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Abstract

Interior-point methods provide one of the most popular ways of solving convex optimization
problems. Two advantages of modern interior-point methods over other approaches are:

(i) robust global convergence, and

(ii) the ability to obtain high accuracy solutions in theory (and in practice, if the al-
gorithms are properly implemented, and as long as numerical linear system solvers
continue to provide high accuracy solutions)

for well-posed problem instances. This second ability is typically demonstrated by asymp-
totic superlinear convergence properties.
In this thesis, we study superlinear convergence properties of interior-point methods with
proven polynomial iteration complexity. Our focus is on linear programming and semidef-
inite programming special cases. We provide a survey on polynomial iteration complexity
interior-point methods which also achieve asymptotic superlinear convergence. We analyze
the elements of superlinear convergence proofs for a dual interior-point algorithm of Nes-
terov and Tunçel and a primal-dual interior-point algorithm of Mizuno, Todd and Ye. We
present the results of our computational experiments which observe and track superlinear
convergence for a variant of Nesterov and Tunçel’s algorithm.
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Chapter 1

Introduction

Optimization is the area that deals with minimizing or maximizing an objective function
subject to some constraints. One part of optimization may been seen as designing tools
for finding better solutions by using mathematical analysis. Optimization is very useful
in various kinds of decision making problems, such as finding the route that takes least
time when you travel between two di↵erent locations and constructing a portfolio which
maximizes expected return while keeping the risk at a low level. As a result, a large variety
of real-world problems can be modelled as continuous optimization problems. In this thesis,
we are interested in polynomial-time interior-point algorithms for Linear Optimization and
generalizations of these algorithms to Semidefinite Optimization and convex optimization
problems. For such algorithms, our main focus is on achieving superlinear and quadratic
convergence asymptotically, while maintaining a global polynomial iteration bound.

Convex optimization problems (minimization of a convex function over a convex set)
have a huge advantage over nonconvex problems due to their special structure. One such
crucial property is, in convex problems, local optimality gives global optimality. In addi-
tion, in terms of the existence of faster and more e�cient algorithms to find the optimal
solutions, convex optimization problems tend to behave better than the nonconvex ones
among all continuous optimization problems. In this thesis, we will mainly study two
classes of convex optimization problems which admit fast and e�cient algorithms: Linear
Programs and Semidefinite Programs. Linear programs minimize or maximize a linear
objective function over a convex set (called the feasible region) which is polyhedral. As
for Semidefinite Programs, the objective function is linear and the feasible region is the
intersection of the set of positive semidefinite matrices with an a�ne space.

The Simplex Method was developed by George Dantzig in the 1940’s and it is one
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of the most popular methods to solve Linear Programs (see [12]). However, no variant of
the Simplex Method has been proven to run in polynomial time and many variants of the
method have corresponding worst-case examples proving that they are exponential time
algorithms in the worst-case. In 1979, Khachian [23] showed that Linear Programs can be
solved in polynomial time by applying ellipsoid method. In 1984, Karmarkar [22] showed
that an interior-point method solves Linear Programs in polynomial time. There exist
software packages to solve Linear Programs (for example, CPLEX[2], Gurobi[6], MOSEK[7]
and GLPK[5] ) and Semidefinite Programs (for example, SeDuMi[10], SDPA[8], CSDP[3],
DSDP[4] and SDPT3[9]), so we are interested in finding faster and more e�cient algorithms
to solve those two classes of optimization programs. Therefore, this explains why we might
be interested in such problems and algorithms.

Newton’s method is an iterative method to find roots of a di↵erentiable function, and
it is a popular method we use to solve nonlinear optimization problems. A mathematical
statement of quadratic convergence of Newton’s method was first proved by Kantorovich
[20] in 1948. In 1986, Smale [37] proved a theorem on quadratic convergence of Newton’s
method applied to analytic functions that use only information at the starting point.

Next, we explain the intrinsic challenges of designing and theoretically analyzing an
interior-point method that is both polynomial time and is asymptotically superlinearly
convergent.

Let the central path denote a smooth curve that is in the interior of the feasible region
converging to an optimal solution at one end, and converging to a central point (possibly
at infinity) at the other end. Let the region between the thick curves in the Figure 1.4
denote a neighbourhood of the central path. The central path is defined as the solution
set of a system of nonlinear equations and inequalities. These vague statements are just
for demonstrating ideas, and the underlying concepts will be formally defined in Chapter
3.

From Kantorovich’s theory presented in Section 2.2, we know that if the objective
function is nice and smooth, there is a small neighbourhood of the optimal solution such
that Newton’s Method converges quadratically in it. However, whether we can always
generate iterates in that small neighbourhood in a constrained convex optimization setting
is not guaranteed. We will use the following figures to illustrate the underlying di�culties.
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Newton step
y⇤

central path

Figure 1.1: The unlucky case where the next iterate is not in the small neighbourhood

Newton step

y⇤

central path

Figure 1.2: The lucky case where the next iterate is in the small neighbourhood

The above Figure 1.1 and Figure 1.2 demonstrate the di�culty of achieving asymptot-
ically superlinear convergence since we do not always have the lucky case where the next
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iterate is in the small neighbourhood and in the domain of interior-point methods. Next,
we will present the di�culty in maintaining polynomial time interior-point method. The
circles representing the small neighbourhood are blown up pictures in the following Figure
1.3 and Figure 1.4.

y⇤

central path

Interior-point method is only well-defined here

Figure 1.3: The region in the neighbourhood of the optimal solution where interior-point
method is well-defined

y⇤

central path

Polynomial time path-following Interior-point method iterates lie here

Figure 1.4: The region where polynomial time path-following interior-point method iterates
must lie
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Nesterov and Tunçel [30] proposed a new polynomial-time path-following predictor-
corrector interior-point method for general conic optimization problems and established
the local superlinear convergence property of this method. It motivates us to investigate
the superlinear and quadratic convergence property of this method in the case of Linear
Programming and Semidefinite Programming, since for these special cases, the method
may achieve stronger convergence properties, perhaps even under weaker assumptions.

The rest of the thesis will be organized as follows. In Chapter 2 we introduce dif-
ferent notions of the rate of convergence and present Kantorovich’s theory and Smale’s
theorem on the superlinear convergence in continuous optimization. In Chapter 3, we
introduce a pair of primal-dual problems in the cases of Linear Programming, Semidef-
inite Programming and the general convex optimization case. After that, we define the
concept of central path and the notion of strict complementarity in Linear Programming
case and Semidefinite Programming case, and present a literature survey on superlinear
convergence in polynomial iteration complexity interior-point methods. Then, in Chapter
4, we demonstrate the results on superlinear and quadratic convergence in various modern,
primal-dual interior-point methods in the cases of Linear Programming and Semidefinite
Programming.

In Chapter 5, we analyze the superlinear convergence of an algorithm of Nesterov and
Tunçel in the special case of Linear Programming. We explore possible ways of relaxing
the assumptions needed in the general convex optimization setting, in the special cases
of Linear Programming and Semidefinite Programming. In the Linear Programming case,
we also investigate a less conservative variant of the algorithm that does not shrink the
size of the neighbourhood of the central path proportionally to the duality gap (when
the duality gap is small). We study the fundamental elements of superlinear/quadratic
convergence results for Linear Programming with a focus on primal-dual elements. After
this theoretical material, in Chapter 6, we show the results of some numerical experiments
of this algorithm to justify its superlinear convergence. Finally, in Chapter 7, we draw
conclusions from the whole thesis and leave directions for future research.
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Chapter 2

Superlinear Convergence in
Continuous Optimization

In continuous optimization, the variables are allowed to take on values that are in a contin-
uous range, usually real numbers, and satisfy the given constraints. In contrast, variables
are restricted to binary or integer values in discrete optimization. This continuous na-
ture of continuous optimization allows us to define the first and the second derivatives of
the functions we want to minimize or maximize in the problem as well as those functions
defining the constraints.

Typically, continuous optimization problems are solved using specific types of algo-
rithms which generate iterates, defined as a sequence of values of the variables, that con-
verge to an optimal solution of the problem. These algorithms start from an initial point
and apply, and then recursively generate the next iteration based on the information about
the current iteration. Therefore, what matters a lot in continuous optimization algorithms
are convergence and speed of convergence. We not only need the global convergence of the
iteration sequences generated by the algorithms, but also hope to establish the fast local
convergence properties, which guarantee the ability to converge fast to a solution whenever
the current iterate is close enough to such a point. Newton’s Method is one of the most
commonly used such iterative methods to solve systems of nonlinear equations.

In this chapter, we will first define some terminologies that we use to talk about
convergence speed and rate. Then, we will survey some details of the theory of Newton’s
method and its convergence properties.
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2.1 R-convergence,Q-convergence and superlinear con-

vergence rates

Usually, we need to adopt some iterative numerical methods to solve continuous optimiza-
tion problems. In order to judge the performance of the algorithm, we need some measures
to examine how well suited the algorithm is to the specific optimization problem. One
important measure of speed of convergence of an algorithm is its order of convergence.

In this section, we will follow the notations used in [32] and [34]. We will introduce
some di↵erent notions related to R-order and Q-order of convergence.

First, we will define R-order and Q-order of convergence. Let {✏n} be a sequence of
positive real numbers converging to zero.

Definition 2.1.1. We say that the sequence {✏n} converges with Q-order at least ⌧ > 1 if
there is a constant d such that

✏n+1

 d✏⌧n, n = 0, 1, 2, . . .

We say that the sequence {✏n} has the exact Q-order of convergence ⌧ if there are two
positive constants a, d such that

a✏⌧n  ✏n+1

 d✏⌧n, n = 0, 1, 2, . . .

From the above definitions, we can see that if {✏n} converges with Q-order at least ⌧ ,
then it implies that {✏n} converges with Q-order at least ⌧

1

such that 0 < ⌧
1

 ⌧ . So, the
notion of Q-order of convergence does not give a unique characterization of the speed of
convergence. In contrast, it is easily seen that the notion of exact Q-order of convergence
gives a unique characterization, if it exists. Moreover, if we have a sequence {✏n} such that
it converges with Q-order at least ⌧ > 1, then we can attach a unique quantity to it to
represent its order of convergence.

Definition 2.1.2. The Q-order of the sequence {✏n}, Q{✏
n

}, is defined as follows:

Q{✏
n

} := sup {⌧ > 1 : {✏n} converges with Q-order at least ⌧} .

Note that if {✏n} has an exact Q-order of convergence ⌧ , then we have that Q{✏
n

} = ⌧ .
We use Q in Q-order of convergence since Q stands for quotient and we compute the limit

of quotient
n

✏
n+1

✏
n

o

in the definition. Similarly, we will define another way to measure the

speed of convergence: the following notion R-order of convergence, where R stands for
roots.
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Definition 2.1.3. We say that the sequence {✏n} converges with R-order at least ⌧ > 1 if
there are constants d > 0, ✓ 2 (0, 1) such that

✏n  d✓⌧
n

, n = 0, 1, 2, . . .

We say that the sequence {✏n} has the exact R-order of convergence ⌧ if there are constants
a, d > 0 , ✓, ⌘ 2 (0, 1)such that

a⌘⌧
n  ✏n  d✓⌧

n

, n = 0, 1, 2, . . .

Definition 2.1.4. The R-order of the sequence {✏n}, R{✏
n

}, is defined as follows:

R{✏
n

} := sup {⌧ > 1 : {✏n} converges with R-order at least ⌧} .

Similar to Q-order of convergence, statements can be derived for R-order of conver-
gence. R-order of convergence does not uniquely characterize the speed of convergence,
while the exact R-order of convergence is unique. Moreover, if {✏n} has an exact R-order
of convergence ⌧ , then we have that R{✏

n

} = ⌧ .

The following Proposition gives us the di↵erences between Q-order and R-order of
convergence.

Proposition 2.1.5. (Proposition 1.3 in [32])

1. If {✏n} converges with Q-order at least ⌧ , then {✏n} converges with R-order at least
⌧ .

2. If {✏n} has exact Q-order of convergence ⌧ , then {✏n} has exact R-order of conver-
gence ⌧ .

3. R{✏
n

} � Q{✏
n

}

Moreover, note that none of the reverse statements are true. For example ([32]),
suppose that we are given ✓ 2 (0, 1) and s, ⌧ such that 1 < s < ⌧ . Take c = ✓q with q > 1
such that qs > ⌧ . Define

✏n =

(

✓⌧
n

if n is odd,

c⌧
n

if n is even.

