.
http://www.globecom.net/ietf/draft/draft-cohen-gena-p-base-01.html.

Edwards, W. K. (1999). Core jini. Sun Microsystems Press.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee, T. (1999,
June). Request for comments 2616 - hypertext transfer protocol - http/1.1. ftp://ftp.isi.edu/in-
notes/rfc2616.txt.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns - elements of reusable
object-oriented software. Addison Wesley.

Gerlenter, D. (1985, January). Generative communication in linda. ACM Computing Surveys, 7, 80
- 112.

Goland, Y., Cai, T., Leach, P., & Gu, Y. (1998, April). Simple service discovery protocol.
http://www.upnp.org/download/draft cai ssdp v1 03.txt.

Handorean, R., & Gill, C. (2004). Accomodating transient connectivity in ad hoc and mobile
settings. In To appear in proceedings of pervasive 2004.

Handorean, R., & Roman, G.-C. (2002, April). Service provision in ad hoc networks. In Proc. of
the 5 th international conference on coordination models (p. 207-219).



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 22

Horrocks, I. (2002). Daml+oil: A description logic for the semantic web. IEEE Bulletin of the
Technical Committee on Data Engineering.

Huang, Q., Lu, C., & Roman, G.-C. (2003, April). Mobicast: Just-in-time multicast for sensor
networks under spatiotemporal constraints. In Lecture notes in computer science. Springer-
Verlag.

Kempf, J., & Pierre, P. S. (1999). Service location protocol for enterpriser networks: Implementing
and deploying a dynamic service resource finder. John Wiley and Sons.

Kirner, R. (2002, October). Enforcing composability for ubiquitous computing systems. In Proceed-
ings of the 7th cabernet radicals workshop.

Ko, Y., & Vaidya, N. (1998). Geocasting in mobile ad hoc networks. Location-based multicast
algorithms.

Mennie, D., & Pagurek, B. (2000, June). An architecture to support dynamic composition of
service components. In Proceedings of the 5th international workshop on component -oriented
programming (wcop 2000).

Microsoft-Corporation. (2000, June). Universal plug and play device architecture.
http://www.upnp.org/download/UPnPDA10 20000613.htm.

Miller, S. (2003, October). The autoip publisher page. http://www.autoip.net.

Murphy, A., Picco, G., & Roman, G.-C. (2001, April). Lime: A middleware for physical and logical
mobility. In Proc. of the 21st int’l conf. on distributed computing systems (pp. 524–533).

Paolucci, M., Kawmura, T., Payne, T., & Sycara, K. (2002). Semantic matching of web services
capabilities. In Proceedings of the 1st international semantic web conference.

Paurobally, S., Turner, P. J., & Jennings, N. R. (2003). Towards automating negotation for m-
services. In Proceedings of the 5th international workshop on agent-mediated e-commerce (p.
124-131).

Picco, G.-P. (1998, September). code: A lightweight and flexible mobile code toolkit. In Lecture
notes on computer science (Vol. 1477, p. 160-171). Springer.

Salutation-Consortium. (2003, October). The salutation consortium homepage.
http://www.salutation.org.

Sen, R., & Roman, G.-C. (2003). Context-sensitive binding: Flexible programming using transparent
context maintenance (Tech. Rep. No. WU-CSE-2003-72). Washington University Department
of Computer Science.

Srinivas, J. (1995, August). Rfc 1831 - open network computing remote procedure call protocol
specification. http://www.ietf.org/rfc/rfc1831.txt.

Storey, M., Blair, G., & Friday, A. (2002). Mare - resource discovery and configuration in ad hoc
networks. Mobile Networks and Applications, 7, 277-287.

Sun-Microsystems. (2003a, October). Java management extensions homepage. http://java.sun.com/
products/JavaManagement/.

Sun-Microsystems. (2003b, October). Java remote method invocation page. http://java.sun.com/
products/jdk/rmi/.

UDDI-Organization. (2000). Uddi technical white paper. http://www.uddi.org/pubs/
Iru UDDI Technical White Paper.pdf.



SOC IMPERATIVES IN AD HOC WIRELESS SETTINGS 23

W3C-Metadata-Activity. (2000, March). Resource description framework schema specification 1.0.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.

W3C-Semantic-Web-Activity. (2003, October). Worldwide web consortium page on resource de-
scription framework. http://www.w3.org/RDF/.

W3C-XML-Activity-On-XML-Protocols. (2003, October). W3c recommendation: Web services
description language 1.1. http://www.w3.org/TR/wsdl.

XML-Core-Working-Group. (2000, October). W3c recommendation: Xml version 1.0 second edition.
http://www.w3.org/TR/2000/REC-xml-20001006.

XML-Protocol-Working-Group. (2003, June). W3c recommendation: Soap version 1.2 parts 0-2.
http://www.w3.org/TR/SOAP/.


	Service Oriented Computing Imperatives in Ad Hoc Wireless Settings
	Recommended Citation
	Service Oriented Computing Imperatives in Ad Hoc Wireless Settings

	tmp.1470340445.pdf.IVT7h

