28 research outputs found

    Interior-point algorithms for convex optimization based on primal-dual metrics

    Full text link
    We propose and analyse primal-dual interior-point algorithms for convex optimization problems in conic form. The families of algorithms we analyse are so-called short-step algorithms and they match the current best iteration complexity bounds for primal-dual symmetric interior-point algorithm of Nesterov and Todd, for symmetric cone programming problems with given self-scaled barriers. Our results apply to any self-concordant barrier for any convex cone. We also prove that certain specializations of our algorithms to hyperbolic cone programming problems (which lie strictly between symmetric cone programming and general convex optimization problems in terms of generality) can take advantage of the favourable special structure of hyperbolic barriers. We make new connections to Riemannian geometry, integrals over operator spaces, Gaussian quadrature, and strengthen the connection of our algorithms to quasi-Newton updates and hence first-order methods in general.Comment: 36 page

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    On Polynomial-time Path-following Interior-point Methods with Local Superlinear Convergence

    Get PDF
    Interior-point methods provide one of the most popular ways of solving convex optimization problems. Two advantages of modern interior-point methods over other approaches are: (1) robust global convergence, and (2) the ability to obtain high accuracy solutions in theory (and in practice, if the algorithms are properly implemented, and as long as numerical linear system solvers continue to provide high accuracy solutions) for well-posed problem instances. This second ability is typically demonstrated by asymptotic superlinear convergence properties. In this thesis, we study superlinear convergence properties of interior-point methods with proven polynomial iteration complexity. Our focus is on linear programming and semidefinite programming special cases. We provide a survey on polynomial iteration complexity interior-point methods which also achieve asymptotic superlinear convergence. We analyze the elements of superlinear convergence proofs for a dual interior-point algorithm of Nesterov and Tun\c{c}el and a primal-dual interior-point algorithm of Mizuno, Todd and Ye. We present the results of our computational experiments which observe and track superlinear convergence for a variant of Nesterov and Tun\c{c}el's algorithm

    Imaginary Projections: Complex Versus Real Coefficients

    Full text link
    Given a multivariate complex polynomial p∈C[z1,…,zn]{p\in\mathbb{C}[z_1,\ldots,z_n]}, the imaginary projection I(p)\mathcal{I}(p) of pp is defined as the projection of the variety V(p)\mathcal{V}(p) onto its imaginary part. We focus on studying the imaginary projection of complex polynomials and we state explicit results for certain families of them with arbitrarily large degree or dimension. Then, we restrict to complex conic sections and give a full characterization of their imaginary projections, which generalizes a classification for the case of real conics. That is, given a bivariate complex polynomial p∈C[z1,z2]p\in\mathbb{C}[z_1,z_2] of total degree two, we describe the number and the boundedness of the components in the complement of I(p)\mathcal{I}(p) as well as their boundary curves and the spectrahedral structure of the components. We further show a realizability result for strictly convex complement components which is in sharp contrast to the case of real polynomials.Comment: 24 pages; Revised versio

    Linear optimization over homogeneous matrix cones

    Full text link
    A convex cone is homogeneous if its automorphism group acts transitively on the interior of the cone, i.e., for every pair of points in the interior of the cone, there exists a cone automorphism that maps one point to the other. Cones that are homogeneous and self-dual are called symmetric. The symmetric cones include the positive semidefinite matrix cone and the second order cone as important practical examples. In this paper, we consider the less well-studied conic optimization problems over cones that are homogeneous but not necessarily self-dual. We start with cones of positive semidefinite symmetric matrices with a given sparsity pattern. Homogeneous cones in this class are characterized by nested block-arrow sparsity patterns, a subset of the chordal sparsity patterns. We describe transitive subsets of the automorphism groups of the cones and their duals, and important properties of the composition of log-det barrier functions with the automorphisms in this set. Next, we consider extensions to linear slices of the positive semidefinite cone, i.e., intersection of the positive semidefinite cone with a linear subspace, and review conditions that make the cone homogeneous. In the third part of the paper we give a high-level overview of the classical algebraic theory of homogeneous cones due to Vinberg and Rothaus. A fundamental consequence of this theory is that every homogeneous cone admits a spectrahedral (linear matrix inequality) representation. We conclude by discussing the role of homogeneous cone structure in primal-dual symmetric interior-point methods.Comment: 59 pages, 10 figures, to appear in Acta Numeric

    Sum-of-norms clustering: theoretical guarantee and post-processing

    Get PDF
    Sum-of-norms clustering is a method for assigning n points in d-dimensional real space to K clusters, using convex optimization. Recently, Panahi et al. proved that sum-of-norms clustering is guaranteed to recover a mixture of Gaussians under the restriction that the number of samples is not too large. The first contribution of this thesis is to lift this restriction, i.e., show that sum-of-norms clustering can recover a mixture of Gaussians even as the number of samples tends to infinity. Our proof relies on an interesting characterization of clusters computed by sum-of-norms clustering that was developed inside a proof of the agglomeration conjecture by Chiquet et al. Because we believe this theorem has independent interest, we restate and reprove the Chiquet et al. result herein. Multiple algorithms have been proposed to solve the sum-of-norms clustering problem: subgradient descent by Hocking et al., ADMM and ADA by Chi and Lange, stochastic incremental algorithm by Panahi et al. and semismooth Newton-CG augmented Lagrangian method by Sun et al. All algorithms yield approximate solutions, even though an exact solution is demanded to determine the correct cluster assignment. The second contribution of this thesis is to close the gap between the output from existing algorithms and the exact solution to the optimization problem. We present a clustering test which identifies and certifies the correct clustering from an approximate solution yielded by any primal-dual algorithm. The test may not succeed if the approximation is inaccurate. However, we show the correct clustering is guaranteed to be found by a primal-dual path following algorithm after sufficiently many iterations, provided that the model parameter λ avoids a finite number of bad values. Numerical experiments are implemented to support our results
    corecore