Then, by construction, {✏n} has the exact R-order of convergence ⌧ . However, for Q-order
of convergence, we know that, for n even

✏n+1

✏sn
=

(✓⌧ )⌧
n

(cs)⌧n
=

✓

✓⌧

✓qs

◆

! 1 as n ! 1.
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Therefore, Q{✏
n

}  s < r.

In predictor-corrector type interior-point methods, choosing di↵erent notions of order
of convergence may make a big di↵erence. For instance, let us consider the sequence of µ
generated by the dual path-following algorithm in [30].

µseq1 := {µk : µk obtained from a predictor step or a corrector step of the algorithm}.

On the other hand, consider another sequence

µseq2 := {µk : µk obtained from a predictor step of the algorithm}.

Notice that from each predictor step to its following corrector step, the value of µk does
not change. If we want to use Q-order of convergence, then µseq1 converges to zero Q-
linearly. However, if we use R-order of convergence, we can say that µseq1 converges to
zero R-superlinearly. Instead, if we use µseq2, then we can conclude Q-superlinear and
R-superlinear convergence result for it.

Now, we are interested in finding a full characterization of Q-order and R-order
of convergence. According to [32], by using the definitions of Q{✏

n

} and properties of

lim infn!1

⇣

log ✏
n+1

log ✏
n

⌘

, we are able to show the two following propositions.

Proposition 2.1.6. (Proposition 1.1 in [32]) Let {✏n} be a sequence of positive real num-
bers converging to zero and ⌧ > 1. Then Q{✏

n

} = ⌧ if and only if

⌧ = lim
n!1

inf

✓

log ✏n+1

log ✏n

◆

Proposition 2.1.7. (Proposition 1.2 in [32]) Let {✏n} be a sequence of positive real num-
bers converging to zero and ⌧ > 1. Then R{✏

n

} = ⌧ if and only if

⌧ = lim
n!1

inf |log ✏n|
1
n

Then, we are ready to give definitions of Q-linear and R-linear convergence.

Definition 2.1.8. Let {✏n} be a sequence of positive real numbers. We say that {✏n}
converges Q-linearly if

lim
n!1

sup

✓

✏n+1

✏n

◆

< 1.
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Definition 2.1.9. Let {✏n} be a sequence of positive real numbers. We say that {✏n}
converges R-linearly if

lim
n!1

sup(✏n)
1
n < 1.

Here, note that if the sequence {✏n} satisfied any of the above conditions, we can
derive that {✏n} converges to zero. Moreover, we know that the Q-linear convergence of
{✏n} implies the R-linear convergence of {✏n} because

lim
n!1

sup(✏n)
1
n  lim

n!1
sup

✓

✏n+1

✏n

◆

.

Similarly, we define the Q-superlinear and R-superlinear convergence.

Definition 2.1.10. Let {✏n} be a sequence of positive real numbers. We say that {✏n}
converges Q-superlinearly if

lim
n!1

✓

✏n+1

✏n

◆

= 0.

Definition 2.1.11. Let {✏n} be a sequence of positive real numbers. We say that {✏n}
converges R-superlinearly if

lim
n!1

(✏n)
1
n = 0.

Notice that from the above four definitions, it is easily seen that Q-superlinear con-
vergence implies Q-linear convergence and R-superlinear convergence implies R-linear con-
vergence. Furthermore, R-superlinear convergence is immediately obtained if we have
Q-superlinear convergence.

Next, we will give the definitions of Q-quadratic and R-quadratic convergence.

Definition 2.1.12. Let {✏n} be a sequence of positive real numbers converging to zero. We
say that {✏n} converges Q-quadratically if {✏n} converges with Q-order at least 2.

Definition 2.1.13. Let {✏n} be a sequence of positive real numbers converging to zero. We
say that {✏n} converges R-quadratically if {✏n} converges with R-order at least 2.

In this thesis, we may be concerned with sequences
�

x(n)
 

in Rn that converges to
a point x⇤. Then, by definition, the convergence property of the sequence {x(n)} is the
same as the convergence property of the sequence

�

�

�

�

�x(n) � x⇤
�

�

�

�

 

. For example, we say
that

�

x(n)
 

converges Q-quadratically if there is a constant q
2

such that

�

�

�

�x(n+1) � x⇤�
�

�

�  q
2

· ����x(n) � x⇤�
�

�

�

2

, 8n 2 N.
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2.2 Details of Kantorovich’s theory and Smale’s The-

orem

The Kantorovich Theorem is a theorem on the convergence of the Newton’s method and it is
part of a fundamental theory in optimization, as well as in numerical analysis. By Newton’s
method, we can generate a sequence of points which under certain conditions will converge
to a solution x of the equation f(x) = 0, where f : R ! R is a scalar function. Also,
we can use Newton’s method to find the zeroes of a continuously di↵erentiable function:
F : Rn ! Rn, which is equivalent to solve a system of n (nonlinear) equations.

Su�cient conditions for the existence and uniqueness of the solutions of system of
nonlinear equations in Banach spaces were provided by Kantorovich Theorem in [20]. He
also showed that under those conditions, the sequences generated by Newton’s Method
converge to the solution which is close to the initial point. This theorem also has a lot of
theoretical and practical applications, such as, finding optimal bounds for iterative methods
and constructing a path-following algorithm for linear complementarity problems. Before
stating the theorem, we will introduce some useful notations.

Let X be a Banach space. Then the open and closed ball at x 2 X are denoted by

B(x, r) = {y 2 X : ||x� u|| < r} and B[x, r] = {y 2 X : ||x� u||  r}

respectively. We will use F 0 to denote the Frechet derivative of a mapping F .

Theorem 2.2.1. (Kantorovich Theorem (page 170 in [20])) Let X, Y be Banach spaces,
C ✓ X and let F : C ! Y be a continuous function that is continuously di↵erentiable on
int(C). Take x(0) 2 int(C), L, b > 0 and suppose that

1. F 0 �x(0)

�

is invertible,

2.
�

�

�

�

�

�

F 0 �x(0)

��1

[F 0(y)� F 0(x)]
�

�

�

�

�

�

 L ||x� y|| , for any x, y 2 C,

3.
�

�

�

�

�

�

F 0 �x(0)

��1

F
�

x(0)

�

�

�

�

�

�

�

 b,

4. 2bL  1.

Define

t⇤ :=
1�p

1� 2bL

L
, t⇤⇤ :=

1 +
p
1� 2bL

L
.
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If
B [x

0

, t⇤] ⇢ C,

then the sequence {xk} generated by Newton’s Method for solving F (x) = 0 with starting
point x(0),

x(k+1) = x(k) � F 0 �x(k)
��1

F
�

x(k)
�

, k = 0, 1, 2, . . . .

is well-defined, is contained in B(x(0), t⇤), converges to a point x⇤ 2 B [x
0

, t⇤] which is the
unique zero of F in B [x

0

, t⇤] and

�

�

�

�x⇤ � x(k+1)

�

�

�

�  1

2

�

�

�

�x⇤ � x(k)
�

�

�

� , k = 0, 1, 2, . . . .

Moreover, if assumption 4 holds with a strict inequality, i.e. 2bL < 1, then

�

�

�

�x⇤ � x(k+1)

�

�

�

�  1� ✓2
k

1 + ✓2k
L

2
p
1� 2bL

�

�

�

�x⇤ � x(k)
�

�

�

�

2  L

2
p
1� 2bL

�

�

�

�x⇤ � x(k)
�

�

�

�

2

, k = 0, 1, 2, . . . .

where ✓ := t⇤
t⇤⇤

< 1, and x⇤ is the unique zero of F in B[x(0), ⇢] for any ⇢ such that

t⇤  ⇢  t⇤⇤, B[x(0), ⇢] ⇢ C.

Notice that if we only have assumptions 1-4, then the sequence
�

x(k)
 

is Q-linearly
convergent to x⇤. If we additionally have 2bL < 1, then we can guarantee the Q-quadratic
convergence of

�

x(k)
 

.

Note that t⇤ and t⇤⇤ are actually the roots of the polynomial p(t) = 1

2

Lt2 � t + b.
Kantorovich has given two di↵erent proofs of this theorem using recurrence relations (page
170 in [20]) and majorant functions (page 564 in [21]).

Smale [37] pointed out that Kantorovich’s approach requires weak di↵erentiability
hypotheses on the system, for example, the function is C2 on some domain in a Banach
space, and it also requires the derivative bounds to exist over the whole of this domain.
Smale adopted a di↵erent point of view and derived results from data at a single point and
in contrast he needs strong hypotheses on di↵erentiability and analyticity of the function.
Moreover, Smale’s theorem does not involve any bound on the second derivative of the
function F on some neighbourhood of an approximate zero z.

Let X and Y be Banach spaces and let f : X ! Y be an analytic map from X to Y .

The derivative of f : X ! Y at z 2 X is a linear map Df(z) : X ! Y . If Df(z) is
invertible, Newton’s Method gives a new iterate z0 from z by

z0 = z �Df(z)�1f(z) =: Nf (z).

12



Let � denote the norm of this Newton step z0 � z, i.e.,

�(z, f) = �(z) :=
�

�

�

�Df(z)�1f(z)
�

�

�

� .

If Df(z) is not invertible, let �(z) = 1.

Definition 2.2.2. For a point z
0

2 E , inductively define the sequence zn = zn�1

�
Df(zn�1

)�1f(zn�1

). We say that z
0

is an approximate zero of f if zn is defined for all n
and satisfies:

||zn � zn�1

|| 
✓

1

2

◆

2

n�1�1

||z
1

� z
0

|| , 8n.

Smale mentioned that for an approximate zero, Newton’s method converges faster
starting with the first iteration than generally expected. He also defined

�(z, f) := sup
k>1

�

�

�

�

�

�

�

�

Df(z)�1

Dkf(z)

k!

�

�

�

�

�

�

�

�

1
k�1

where Dkf(z) is the k-th derivative of of f at z as a k-linear map. In addition, he defined

↵(z, f) := �(z, f)�(z, f)

Then, he showed the following theorem.

Theorem 2.2.3. (Theorem A in [37]) If there is a naturally defined number ↵
0

approx-
imately equal to 0.130707 such that if ↵(z, f) < ↵

0

, then z is an approximate zero of
f .

This naturally defined number ↵
0

is a zero of the real quartic polynomial:

(2r2 � 4r + 1)2 � 2r.

By using Newton’s method, one can compute that ↵
0

⇡ 0.130707.
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Chapter 3

Linear Programming, Semidefinite
Programming and Central Path

In the analysis of [30], the problem that Nesterov and Tunçel introduce is a standard convex
optimization problem in conic form and the algorithm they propose is aimed for general
convex optimization. For this thesis, we mainly focus on analyzing the rate of conver-
gence of the algorithm in the case of Linear Programming and Semidefinite Programming.
Hence, we need to introduce the backgrounds and preliminaries of Linear Programming
and Semidefinite Programming and some notions that will be useful in understanding and
analyzing the algorithm.

3.1 Linear Programming

We will define some important terms in order to state our primal-dual problem. First, we
define the notions of convex cones and dual cones.

Definition 3.1.1. Let K ✓ Rn. We say that K is a convex cone if for any x, y 2 K and
any scalar a, b � 0, we have ax+ by 2 K.

Definition 3.1.2. Let K ✓ Rn. The dual cone of K is defined as

K⇤ := {s 2 Rn : hx, si � 0, 8x 2 K} .

Now, we consider the standard convex optimization problem in an important special
case, where the problem is a linear program. In this case, the cone K we are referring

14



to is the cone of all non-negative vectors in Rn, denoted by Rn
+

. Indeed, Rn
+

is self-dual:
�

Rn
+

�⇤
= Rn

+

.

Let (LP ) and (LD) be a pair of primal- dual Linear Programming problems.

(LP ) min c>x
Ax = b,
x � 0.

(LD) max b>y
A>y + s = c,

s � 0.

For the above primal problem (LP ), since we want to apply interior-point methods,
we are interested in the feasible solutions which are strictly positive, i.e., the ones that are
in the interior of the cone Rn

+

. Therefore, we want to remove the nonnegativity constraints
and add a penalizing term in the objective function to force the feasible solutions to stay
in the interior of the cone Rn

+

.

Hence, for µ > 0, consider the following parameterized problem:

(LPµ) min 1

µ
c>x�Pn

i=1

ln(xi)
Ax = b.

Since x � 0 is equivalent to x 2 Rn
+

, we can see that for all feasible x, x is in the cone Rn
+

.
Since A 2 Rm⇥n, A : Rn ! Rm can be seen as a linear map.

Next, we need the following notions of Legendre-Fenchel conjugate and self-concordant
barrier to analyze the parameterized part we added to the objective function of (LPµ).

Let G ✓ Rn. In this thesis, we use bd(G) to denote the boundary of the set G and
int(G) to denote the interior of the set G.

Definition 3.1.3. Let f : Rn ! [�1,+1]. Then its Legendre-Fenchel conjugate is
f⇤ : Rn ! [�1,+1] with f⇤(s) = supx2Rn

{hs, xi � f(x)}.
Definition 3.1.4. Let G ✓ Rn be a closed convex set with nonempty interior. Then
f : int(G) ! R is called a self-concordant barrier for G with barrier parameter ⌫ if the
following conditions are satisfied:

• f 2 C3, strictly convex on int(G);
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• for every sequence
�

x(k)
 ⇢ int(G) such that x(k) ! x̄ 2 bd(G), f(x(k)) ! +1;

• |D3f(x)[h, h, h]|  2 [D2f(x)[h, h]]
3
2 , 8x 2 int(G), 8h 2 Rn;

• (Df(x)[h])2  ⌫D2f(x)[h, h], for every x 2 int(G), h 2 Rn.

Definition 3.1.5. Suppose G is a closed convex cone with nonempty interior. Then a self-
concordant barrier f of G with barrier parameter ⌫ is called logarithmically homogeneous
if

f(tx) = f(x)� ⌫ ln t, 8x 2 int(G), 8t > 0.

Then, from the setting of (LPµ), we define a n-Logarithmically Homogeneous Self-
concordant Barrier (LHSCB) for Rn

+

: F (x) := �Pn
j=1

ln(xj). Moreover, we have (Rn
+

)⇤ =
Rn

+

and F⇤(s) = �Pn
j=1

ln(sj) + constant.

We can derive that
F 0
⇤(s) = �S�1e,
F 00
⇤ (s) = S�2,

where S is the n�by�n diagonal matrix with diagonal entries sj, for j 2 {1, 2, . . . , n} and
e is a vector in Rn with all ones.

Then, we have

f(y) = F⇤(c� A>y),

f 0(y) = AS�1e,

f 00(y) = AS�2A>.

Next, we will define the central path of problem (LPµ). In order to guarantee the uniqueness
of the solution when we define the central path, we make the following assumption.

Assumption 3.1.6. (Linear Programming Case) rank(A) = m.

We can justify this assumption using Gaussian Elimination to solve Ax = b. If the
resulting system is inconsistent, then we know that Ax = b does not have a solution and
(LP ) is infeasible, and we are done. So, we may assume, there exists x 2 Rn such that
Ax = b. Now, if rank(A) < m, then Ax = b has redundant row(s) and the redundant
row(s) can be expressed as a linear combination of other rows. So, we can just remove the
redundant row(s) from A, b and redefine A, b. This theoretical justification works when all
computations are performed in exact arithmetic or when the data (A, b) are rational and
Gaussian Elimination with suitable pivoting is employed. However, in general, in practice
there can be serious numerical challenges.

16



Definition 3.1.7. For the Linear Programming case, for each µ > 0, let (xµ, sµ, yµ) denote
the unique solution to the following system:

Ax = b

A>y + s = c

s = µX�1e, x > 0, s > 0.

Then the primal-dual central path is defined as {(xµ, sµ, yµ) : µ > 0}.

Let v 2 Rm and we define ||v||y :=
�

v>f 00(y)�1v
 

2

. Then, we use this local norm
to define a neighbourhood of the central path as follows. Note that for every pair of
primal-dual interior-points (x, s) (i.e. Ax = b, x > 0, A>y + s = c, s > 0), we have

s = µX�1e i↵ x = µS�1e,

and the last equation implies µAS�1e = Ax = b. This is equivalent to f 0(y) = 1

µ
b. This

leads to the following notion of neighbourhood for the central path, for a given � � 0, in
the dual space:

N (µ, �) :=

(

y 2 Rm :

�

�

�

�

�

�

�

�

f 0(y)� 1

µ
b

�

�

�

�

�

�

�

�

y

 �

)

(3.1)

=

8

<

:

y 2 Rm :

(

✓

f 0(y)� 1

µ
b

◆>

f 00(y)�1

✓

f 0(y)� 1

µ
b

◆

)

1/2

 �

9

=

;

.

3.2 Semidefinite Programming

Now, let us generalize a bit and look at another significant case, where the problem is a
semidefinite programming problem. Let Sn

+

denote the set of all n⇥ n symmetric positive
semidefinite matrices. For any pair of n⇥ n symmetric matrices X, Y , we write X ⌫ Y to
mean X � Y 2 Sn

+

.

Let (SP ) and (SD) be a pair of primal-dual Semidefinite Programming problems
defined as follows:

(SP ) min hC,Xi
hAi, Xi = bi, i 2 {1, 2, . . . ,m}

X ⌫ 0,
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(SD) max b>y
Pm

i=1

Aiyi + S = C,
S ⌫ 0,

where Ai 2 Sn, i 2 {1, 2, . . . ,m}, C 2 Sn and b 2 Rm.

Since X ⌫ 0 is equivalent to X 2 Sn
+

, we can see that for all feasible X, X is in the
cone Sn

+

. Let X 2 Sn
+

, and let �
1

(X),�
2

(X), . . . ,�n(X) denote the n eigenvalues of X.
Then, we can characterize the interior of Sn

+

as follows:

int(Sn
+

) =
�

X 2 Sn
+

: �
1

(X) > 0, . . . ,�n(X) > 0
 

.

Hence, a natural barrier function to use is:

F (X) := �Pn
j=1

ln(�j(X)) = � ln(
Qn

j=1

�i(X)) = � ln(det(X)).

Moreover, we have (Sn
+

)⇤ = Sn
+

since Sn
+

is self- dual. Also,

F⇤(S) = � ln(det(S)) + constant.

Since F : int(Sn
+

) ! R is a C2 function, we can derive that:

F 0(X) = �X�1,
F 0
⇤(S) = �S�1.

Then, F 00(X) is the linear operator defined by F 00(X)W = X�1WX�1. Similarly,
F 00
⇤ (S) is the linear operator defined by F 00

⇤ (S)T = S�1TS�1.

Let A : Sn ! Rm be a linear map where [A(X)]i = hAi, Xi. Then, we have

f(y) = F⇤

 

C �
m
X

i=1

yiAi

!

,

rf(y) = ArF⇤(C �A⇤y)

= AS�1,

r2f(y)y = Ar2F⇤(C �A⇤y)A⇤y

= AS�1(A⇤y)S�1.
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Similarly, we will define the central path in the case of Semidefinite Programming and
the corresponding neighbourhood of the central path. Similar to the Linear Programming
case, in order to guarantee the uniqueness of the solution when we define central path, we
make the following assumption.

Assumption 3.2.1. (Semidefinite Programming Case) {A
1

, A
2

, . . . , Am} is a linearly in-
dependent set.

We can justify this assumption using the similar idea. We use Gaussian Elimination
to solve hAi, Xi = bi, i 2 {1, . . . ,m}. If the resulting system is inconsistent, then we know
that the system hAi, Xi = bi, i 2 {1, . . . ,m} does not have a solution. Therefore, (SP ) is
infeasible, and we are done. Otherwise, we may assume, there exists X 2 Sn such that
hAi, Xi = bi, i 2 {1, . . . ,m}. Then, if the set {Ai : i 2 {1, 2, . . . ,m}} is linearly dependent,
then the system of equations hAi, Xi = bi, i 2 {1, . . . ,m} has redundant equation(s). We
can just remove the redundant equation(s) and redefine the set {Ai} and vector b so that
{Ai} is a linearly independent set.

Definition 3.2.2. In the case of Semidefinite Programming, the primal-dual central path
(Xµ, Sµ, yµ) is defined as the set of unique solutions to the following system:

hAi, Xi = bi, i 2 {1, . . . ,m}
m
X

i=1

yiAi + S = C

S = µX�1, X � 0, S � 0

for all µ > 0.

Moreover, going through a similar reasoning as in the LP case, the neighbourhood of
the central path for a given � � 0 is defined as follows:

N (µ, �) :=

(

y 2 Rm :

�

�

�

�

�

�

�

�

f 0(y)� 1

µ
b

�

�

�

�

�

�

�

�

y

 �

)

=

8

<

:

y 2 Rm :

(

✓

f 0(y)� 1

µ
b

◆>

f 00(y)�1

✓

f 0(y)� 1

µ
b

◆

)

1/2

 �

9

=

;
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Semidefinite Optimization can be seen as a generalization of Linear Optimization since
in Semidefinite Optimization, we replace each R

+

by Sn
i

+

, where Sn
i

+

is the set of ni-by-ni

symmetric positive semidefinite matrices.

3.3 General Convex Optimization

Now, let us generalize the previous two classes and consider the standard conic optimization
problem:

(P ) inf hc, xi
Ax = b,
x 2 K,

where b 2 Rm, c 2 Rn , A : Rn ! Rm is a linear transformation and K ⇢ Rn is a pointed,
closed, convex cone with nonempty interior. Then the dual problem of (P ) is:

(D) sup hb, yiD
A⇤y + s = c,

s 2 K⇤.

For the above primal problem (P ), since we want to apply interior-point methods, we are
only interested in the feasible solutions which are in the interior of the cone K. Therefore,
we want to remove the constraint that requires the points to stay in the cone K and add
a penalizing term in the objective function to force the feasible solutions to stay in the
interior of the cone K.

Hence, for µ > 0, consider the following parameterized problem:

(Pµ) inf 1

µ
hc, xi+ F (x)

Ax = b,

where F : int(K) ! R is a ⌫-Logarithmically Homogeneous Self-concordant Barrier (LH-
SCB) for K. Every convex cone K admits a #-LHSCB where ⌫ = O (dim(k)) (see [29]).

Throughout this thesis, we make the following assumption.

Assumption 3.3.1. There exists x(0) 2 int(K) such that Ax(0)) = b and there exists
y(0) 2 Rm, s(0) 2 int(K⇤) such that A⇤y(0) + s(0) = c. Moreover, A is surjective.
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In the case of Linear Programming, A is surjective is equivalent to Assumption 3.1.6
and in the case of Semidefinite Programming, A is surjective is equivalent to Assumption
3.2.1. We know that the above assumption can be justified in both cases.

Under Assumption 3.3.1, (Pµ) has a unique optimal solution (xµ, sµ, yµ) for every
µ > 0 determined by

Ax = b, x 2 int(K)
A⇤y + s = c, s 2 int(K⇤)

s = �µF 0(x).

Note that the equation s = �µF 0(x) can be replaced by x = �µF 0
⇤(s). This is due to the

fact that
s = �µF 0(x) , F 0

⇤(s) = F 0
⇤(�µF 0(x))

, F 0
⇤(s) = 1

µ
F 0
⇤(�F (x))

, F 0
⇤(s) = � 1

µ
x,

as we saw in the special case of Linear Programming.

Another way of arriving at x = �µF 0
⇤(s) is by starting with

(Dµ) inf � 1

µ
hb, yiD + F⇤(s)

A⇤y + s = c,

instead of (Pµ) as we did above.

3.4 Strict Complementarity

In order to use some special properties of Linear Programming and Semidefinite Program-
ming to analyze the asymptotic behaviour and the rate of convergence of the algorithms,
we need the notions of strict complementarity and analytic centre. In this section, we
will define the related terminologies in the cases of Linear Programming and Semidefinite
Programming.

3.4.1 Linear Programming case

Let (LP ) and (LD) be a pair of primal-dual Linear Programming problems defined in
Section 3.1. The algorithms we are analyzing in this thesis is a primal-dual path-following
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predictor-corrector interior-point method and a dual, path-following predictor-corrector
interior-point method.

A path-following algorithm is a class of algorithms where we restrict all iterates to
a neighbourhood of the central path and we find a solution of the problem by following
the central path. A predictor-corrector algorithm is a class of algorithms where we use
two types of steps: predictor step and corrector step alternatively to find a solution of the
problem. Predictor directions are used to reduce µ, equivalently, the duality gap, and the
corrector directions are used to improve centrality, which is, staying closer to the central
path. In addition, there is a pair of neighbourhoods nested one inside the other. In a
predictor-corrector algorithm, we start with a point in the smaller neighbourhood and take
a predictor step. We move along the prediction direction so that the iterate is in the
larger neighbourhood and µ is reduced as much as possible (this typically means, after a
prediction step, the iterate ends up on the boundary of the larger neighbourhood). Then,
we apply a corrector step to the current iterate to take the iterate back into the smaller
neighbourhood and leave µ unchanged. Next, we repeat the above iterations.

In this thesis, the algorithm we adopt is a variant of the algorithm proposed in [30] in
the cases of LP and SDP.

Let (y(k), s(k)) be the current iterate. Then, the predictor direction is defined as:

d(k)y :=
⇥r2f(y(k))

⇤�1 rf(y(k)).

In the case of LP, we can derive the following

dy =
⇥

AS�2A>⇤�1

AS�1e.

On the other hand, for the derivation of corrector steps we consider various approaches
(see Appendix A). The one that we use in our implementation of the algorithm is the first
corrector step in Appendix A, i.e.,

�(k)
y :=

1

µ

⇥

f 00(y(k))
⇤�1

b� ⇥f 00(y(k))
⇤�1

f 0(y(k)).

Now, we define the notion of complementarity and strict complementarity for Linear Pro-
gramming and some notations we will use in the following analysis.

Definition 3.4.1. (Complementarity for LP) Let x⇤ and (y⇤, s⇤) be feasible solutions to
(LP ) and (LD) respectively. Then, (x⇤, s⇤) is called a complementary solution if

x⇤
i s

⇤
i = 0, 8 i 2 {1, 2, . . . , n}.
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Moreover, x⇤ and (y⇤, s⇤) are optimal in (LP ) and (LD) respectively, if and only if, (x⇤, s⇤)
is a complementary solution.

Definition 3.4.2. (Strict complementarity for LP) Let x⇤ and (y⇤, s⇤) be feasible solutions
to (LP ) and (LD) respectively. Let

B := {i : x⇤
i > 0}.

N := {1, 2, . . . , n} \B.

If we have
N = {i : s⇤i > 0},

then we say that (x⇤, s⇤) is a strictly complementary solution.

Theorem 3.4.3. (see [36] for a proof) Among all optimal solutions for (LP ) and (LD),
there exists at least one optimal solution pair (x⇤, s⇤), which is strictly complementary.

Let (LP ) and (LD) be a pair of primal- dual Linear Programming problems defined in
Section 3.1. Then, the optimal solutions can be characterized by using the [B,N ] partition.

Let P ⇤ and D⇤ denote the optimal sets of (LP ) and (LD) respectively. Then, we have

P ⇤ = {x : ABxB = b, xB � 0, xN = 0},

D⇤ = {(y, s) : A>y + s = c, sN � 0, sB = 0}.
Now, we define the analytic centre of the optimal face for LP case. The following definition
gives an analytic characterization as minimizers of a strictly convex function. Furthermore,
the analytic centre of P ⇤ and the analytic centre of D⇤ is a strict complementary solution
pair.

Definition 3.4.4. xa 2 P ⇤ is the analytic centre of P ⇤ if

(xa)B = arg min
x
B

>0

(

�
X

i2B

ln xi : ABxB = b

)

,

(ya, sa) 2 D⇤ is the analytic centre of D⇤ if

(ya, (Sa)N) = arg min
y2Rm,s

N

>0

(

�
X

i2N

ln si : A
>
Ny + sN = cN , A>

By = cB

)

.
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We denote by X⇤ ⇢ Rn the set of limit points of the primal central path and by
S⇤ ⇢ Rn the set of limit points of the dual central path. Then, X⇤ is the set of analytic
centre of P ⇤ and S⇤ is the set of analytic centre of D⇤.

We make the following two remarks based on the uniqueness of the analytic centre
and the relationship between analytic centre and Newton’s Method.

Remark 3.4.5. Let xa and (ya, sa) be defined as above. Then, xa and (ya, sa) are unique.

The objective function: �Pi2B ln xi is strictly convex, so the minimizer xa is unique.
Similarly, sa is also unique because it is the minimizer of the objective function �Pi2N ln si.
Moreover, ya is uniquely determined since rank(A) = m and hence the rows of A are lin-
early independent.

Remark 3.4.6. Analytic centre is in the relative interior of the solution set. In the con-
strained problem setting, we can derive the optimality conditions using KKT Theorem and
then solve the resulting system of (nonlinear) equations using Newton’s method. By Kan-
torovich’s theory ([20]), we know that in a small neighbourhood of the analytic centre xa,
i.e. the minimizer of the objective function �Pi2B ln xi, Newton’s Method admits quadratic
convergence.

3.4.2 Semidefinite Programming Case

Consider the central path {(Xµ, Sµ, yµ) : µ > 0} defined in 3.2.2. Since we can vectorize
symmetric matrices, we define the following linear map that maps a matrix to a vector.

Let A 2 Rm⇥n, vec(A) := [a
1,1, . . . , am,1, a1,2, . . . , am,2, . . . , a1,n, . . . , am,n]>. Then, the

above system is equivalent to:

vec(Ai)
> vec(X) = bi, i 2 {1, . . . ,m}

m
X

i=1

yi vec(Ai) + vec(S) = vec(C)

S = µX�1, X ⌫ 0, S ⌫ 0

for all µ > 0.

Let (SP ) and (SD) be a pair of primal- dual Semidefinite Programming problems as
defined in Section 3.2.

Let P and D denote the feasible sets of (SP ) and (SD) respectively and P⇤ and D⇤

denote the optimal sets of (SP ) and (SD) respectively.
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Definition 3.4.7. A pair of optimal solutions (X,S) 2 P⇤⇥D⇤ is called a maximally com-
plementary solution pair to the pair of problems (SP) and (SD) if it maximizes rank(X)+
rank(S) over all optimal solution pairs.

In the field of Semidefinite Programming, we use the following notation: let X 2 Sn,
we say that X � 0 if X 2 Sn

++

, i.e. we write X � 0 if X is a n-by-n positive definite
matrix.

Let X⇤ and S⇤ be a pair of optimal solutions. Under our assumptions, by the opti-
mality conditions applied to (SP ) and (SD), we know that X⇤S⇤ = S⇤X⇤ = 0, and hence
the matrices X⇤ and S⇤ commute. Then X⇤ and S⇤ can be diagonalized simultaneously.
Therefore, without loss of generality, we may assume that X⇤, S⇤ are both diagonal and of
the form:

X⇤ =

2

4

X̄ 0 0
0 0 0
0 0 0

3

5 and S⇤ =

2

4

0 0 0
0 0 0
0 0 S̄

3

5 , where X̄ � 0, S̄ � 0.

Then, we define index sets B and N as the subsets of {1, 2, . . . , n} consisting of the
indices of the rows of X⇤ and S⇤ containing the rows of X̄ and S̄ respectively. Clearly,
|B|+ |N |  n.

Definition 3.4.8. Let T:= {1, 2, . . . , n} \ (B [ N). We say that (X⇤, S⇤) is a strictly
complementary solution if T = ;.

From the above definition, we know that each optimal solution pair (X̂, Ŝ) is (under
an orthogonal similarity transformation) of the form

X̂ =

2

4

X̂B 0 0
0 0 0
0 0 0

3

5 and Ŝ =

2

4

0 0 0
0 0 0
0 0 ŜN

3

5 ,

where X̂B 2 SB
+

and ŜN 2 SN
+

.

Moreover, if (X̂, Ŝ) is a maximally complementary solution pair of (SP ) and (SD)
respectively, then

X̂ =

2

4

X̂B 0 0
0 0 0
0 0 0

3

5 and Ŝ =

2

4

0 0 0
0 0 0
0 0 ŜN

3

5 .

where X̄B 2 SB
++

and S̄N 2 SN
++

.
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Now, we can characterize the optimal solutions by using the block partition.

P⇤ =

8

<

:

X 2 P : X =

2

4

XB 0 0
0 0 0
0 0 0

3

5

9

=

;

D⇤ =

8

<

:

(y, S) 2 D : S =

2

4

0 0 0
0 0 0
0 0 SN

3

5

9

=

;

.

Note that the Ai’s appearing in the next definition are not necessarily the same as in the
original data. Let Q ·Q> be the orthogonal similarity transformation exposing the above

block diagonal structure of X⇤ and S⇤, i,e. X⇤ = Q

2

4

X̄ 0 0
0 0 0
0 0 0

3

5Q>. Then considering the

change of variables X̃ := Q>XQ, S̃ := Q>SQ, leads to (using hAi, Xi = hAi, QX̃Q>i =
hQ>AiQ, X̃i) replacing Ai by Q>AiQ for every i. For simplicity of notation, we continue
to use Ai below.

Definition 3.4.9. Let P⇤ and D⇤ be defined as above.

Xa 2 P⇤ is the analytic centre of P ⇤ if

(Xa)B = arg min
X

B

2S|B|
++

{� ln detXB : h(Ai)B, XBi = bi, i 2 {1, 2, . . . ,m}} .

(ya, Sa) 2 D⇤ is the analytic centre of D⇤ if

(ya, (Sa)N) = arg min
y2Rm,S

N

2S|N|
++

(

� ln detSN :
m
X

i=1

(Ai)N + SN = CN ,
m
X

i=1

(Ai)k = Ck, k /2 N

)

.

3.5 Literature survey on superlinear convergence in

polynomial iteration complexity interior-point meth-

ods

In 1989, Potra [32] proved some properties of the R-order convergence and Q-order conver-
gence and gave su�cient conditions for a sequence to admit the Q-order and the R-order
of convergence greater than 1. Additionally, he gave an extra condition where it will imply
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the sequence having exact Q-order of convergence and compared the results of the Q-order
convergence with previous results from Feldstein-Firestone [14].

Later in 1994, El-Bakry, Tapia and Zhang [13] studied various indicators proposed in
the literature to identify the zero variables in the case of Linear Programming where the
only inequality constraints of the problem are the non-negativity constraints. They used
the term indicator to denote a function which indicates the set of constraints that are active
at a solution of a constrained optimization problem. The main focus is on an indicator
that can be used in primal-dual interior-point methods. They defined indicator function
and analyzed its properties as well as those that a good indicator should have. Comparison
on advantages and disadvantages of numerical and theoretical behaviour of the variables
used as indicators, primal-dual indicators, which use information on both primal and dual
problem such as [S(k)]�1X(k)e and the Tapia indicators [41], which use quotient of successive
slack variables and quotient of successive primal iterates, are investigated. At last, they
also presented the rate of convergence of some indicator functions and demonstrated their
numerical performance.

One year later, Tsuchiya [44] showed the quadratic convergence property of the Iri-Imai
Algorithm, which is a polynomial-time interior-point potential reduction algorithm where
the Newton’s method is applied to a multiplicative barrier function. This multiplicative
barrier function is first introduced in [19] and it is defined as follows:

Definition 3.5.1. We consider a linear program in the standard form as defined in 3.1.
Besides Assumption 3.3.1, we further assume that the optimal value of the objective func-
tion is known a priori to be equal to zero. Now, we define the following function f⇢(x)
which is made up of the objective function and a monomial representing the inequalities:

f⇢(x) :=
(c>x)⇢
Qn

i=1

xi

.

The domain of f⇢ is {x 2 Rn : Ax = b, x > 0}.

Note that f⇢(x) is strictly convex in the relative interior of the primal feasible region
if the parameter ⇢ � n+1 and the function value goes to 0 only if x approaches to the set
of optimal solutions. On the other hand, Karmarkar [22] introduced a potential function
to measure the quality of di↵erent feasible points of the linear programs in 1984 and its
adaptation to the current formulation is:

�⇢(x) := ⇢ ln(c>x)�
n
X

i=1

ln xi.
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Comparing this potential function and the multiplicative barrier function, we can easily
see that

�⇢(x) = ln(f⇢(x)).

Since the Hessian matrix of the multiplicative barrier function is not defined when the
current iterates are on the boundary of the feasible region, the proof of quadratic conver-
gence of this variant Newton’s method is not trivial (also recall our discussion in Chapter
1). In [44], Tsuchiya showed that the limit point of the iterates generated by the Iri-Imai
algorithm exists in the relative interior of a unique face of the optimal solution set without
assuming the nondegeneracy of the problem. Moreover, he showed that the iterates gen-
erated by the Iri-Imai algorithm converges to the relative analytic centre of that unique
face.

In 2001, Potra [34] studied a class of infeasible interior point methods to solve the
horizontal linear complementarity problem (HLCP) and presented su�cient conditions for
the Q-superlinear convergence of the iteration sequences generated by primal-dual interior-
point methods for linear complementarity problems. The horizontal linear complementarity
problem (HLCP) is defined as follows:

x>s = 0,

Qx+Rs = b, (3.2)

x, s � 0,

where b 2 Rn and Q,R 2 Rn⇥n with rank[Q,R] = n. Moreover, he assumed that there is
a constant  � 0 such that for any u, v 2 Rn,

Qu+Rv = 0 implies (1� 4)
X

i2I+(u,v)

uivi +
X

i2I�(u,v)

uivi � 0

where
I
+

(u, v) := {i : uivi > 0}, I
+

(u, v) := {i : uivi < 0}.
If a pair (Q,R) satisfies the above condition, we say that (Q,R) is a P⇤() - pair.

Moreover, he applied those su�cient conditions to demonstrate Q-superlinear conver-
gence results of the iterates generated by some particular well-known primal-dual interior-
point methods, for example, simplified largest step method, simplified Mizuno-Todd-Ye
method and the LPF+ algorithm of Wright [48].

In the same year, Tütüncü [46] analyzed an algorithm which is a primal-dual variant
of the Iri-Imai method and minimize the Tanabe-Todd-Ye (TTY) potential function using
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modified Newton’s search directions. For a primal-dual pair of linear programs defined in
Section 3.1, the Tanabe-Todd-Ye (TTY) potential function ([40] and [43]) is defined as
follows (⇢ � n):

�⇢(x, s) := ⇢ ln(x>s)�
n
X

i=1

ln(xisi), for every (x, s) > 0.

Compared to Karmarkar’s potential function, TTY potential function is a primal-dual
variant of the Karmarkar’s potential function.

Tütüncü focused on the degenerate problems and showed both the global and lo-
cal convergence properties as well as polynomial iteration complexity of this primal-dual
interior-point pure potential-reduction algorithm in the case of Linear Programming. This
work improved and generalized three previous papers, analyzed the asymptotic behaviour
of the search directions and the iteration sequences, and the uniqueness of the limit points
of the algorithm, and then proved the quadratic convergence results of the iterates gener-
ated.

Potra [35] presented three a�ne scaling methods that produce iteration sequences in a
wide neighbourhood of the central path to solve monotone linear complementarity problems
in 2008. One is a first order a�ne-scaling method and the other two are mth order a�ne-
scaling methods. For the first order a�ne scaling method, if the linear complementarity
problem (LCP) admits a strictly complementary solution, then both the duality gap and
the iteration sequences converge Q-superlinearly to zero and Q-superlinearly to a strictly
complementary solution. Linear complementarity problem (LCP) is a horizontal linear
complementarity problem (HLCP) as defined in (3.2) where R = �I and Q is a positive
semidefinite matrix. Throughout his paper, he assumed that the HLCP is monotone, where

Qu+Rv = 0 imples u>v � 0 for any u, v 2 Rn.

It is the first a�ne-scaling method generating sequences in the N�
1(↵) neighbourhood of

the central path which obtain O(
p
nL) iteration complexity and Q-superlinear convergence

without assuming strict complementarity.

Let F denote the set of all feasible solution pairs of HLCP and F0 be the set of all
strictly feasible points. Then, we define the following proximity measure that is used to
measure the distance of a point z 2 F to the central path.

��1(z) :=

�

�

�

�

�

�

�

�

�

�



x>s

µ(z)
� e

��
�

�

�

�

�

�

�

�

�

�

1
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where [v]� denotes the negative part of a vector, i.e., [v]� = �max{�v, 0}. The N�
1(↵)

neighbourhood of the central path, also called the wide neighbourhood, is defined as

N�
1(↵) :=

�

z 2 F0 : ��1(z)  ↵
 

.

In 2009, Potra and Stoer [33] proposed a class of infeasible interior-point methods
which has the same Q-order and computational cost per iteration as the methods Potra
presented in [35] for su�cient LCPs. Su�cient HLCP and Su�cient LCP are defined
using the following notations.

Consider an HLCP as defined in (3.2). Let � denote the null space of the matrix
[Q,R] 2 Rn⇥2n, i.e.

� :=

⇢

u
v

�

: Qu+Rv = 0

�

and �? denote its orthogonal space.

Then, they gave the definition of column su�cient and row su�cient.

Definition 3.5.2. We say that the pair (Q,R) is column su�cient if


u
v

�

2 �, u>v  0 implies u>v = 0,

and row su�cient if


u
v

�

2 �?, u>v � 0 implies u>v = 0.

Moreover, (Q,R) is called a su�cient pair if it is both column and row su�cient, and then
the HLCP is called a su�cient HLCP. Then, a su�cient LCP is defined as a su�cient
HLCP where R = �I and Q ⌫ 0.

Furthermore, they used the following definition of weighted central path:

Definition 3.5.3. For any vector ⇢ 2 Rn
++

and any parameter ⌧ > 0, b̄, the curve z =
z(⌧, ⇢) defined by the solutions of the following nonlinear system is called the weighted
infeasible central path pinned on b̄ with weight vector ⇢.

x>s = ⌧⇢,

Qx+Rs = b� ⌧ b̄,

x, s > 0.

If we set ⇢ = e, then z(⌧, e) is called the infeasible central path pinned on b̄.
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The algorithm they proposed in this paper does not depend on  of the complemen-
tarity problem. It only uses one matrix factorization and m back-solves for each step and
it generates iterates that lie in the wide neighbourhood of the central path, where the
neighbourhood is given by N�

1(1� �).

This paper generalized the result of [35] to su�cient LCPs where the starting points
are not necessary feasible and proposed an algorithm that has both polynomial complexity
and Q-superlinear convergence. It used the weighted infeasible central path in the analysis
and also helps us better understand the behaviour of interior point methods in the wide
neighbourhood of the central path.
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Chapter 4

Superlinear and Quadratic
Convergence in modern, primal-dual
Interior Point Methods

In the past few decades, superlinear and quadratic convergence results for polynomial-
time primal-dual interior-point methods were proven for the Linear Programming and for
Semidefinite Programming problems. In 1993, several primal-dual interior-point methods
for Linear Programming were presented by Mizuno, Todd and Ye [28] and this type of algo-
rithms are widely studied afterwards. We survey two important papers which investigate
and analyze the asymptotic quadratic convergence of Mizuno-Todd-Ye O(

p
nL) iteration

predictor-corrector primal-dual interior-point algorithm. Moreover, for the Semidefinite
Programming case, we survey several papers that focus on the superlinear convergence
result of some primal-dual predictor-corrector interior-point methods.

4.1 Linear Programming Case

In both analysis of [26] by Mehrotra and [50] by Ye, Güler, Tapia, and Zhang, they fo-
cus on the asymptotic properties of the primal-dual a�ne-scaling direction and use these
properties to show that Mizuno-Todd-Ye O(

p
nL) iteration predictor-corrector primal-dual

interior-point algorithm admits Q-quadratic convergence for the case of linear program-
ming.

Unlike a lot of previous results, neither paper assumes that the iteration sequence
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generated by the algorithm is convergent. Moreover, the usual linear programming nonde-
generacy is not required in these analyses. They assume the existence of the strict feasible
solution(s), which gives the existence of the primal-dual central path in the (x, s)-space
and the boundedness of the primal and dual optimal faces, and assume that A has full
row rank. In both papers, they use a unique partition A = [B,N ] according to the strictly
complementary solution pair and this partition characterizes the primal optimal face, and
then they use this idea to prove the boundedness of the norm of the directions respectively.

For feasible iterates (x, s) and � > 0, we use the 2-norm neighbourhood of the primal-

dual central path: N (µ, �) :=
n

(x, s) :
�

�

�

�

�

�

Xs
µ

� e
�

�

�

�

�

�

 �
o

. For each iteration of the Mizuno-

Todd-Ye O(
p
nL) iteration predictor-corrector primal-dual interior-point algorithm, we

are given a feasible point
�

x(k), s(k)
� 2 N (µk, �), where µk := x(k)>s(k)

n
. Then, we compute

the primal-dual a�ne-scaling direction (dx, ds, dy), which is defined as the solution of the
following system:

2

4

S X 0
0 I A>

A 0 0

3

5

2

4

dx
ds
dy

3

5 =

2

4

Xs
0
0

3

5 . (4.1)

Next, we generate x̂(k) = x(k) � ↵kdx, ŷ(k) = y(k) � ↵kdy, and ŝ(k) = s(k) � ↵kds for some

step size parameter ↵k such that
�

x̂(k), ŝ(k)
� 2 N (µ̂k, 2�), where µ̂k = (x̂(k)

)

>ŝ(k)

n
. This is

called a predictor step.

In both papers, they proved the following main theorem on the Q-quadratic conver-
gence of Mizuno-Todd-Ye O(

p
nL) iteration predictor-corrector primal-dual interior-point

algorithm.

Theorem 4.1.1. Let
��

xk, sk
� 

be the sequence generated by Mizuno-Todd-Ye O(
p
nL)

iteration predictor-corrector primal-dual interior-point algorithm. Then, with constants
0 < �  1

4

,

1. the algorithm has iteration complexity O(
p
nL);

2. 1� ↵k = O((xk)>sk); and

3. (xk)>sk ! 0, Q-quadratically.

For Mehrotra’s result [26], he mentioned the Mehrotra-Ye approach to find a solution
on the primal and dual optimal faces, and the method finds solutions for problems that
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use integral data after a polynomial number of iterations. In this approach, a direction
(�x,�s,�y) is defined such that xk ��x = x⇤, yk ��y = y⇤ and sk ��s = s⇤, where
x⇤, (y⇤, s⇤) is a pair of optimal solution to (LP ) and (LD) respectively. Then, he derived
that

A�x = 0, A>�y +�s = 0, and (�x)>�s = 0.

Moreover, (�x)i = xk
i , 8i 2 N and (�s)i = ski , 8i 2 B.

In order to show the main result on the Q-quadratic convergence, he first showed the
following theorem.

Theorem 4.1.2. For the current iterate
�

xk, sk
�

, if it satisfies the condition

xk>sk

mini{xj
is

k
i }

 O(n), (4.2)

then we have

�

�

�

�

�

�

�

�



X�1(�x� dx)
S�1(�s� sx)

�

�

�

�

�

�

�

�

�

2

 O(n)max

(

max
i2B

 

✓

(�x)i
xk
i

◆

2

!

,max
i2N

 

✓

(�s)i
ski

◆

2

!)

.

By using the above theorem and the formula of the a�ne-scaling directions defined in
(4.1), he also showed the following theorem:

Theorem 4.1.3. Let ↵max denote the maximum step size along the primal-dual a�ne-
scaling direction (dx, ds, dy) defined in (4.1). Then, the feasible step size along the primal-

dual a�ne scaling direction approaches 1 as xk>sk ! 0. Moreover,

(x� ↵maxdx)
>(s� ↵maxds) = (1� ↵max)x

>s  K
2

(x>s)2,

where K
2

= O(n
1
2 )K

1

and K
1

is a large data-dependent constant. Hence, the duality gap

decreases quadratically for su�ciently small xk>sk.

The maintaining of the condition (4.2) can be performed by taking a step along the
primal-dual a�ne-scaling direction dx, dy and ds with the appropriate length and a corrector
step by Mizuno-Todd-Ye O(

p
nL) iteration predictor-corrector algorithm.

In the paper [50] by Ye, Güler, Tapia, and Zhang, they focus on bounding
�

�

�

��k
�

�

�

�, where

�k := Dk

x

Dk

s

µk

by first bounding ||dx|| and ||ds||. They show the following theorem that bounds
the norms of the predictor directions:
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Theorem 4.1.4. Let dkx and dks are obtained from the above linear system for the kth

predictor step and µk =
(xk

)

>sk

n
. Then, dkx and dks satisfy

�

�

�

�dkx
�

�

�

� = O(µk) and
�

�

�

�dks
�

�

�

� = O(µk),

for all k > 0.

In the proof of the above theorem, they write dx and ds in terms of some orthogonal
projection matrices and relate (dx)B and (ds)N to the minimizers of some least square
problems.

Then, they use
�

�

�

��k
�

�

�

� to bound 1 � ↵k, where ↵k is the largest step size they choose
according to Mizuno-Todd-Ye O(

p
nL) iteration predictor-corrector primal-dual interior-

point algorithm. Moreover, they make some observations about the asymptotic behaviour
of (Xk)�1dkx and (Sk)�1dks at the predictor steps.

In both papers, they use this unique partition {1, 2, . . . , n} = [B,N ] that defines the
primal and dual optimal faces based on the complementarity properties. Note that every
iteration in this algorithm requires solving two linear systems, one for predictor direc-
tion and one for corrector direction. Also, Mizuno-Todd-Ye O(

p
nL) predictor-corrector

interior-point algorithm is a primal-dual symmetric algorithm, while in [30] and our analy-
sis, the path-following algorithm we adopt works only in the dual space. Moreover, in [30]
and our analysis, for the linear programming case, the only assumption we need is that the
primal and dual problems admit Slater points. So, the superlinear convergence result can
be driven without assuming the convergence of the iterations generated by the algorithm
or the nondegeneracy of the linear program.

4.2 Semidefinite Programming Case

In the paper [25] by Luo, Sturm and Zhang, they demonstrate the superlinear convergence
of a primal-dual symmetric path-following algorithm for semidefinite programming, only
assuming the following assumptions:

1. the existence of positive definite solutions for primal and dual problem (P) and (D)
respectively;

2. the existence of a pair of strictly complementary primal-dual optimal solutions; specif-
ically, it means that there exists a feasible primal-dual solution pair (X⇤, S⇤) such
that X⇤S⇤ = 0 and X⇤ + S⇤ � 0; and
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3. the tangential convergence of the iterates to the central path. In this paper, the
assumption of tangential convergence is embedded in the primal-dual path-following
predictor-corrector interior-point algorithm they proposed. In this algorithm, the
parameter �k, which is size of a centrality measure, is decreasing in every predictor
step of the main iteration instead of being fixed like in [26] and [50] for the Linear
Programming case.

In their analysis, they do not assume that the semidefinite program is nondegenerate,
which means that their result is established in the absence of the assumption that the
Jacobian matrix of its Karush-Kuhn-Tucker (KKT) system is nonsingular. They show
that the duality gap is reduced superlinearly after every predictor step if the iterates are
su�ciently close to the central path. Especially, the predictor step reduces the duality
gap superlinearly with order 2

(1+2

�r

)

, provided that every predictor step is succeeded by r
consecutive corrector steps. Therefore, they showed the following convergence result:

Theorem 4.2.1. Let (Xa, Sa) denote the analytic centre of the primal and dual optimal
solution sets. The iterates (Xk, Sk) generated by the algorithm converge to (Xa, Sa) super-
linearly with order 2

(1+2

�r

)

. The duality gap µk converges to 0 at the same rate.

The symmetric path-following algorithm they adopt is the primal-dual path following
algorithm of Sturm and Zhang [39] using a V -space framework. In this paper, they also
adopt the method of having “basic” and “nonbasic” subspaces B and N where every matrix
can be written as a block of four submatrices. They characterize the limiting behaviour of
the primal-dual central path as µ approaches to 0 and bound the distance from any point
on the primal-dual central path to the optimal solution set. Specifically, in Section 3 of
[25], they proved that

Theorem 4.2.2. Let a feasible pair (Xµ, Sµ) denote a point on the central path for some
µ > 0, which gives that XµSµ = µI. Let µ 2 (0, 1). Then,

||Xµ �Xa||+ ||Sµ � Sa|| = O(µ),

where (Xa, Sa) is the analytic centre of the primal and dual optimal solution sets.

This result can be seen as an error bound result along the central path, while in
the case of linear programming, a Ho↵man’s error bound result [18] is required to prove
the quadratic convergence of predictor-corrector interior-point algorithms. Also, they make
some connections to the similar results on limiting behaviour of the central path in the case
of linear programming and monotone horizontal linear complementarity problem. Hence,
this observation leads to the following universal and algorithm-independent property of the
central path.
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Remark 4.2.3. Assuming the existence of a pair of strictly complementary optimal solu-
tion, it is shown that the primal-dual central path converges to the analytic centre of the
optimal solution set. Moreover, the duality gap can bound the distance from any point on
the central path to the analytic centre from above.

On the other hand, in the paper [24] by Kojima, Shida and Shindoh, they establish the
superlinear convergence of a Mizuno-Todd-Ye type predictor-corrector infeasible-interior-
point algorithm for the monotone semidefinite linear complementarity problems. Indeed,
their algorithm starts with a point that is not necessarily strictly feasible. Moreover,
this Mizuno-Todd-Ye type predictor-corrector infeasible-interior-point algorithm forces the
generated iterates to converge to a solution tangentially to the central surface.

Definition 4.2.4. The central surface is defined as

�

(S,X) 2 Sn
++

⇥ Sn
++

: XS = µI, for some µ > 0
 

.

In the discussion of this paper, they convert every semidefinite program (SDP) into a
semidefinite linear complementarity problem (SDLCP) using the following definition.

Definition 4.2.5. Consider the following set:

F :=

(

(S,X) 2 Sn ⇥ Sn : S =
m
X

i=1

Aiyi � C, for some y 2 Rm,Tr(Ai, X) = bi, i 2 {1, 2, · · · ,m}
)

.

Notice that each (S,X) 2 F with X ⌫ 0 and S ⌫ 0 gives a feasible solution (y, S,X) of
the SDP

min
m
X

i=1

biyi

subject to
m
X

i=1

Aiyi � S = C, S ⌫ 0,

and its dual. Then, the corresponding SDLCP is defined as:

(S,X) 2 F , X, S ⌫ 0, and hS,Xi = 0.

They also define H := {(S,X) 2 Sn ⇥ Sn : SX = 0}. Before we state the assumptions
they made, we define the square root of a symmetric positive definite matrix.
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Definition 4.2.6. Let X 2 Sn
++

. A square root of X is defined as a matrix S 2 Sn such
that S2 = SS = X. If X is diagonal, then S is diagonal.

For X 2 Sn
++

, the square root of X can be computed by using the spectral decompo-
sition X = Q⇤Q>, where ⇤ is a diagonal matrix whose diagonal entries are the positive
eigenvalues of X and Q is an orthogonal matrix. Then,

p
X = Q⇤

1
2Q>.

They impose the following three assumptions to guarantee the superlinear convergence
result:

1. a strict complementarity condition, where they assume the existence of a solution
(S⇤, X⇤) of the monotone SDLCP such that X⇤ + S⇤ � 0;

2. a nondegeneracy condition, which means that F and H are transversal at some
feasible and strict complementary solution (S⇤, X⇤), i.e,

H
(S⇤,X⇤

)

\ F = {(S⇤, X⇤)}; and

3. the generated sequence {(Sk, Xk)} converges to the solution (S⇤, X⇤) tangentially to
the central surface in the sense that

lim
r!+1

�

�

�

�

�

�

�

�

p
SkXk

p
Sk �

✓hSk, Xki
n

◆

I

�

�

�

�

�

�

�

�

F

/

✓hSk, Xki
n

◆

= 0.

They present an example of semidefinite program to illustrate the substantial di�culty
in analyzing local convergence of a direct extension of the Mizuno-Todd-Ye type predictor-
corrector primal-dual interior-point algorithm. Then, this example suggests an additional
assumption that assumes the iteration sequence generated by the algorithm converges
tangentially to a solution on the central surface. Similar to [25], during the analysis of
local convergence, all matrices were written as a block of four submatrices.

Although the two papers above adopt di↵erent types of predictor-corrector primal-dual
interior-point algorithms, they are both primal-dual symmetric algorithms. In addition,
the algorithm-independent property of the central path mentioned in [25] is connected to
the Lemma 3.2 in [30], where they analyzed the upper bound of distance of two points on
the central path.

In the paper [15] by Goldfarb and Scheinberg, the papers [16] and [17] by Halická,
de Klerk and Roos and the paper [11] by da Cruz Neto, Ferreira and Monteiro, they all
investigate the limiting behaviour of the central path and its connections to the analytic
centre of the optimal set in the case of Semidefinite Programming.
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It is known that the central path always converges to the analytic centre of the optimal
set in the case of Linear Programming. Halická, de Klerk and Roos [16] show that the
central path does not converge to the analytic centre in general for the SDP case by provid-
ing counterexamples in SDP case and Second Order Cone case. In each counterexample,
the strict complementarity does not hold and the limit point of the primal central path
is di↵erent from the analytic centre of the primal optimal face. Moreover, they provide a
proof of the convergence of the central path in the case of SDP using results from algebraic
geometry.

In addition, they summarize the following common properties that the central path
for SDP share with the central path for LP:

1. The central path restricted to 0 < µ < µ̄ for some µ̄ > 0 is bounded, and thus it has
limit points as µ ! 0 in the optimal set; and

2. The limit points are in the relative interior of the optimal set.

In the paper [17] by Halická, de Klerk and Roos, they analyze the limiting behaviour
of the central path in semidefinite optimization. They give the following characterization
of strict complementarity and use it to prove the following convergence result of the central
path to the analytic centre of a certain subset of the optimal set. Let us first define

h

S̃µ

i

B
:=

✓

1

µ

◆

[Sµ]B and
h

X̃µ

i

N
:=

✓

1

µ

◆

[Xµ]N .

Theorem 4.2.7. Let
h

S̃µ

i

B
and

h

X̃µ

i

N
be defined as above. Then, both

h

S̃µ

i

B
and

h

X̃µ

i

N

converge as µ ! 0, and the limit matrices S̃⇤
B := limµ!0

h

S̃µ

i

B
and X̃⇤

N := limµ!0

h

X̃µ

i

N
are positive definite. Moreover, |B|+ |N | = n (strict complementarity holds) if and only if

(S̃⇤
B)

�1 = X⇤
B and (X̃⇤

N)
�1 = S⇤

N

Moreover, they provide su�cient conditions for the central path to converge to the
analytic centre of the optimal set by describing a class of SDP problems where those
conditions are satisfied.

They make the Assumption 3.3.1 throughout this article. They also make an assump-
tion that the data matrices are in the following block diagonal form:

Ai =



Ai
U 0
0 Ai

V

�

, i 2 {1, 2, . . . ,m}, C =



CU 0
0 CV

�
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where Ai
U , CU 2 Ss, for some s  n.

Denote SU(y) := CU �Pm
i=1

Ai
Uyi and SV (y) := CV �Pm

i=1

Ai
V yi. Besides Assumption

3.3.1, they assume that:

• There exists S⇤
U ⌫ 0 such that each dual optimal solution (y, S) satisfies SU(y) = S⇤

U .
Moreover, there exists an optimal solution (y, S) for which SV (y) � 0.

Then, they show the following theorem using the above notations.

Theorem 4.2.8. Let the SDP problem be of the above form and satisfy all three assump-
tions. Then, the dual central path (yµ, Sµ) converges to the analytic centre of D⇤.

Last but not least, they show that the convex quadratically constrained quadratic
optimization problems (QCQP ) satisfy these su�cient conditions.

In the paper [11], da Cruz Neto, Ferreira and Monteiro investigate the asymptotic
behaviour of the central path (Xµ, Sµ, yµ) as µ ! 0 for a class of degenerate semidefinite
programming (SDP) problems. They study the problems which do not have a strictly com-
plementary primal-dual optimal solutions and whose “degenerate diagonal blocks” [Xµ]T
and [Sµ]T of the central path satisfy max{����[Xµ]T

�

�

�

� ,
�

�

�

�[Sµ]T
�

�

�

�} = O(
p
µ).

Let (X⇤, S⇤, y⇤) be a maximally complementary solution pair and we may assume that

X⇤ =

2

4

X⇤
B 0 0
0 0 0
0 0 0

3

5 , S⇤ =

2

4

0 0 0
0 0 0
0 0 S⇤

N

3

5 ,

where X⇤
B 2 SB

++

and S⇤
N 2 SN

++

.

Define T := {1, 2, . . . , n}\(B[N). They make the following two assumptions through-
out the article:

1. Assumption 3.3.1, and

2. T 6= ;, i.e., there exists no strictly complementary primal-dual optimal solution.

They derive estimates on the o↵-diagonal blocks of the central path and show the con-
vergence of the central path to a primal-dual optimal solution pair, which can be seen
as the unique optimal solution of a log-barrier problem. Moreover, they present a char-
acterization of the class of SDP problems which satisfies their initial assumptions on the
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degenerate diagonal blocks of the central path. Also, a re-parameterization of the central
path is provided and they use it to analyze the limiting behaviour of the derivatives of the
central path. The re-parameterization of the central path is defined as follows:

For t > 0, let Pt and Dt denote the block diagonal matrices given by

Pt := Diag(IB, t
�1IT , t

�2IN), and Dt := Diag(t�2IB, t
�1IT , IN)

Then the re-parameterized central path is given by
⇣

X̃(t), S̃(t)
⌘

:=
�

PtX(t4)Pt, DtS(t
4)Dt

�

.

Finally, they apply their results to the convex quadratically constrained convex program-
ming problem.

In the above analysis, they also make the following two assumptions and show that
they are actually equivalent:

[Xµ]T = O(
p
µ), and [Sµ]T = O(

p
µ);

�

�

�

�[Xµ]T
�

�

�

�

�

�

�

�[Sµ]T
�

�

�

� = O(µ).
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Chapter 5

Superlinear Convergence of an
algorithm of Nesterov and Tunçel in
Linear Programming

From previous work mentioned in Chapter 4, we see that the primal-dual interior-point
methods behave well in the case of Linear Programming and Semidefinite Programming.
Primal-dual interior-point methods we considered are primal-dual symmetric and these
methods are proven to admit quadratic convergence in the case of Linear Programming and
superlinear convergence in the case of Semidefinite Programming under mild assumptions.
Then, why do we need to investigate and study a new algorithm that works only in the dual
space? In those primal-dual symmetric interior-point methods, we need to compute both
primal and dual iterates in each iteration, while in the algorithm proposed in [30], we only
need to compute the iterates in the dual space for every iteration. Notice that asymmetry
may exist between our primal problem (P ) and dual problem (D), then computing both
primal and dual iterates for every iteration may be ine�cient. For instance, if we know
that m << n, then working only in the dual space may be much easier and much more
e�cient than working in both primal and dual spaces.

The Algorithm we are studying is a variant in the case of LP of the algorithm pro-
posed in [30]. It is a polynomial-time path-following interior-point algorithm. Unlike other
primal-dual symmetric path-following algorithms analyzed in [26] and [50], where in each
iteration, the algorithm generates both primal and dual iterates, the algorithm proposed in
[30] only generates iterates in the dual space. Moreover, in each iteration of the algorithm
we first take a predictor step to reduce duality gap and stay in the larger neighbourhood,
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and then take a corrector step to get back to the smaller neighbourhood to get closer to
the central path.

First, we define
⇠↵̄(↵) := 1 + ↵↵̄

↵̄�↵
, ↵ 2 [0, ↵̄).

Let (y(k), s(k)) be the current iterate. In the case of Linear Programming, the predictor
direction is derived as:

dy =
⇥

AS�2A>⇤�1

AS�1e.

On the other hand, for the corrector direction, we explore various approaches (see Appendix
A). The one that we use in our implementation of the algorithm is the first corrector step
in Appendix A, i.e.,

�(k)
y :=

1

µ

⇥

f 00(y(k))
⇤�1

b� ⇥f 00(y(k))
⇤�1

f 0(y(k)).

In the following algorithm, we use the notion of the neighbourhood for the central path
N (µ, �) defined in (3.1).

Algorithm 1 Algorithm of Nesterov and Tunçel [30] in Linear Programming

Input: A, b, c and y
0

2 N (1, 1

25

).
Set µ

0

:= 1.
For k � 0, apply the following iterations:

1. Compute dy(k) and ↵̄k := ↵̄(y(k)) := max
�

↵ � 0 : A> �y(k) + ↵dy(k)
�  c

 

.

2. Use a line search method, find the largest ↵ such that y(↵) = y(k) + ↵dy(k) 2
N ( µ

k

⇠
↵̄

k

(↵
k

)

, 1
6

)

3. Set p(k) = y(k) + ↵kdy(k) , and µk+1

= µ
k

⇠
↵̄

k

(↵
k

)

.

4. Apply one corrector step to p(k) to find y(k+1) 2 N (µk+1

, 1

25

).

One of the di↵erences between the above algorithm and the algorithm proposed in
[30] is that in this variant, we do not shrink the neighbourhoods in each iteration, i.e.,
the larger neighbourhood and the smaller neighbourhood stay unchanged throughout the
algorithm. Another di↵erence is that we just apply a simple line search in this variant,
while the original algorithm uses another proximity measure �, which will be defined at
the end of this chapter.
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The following pictures sketch how this algorithm works. The first figure shows the
predictor step and the two following graphs illustrate the corrector step. The red curve
represents the central path, the green and the blue curves represent the boundaries of the
small and larger neighbourhood respectively. y(k) is the current point, y0 denotes the point
after taking a predictor step and y(µk+1

) corresponds to the point on the central path with
the parameter µk+1

.

y(k)

y(µk+1

)

y0 = y(k) + ↵dy(k)

b>y = b>y0

b>y = f ⇤

prediction direction

Figure 5.1: Predictor step of the algorithm
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y(k)

y(µk+1

)

y0 = y(k) + ↵dy(k)

b>y = b>y0

b>y = f ⇤

y(k+1)

corrector direction

Newton step

Figure 5.2: Corrector step in the choice of A.1 or A.2 in Appendix A

y(k)

y(µk+1

)

y0 = y(k) + ↵dy(k)

b>y = b>y0

b>y = f ⇤

y(k+1)

corrector direction

Newton step

Figure 5.3: Corrector step in the choice of A.3, A.4 or A.5 in Appendix A

According to di↵erent choices of corrector step we adopt, the demonstration of the
corrector step slightly changes. For the choice of A.1 or A.2, we do not require the new
iterate y(k+1) to lie in the a�ne subspace b>y = b>y0. However, if we adopt A.3, A.4 or
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A.5, then we restrict the new iterate y(k+1) to lie in the a�ne subspace b>y = b>y0. So, in
Figure 5.2, y(k+1) could be above, below or on the a�ne subspace b>y = b>y0. In Figure
5.3, y(k+1) must lie in the a�ne subspace b>y = b>y0. Note however that in general, the
Newton step in Figure 5.3 does not point to y(µk+1

); the corrector directions from A.3,
A.4, A.5 only guarantee that y(k+1) lies on the hyperplane

�

y : b>y = b>y0
 

.

We will go through the general construction and analysis of the above Algorithm 1 in
the special case of LP and wish to prove the following conjecture.

Conjecture. Assuming the existence of the Slater point(s) of the primal problem (P ) and
the dual problem (D), Algorithm 1 (a relaxed variant of Nesterov-Tunçel dual interior-point
algorithm) converges Q-quadratically.

Below we propose an approach to prove this Conjecture or a weaker variant of it (e.g.
Q-superlinear convergence).

5.1 Proposed approach towards a proof of the conjec-

ture

In order to establish the superlinear (quadratic) convergence property of the Algorithm 1,
we need to show the following result

f ⇤ � b>y(k+1)  M · �f ⇤ � b>y(k)
�

2

where f ⇤ is the optimal objective value of the primal problem (P) and dual problem (D),
and M is a constant, and k is large enough.

From Algorithm 1, we have that

f ⇤ � b>y(k+1) = f ⇤ � b>(y(k) + ↵kdy(k))

= f ⇤ � b>y(k) � ↵kb
>dy(k)) + ↵kb

>y(k) � ↵kb
>y(k)

= f ⇤ � (1� ↵k)b
>y(k) � ↵kb

>(dy(k)) + y(k))

= (1� ↵k)
⇥

f ⇤ � b>y(k)
⇤

+ ↵k

⇥

f ⇤ � b>(dy(k)) + y(k))
⇤

= (1� ↵k)
⇥

f ⇤ � b>y(k)
⇤

+ ↵kb
> ⇥y⇤ � (dy(k)) + y(k))

⇤

.

If (1�↵k) = O(f ⇤� b>y(k)) and
�

�

�

�dy(k)
�

�

�

� = O(µ), we can expect Q-superlinear conver-
gence. In order to show that (1 � ↵k) = O(f ⇤ � b>y(k)), we first need to prove that if we
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only assume the existence of the Slater points of the primal problem (P) and dual problem
(D), we can still prove a similar result to the Assumption NT1 (will be defined in Section
5.2). This part corresponds to the Proposition 5.2.1 in Section 5.2. Then, we want to
apply the proof techniques in Theorem 5.1 of [30] to show that (1� ↵k) = O(f ⇤ � b>y(k)),
and in this step there is still a gap.

In Section 5.3, we analyze the predictor step by applying the similar proof techniques
of Nesterov and Tunçel in [30].

Next, we need to show that
�

�

�

�dy(k)
�

�

�

� = O(µ) and ||ds(k) || = O(µ). We want to use
a primal-dual approach (similar to the proof techniques of Ye, Güler, Tapia, Zhang [50]
and Mehrotra [26]) to prove that

�

�

�

�dy(k)
�

�

�

� = O(µ) and ||ds(k) || = O(µ). In this primal-

dual approach, we use a primal-dual proximity measure
�

�

�

�

�

�

1

µ
S(k)x(k) � e

�

�

�

�

�

�

2

2

to measure the

distance from the current iterate (x(k), s(k)) to the central path. However, Algorithm 1
does not generate primal iterates, so we want to associate to each pair y(k), µk (generated
by the algorithm) a primal iterate x(k). In order to use the primal-dual proximity measure
�

�

�

�

�

�

1

µ
S(k)x(k) � e

�

�

�

�

�

�

2

2

to show
�

�

�

�dy(k)
�

�

�

� = O(µ) and ||ds(k) || = O(µ), we need to compare the

primal-dual proximity measure with the dual proximity measure
�

�

�

�

�

�

rf(y)� b
µ

�

�

�

�

�

�

2

y
we used in

the Algorithm 1 to see their di↵erences for varying choices of x. This part will be discussed
in Section 5.4 and we will prove a related proposition to discuss the correspondence between
these two norms. In establishing the explicit relationship between these two norms there
is still a gap. In Section 5.4.1, we present some computational experiments to illustrate
the di↵erences geometrically and computationally, and to test the validity of the missing
step in finding the explicit relationship between these two norms. In Section 5.5, we prove
Lemma 5.5.1, 5.5.2 and 5.5.3 and therefore use these lemmas to show that

�

�

�

�dy(k)
�

�

�

� = O(µ)
and ||ds(k) || = O(µ).

We will use the notion of strict complementarity and analytic centre for Linear Pro-
gramming we defined in 3.4.2 and 3.4.4 in the following analysis.

5.2 Towards weaker assumptions

In Section 4 of [30], there are two main assumptions (Assumption NT1 & NT2) established
for the general conic programming case.

In the case of LP, we only assume that the primal problem (P) and dual problem (D)
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have Slater points.

In the analysis of [30], they have the following assumption (Assumption NT1) about
the uniqueness and sharpness of the optimal solution of the dual problem.

Assumption NT1. The dual problem has a unique optimal solution y⇤ and there exists a
constant �d > 0 such that

f ⇤ � hb, yi = hs, x⇤i � �d ||y � y⇤||

for every y feasible for dual problem.

However, we cannot apply this Assumption NT1 in our analysis in the special case of
LP because we only assume the existence of Slater points of the primal and dual problems
for the LP case. So, we need to prove a similar result only using the existence of Slater
points of the primal and dual problems.

Let Y⇤ denote the set of optimal solution(s) of the dual problem (D). From our
assumption, we know that Y⇤ 6= ;.
Proposition 5.2.1. There exists a constant �0

d > 0, depending on the data (A, b, c) such
that

f ⇤ � hb, yi � �0
d · dist(y,Y⇤),

for every feasible solution y of the dual problem (D).

Proof. If y 2 Y⇤, then both sides of the inequality evaluate to zero. Therefore, we are
done. So, we may assume that y is not an optimal solution of (D). Let y⇤ denote the
closest point to y in Y⇤. Such a y⇤ 2 Y⇤ exists, and is unique, since Y⇤ is nonempty, closed
and convex. For any vector a, let \(a, b) denote the angle from vector a to the vector b.
Here, we may assume that \(a, b) 2 [0, ⇡]. Then, we have that

f ⇤ � hb, yi = hb, y⇤i � hb, yi
= hb, y⇤ � yi
= ||b||

2

||y⇤ � y||
2

cos(\(y⇤ � y, b))

= [||b||
2

cos(\(y⇤ � y, b))] ||y⇤ � y||
2

.

We claim that cos(\(y⇤�y, b)) > 0. We know that b is orthogonal to the a�ne subspace
where Y⇤ lies in and b acts as a normal vector of that subspace. If \(y⇤ � y, b) 2 [⇡

2

, ⇡],
then it means that y is not in the open half-space defined by b>y < f ⇤. This contradicts
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the fact that y is feasible but not optimal. Hence, \(y⇤ � y, b) 2 (0, ⇡
2

). Therefore,
cos(\(y⇤ � y, b)) > 0.

By the definition of y⇤, ||y⇤ � y||
2

= dist(y,Y⇤), and then we can define

�0
d := ||b||

2

· inf
y is feasible

cos(\(y⇤ � y, b)).

If b = 0, then hb, yi = 0 for all y. Then, all feasible y’s are optimal solutions for the
dual problem (D). Hence, f ⇤ � hb, yi = 0 = dist(y,Y⇤) and then any positive �0

d will work.
So, we may assume that b 6= 0. Therefore, ||b||

2

> 0. In order to show that �0
d is always

positive, we need to show that infy is feasible

cos(\(y⇤ � y, b)) > 0.

Define P :=
�

y 2 Rm : A>y  c
 

. We say that a facet F of P is incident on a proper
face G of P , if F \G 6= ;.

Let G be the optimal face of P (corresponding to the objective function “max b>y”).
Let F denote the set of facets of P that are incident on G and let Ã>y  c̃ denote the
subset of inequalities in the system A>y  c, representing the facets in F . Then, we define

P̃ :=
n

y 2 Rm : Ã>y  c̃, b>y  f ⇤
o

◆ P,

and we have
argmax

n

b>y : y 2 P̃
o

= argmax
�

b>y : y 2 P
 

= G.

Therefore, it su�ces to prove the claim for P̃ .

Note that P̃ = G +K, where K is a pointed polyhedral cone. Every extreme ray of
K is a solution to a linear system of equations Ã>

T y = c̃T , where |T | = m� 1. Let y(1) 2 P̃ .
Then, every vector of the form (y(1) � y⇤) is a nonnegative linear combination of extreme
rays of K. Thus, the worst angle between (y(1)�y⇤) and b, where y(1) varies over all points
in P̃ , is attained by an extreme ray of K. Since there are finitely many extreme rays of K
and for every ray y�y⇤

||y�y⇤|| of K, we have b> y�y⇤
||y�y⇤|| < 0, we are done.

Then, infy is feasible

cos(\(y⇤ � y, b)) > 0. Therefore, the desired �0
d exists.

Some elements of the proof are shown on the following picture.
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Y⇤ :=set of optimal solutions of (D)

y(1) y(2)

y(1)⇤ y(2)⇤

Figure 5.4: An illustration for the proof of Proposition 5.2.1

5.3 Analysis of the predictor step

Now, I analyze the norm of the predictor step in the case of Linear programming where
we only assume the existence of the Slater points for primal and dual problem.

Let y⇤(s⇤) be the analytic centre of the optimal face in the y-space (and s-space
respectively). From [30], we know that

p(y) = y + v(y) = y⇤ +
⇥r2f(y)

⇤�1

Ar2F⇤(s(y))s
⇤.

So, we start by bounding the norm of r2F⇤(s(y))s⇤.

Recall that we denote by x⇤ 2 Rn the limit point of the primal central path and by
s⇤ 2 Rn the limit point of the dual central path. Moreover, x⇤ is the analytic centre of P ⇤

and s⇤ is the analytic centre of D⇤. We define T := r2F (xµ) with µ = 1.

Lemma 5.3.1. (Lemma 3.2 in [30]) If µ
1

2 (0, µ
0

], then

||xµ1 ||x
µ0

 n, ||sµ1 ||s
µ0

 n.

In particular, for every x⇤ 2 X⇤ and every s⇤ 2 S⇤ we have:

||x⇤||T  n, ||s⇤||T  n.

50



Moreover, if µ 2 (0, 1], then

1

4n2

T � r2F (xµ) � 4n2

µ2

T

1

4n2

T�1 � r2F (sµ) � 4n2

µ2

T�1.

The first part of the above lemma, in the LP case, is due to Vavasis and Ye [47].

Lemma 5.3.2. (Lemma 3.3 in [30]) We define G := AT�1A> : Rm ! Rm.
We have

||A||G,T := max
h2Rn

{||Ah||G : ||h||T = 1}  1

�

�

�

�A>�
�

�

�

T,G
:= max

y2Rm

{����A>y
�

�

�

�

T
: ||y||G = 1}  1

||b||G  n
1
2 .

Lemma 5.3.3. Let s⇤ be the analytic centre of the optimal face in the s-space and N :=
{j : s⇤j > 0}. Then,

�

�

�

�r2F⇤(s(y))s
⇤�
�

�

�

2

 max
i2N

n
q

s⇤
(i)

max
i

8

<

:

q

s⇤
(i)

[s(i)µ ]

9

=

;

.

Proof.

he,r2F⇤(s(y))s
⇤i =

X

i2N

s⇤
(i)

[s(i)µ ]2

=
X

i2N

1

s⇤
(i)

[
s⇤
(i)

s(i)µ

]2

 ||s⇤||2s
µ

max
i2N

1

s⇤
(i)

 max
i2N

n2

s⇤
(i)

.

Last inequality holds because of the Lemma 5.3.1, which does not require Assumption
NT1 or NT2 in [30].
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Therefore,

�

�

�

�r2F⇤(s(y))s
⇤�
�

�

�

2

2

 max
i2N

(

s⇤
(i)

[s(i)µ ]2

)

he,r2F⇤(s(y))s
⇤i

 max
i2N

n2

s⇤
(i)

max
i2N

(

s⇤
(i)

[s(i)µ ]2

)

It gives

�

�

�

�r2F⇤(s(y))s
⇤�
�

�

�

2

 max
i2N

n
q

s⇤
(i)

max
i2N

8

<

:

q

s⇤
(i)

[s(i)µ ]

9

=

;

=: �0
d

By Lemma 5.3.2, we know that

||A||G,T  1,

and this is proved without assuming Assumption NT1 or NT2 in [30]. Now, I try to find
a bound for the norm of [r2f(y)]�1.

Lemma 5.3.4. For µ 2 (0, 1],

⇥r2f(yµ)
⇤�1 � 4n2G�1.

Hence,
�

�

�

�

�

�

⇥r2f(yµ)
⇤�1

�

�

�

�

�

�

G
 4n2.

Proof. By Lemma 5.3.1 in [30], we know that

1

4n2

T�1 � r2F⇤(sµ) � 4n2

µ2

T�1.

Then, we can have

1

4n2

AT�1A> � Ar2F⇤(sµ)A
> � 4n2

µ2

AT�1A>.

It gives us
1

4n2

AT�1A> � r2f(yµ) � 4n2

µ2

AT�1A>.
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Hence,
⇥r2f(yµ)

⇤�1 � 4n2

�

AT�1A>��1

= 4n2G�1.

According to the definition,
�

�

�

�

�

�

⇥r2f(yµ)
⇤�1

�

�

�

�

�

�

G
= max

h2Rm

n

�

�

�

�

�

�

⇥r2f(yµ)
⇤�1

h
�

�

�

�

�

�

G
: ||h||G = 1

o

.

Then, we have that

�

�

�

�

�

�

⇥r2f(yµ)
⇤�1

h
�

�

�

�

�

�

2

G
= hh, ⇥r2f(yµ)

⇤�1

G
⇥r2f(yµ)

⇤�1

hi
 4n2hh, ⇥r2f(yµ)

⇤�1i
 (4n2)2hh,G�1hi
= (4n2)2.

Hence, we can bound the norm of [r2f(y)]�1 Ar2F⇤(s(y))s⇤, which is an important
part of the superlinear convergence proof in [30].

5.4 Auxiliary primal sequence and comparing prox-

imity measures for centrality

Algorithm 1 does not explicitly generate a primal sequence x(k). Hence, in theory, we may
associate to each y(k), µk (generated by the algorithm) an x, namely x(µk). For each µk

generated by the algorithm, we find the corresponding x(µk) by considering the problem
(Pµ

k

) defined by this specific µk and obtaining the minimizer x(µk) of (Pµ
k

) , i.e.,

x(µk) := argmin(Pµ
k

) = argmin

(

1

µk

c>x�
n
X

j=1

ln xj : Ax = b

)

For simplicity, we drop the index k.

We denote by ⇧L the orthogonal projection onto the linear subspace L of Rn, and
denote by R(A>) the range of A>.
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The iterates generated by our algorithm satisfy:
�

�

�

�

�

�

�

�

rf(y)� 1

µ
b

�

�

�

�

�

�

�

�

y

 �

Then, we have
�

�

�

�

�

�

�

�

rf(y)� 1

µ
b

�

�

�

�

�

�

�

�

2

y

=

✓

rf(y)� 1

µ
b

◆>
⇥

AS�2A>⇤�1

✓

rf(y)� 1

µ
b

◆

=

✓

AS�1e� 1

µ
b

◆>
⇥

AS�2A>⇤�1

✓

AS�1e� 1

µ
b

◆

 �2. (5.1)

If we have S = S(µ), then

A [S(µ)]�1 e� 1

µ
b = 0.

Then, (5.1) is equivalent to
�

A
�

S�1 � S�1

µ

�

e
�> ⇥

AS�2A>⇤�1

�

A
�

S�1 � S�1

µ

�

e
�

=

✓

A

✓

S�1 � 1

µ
Xµ

◆

e

◆>
⇥

AS�2A>⇤�1

✓

A

✓

S�1 � 1

µ
Xµ

◆

e

◆

= e>
✓

I � 1

µ
SXµ

◆

(AS�1)>
⇥

AS�2A>⇤�1

AS�1

✓

I � 1

µ
SXµ

◆

e

= e>
✓

I � 1

µ
SXµ

◆

⇧R(S�1A>
)

✓

I � 1

µ
SXµ

◆

e  �2. (5.2)

Let h := 1

µ
Sxµ � e. Then, we have

h>⇧R(S�1A>
)

h  �2.

Note that ||h|| =
�

�

�

�

�

�

1

µ
Sxµ � e

�

�

�

�

�

�

measures the deviation from the central point (xµ, sµ). On

the other hand,
�

�

�

�

�

�

rf(y)� 1

µ
b
�

�

�

�

�

�

also measures the deviation from the central path since

rf(y)� 1

µ
b = 0 , AS�1e =

1

µ
b , A(µS�1e) = b.

As a result,
�

�

�

�

�

�

�

�

rf(y)� 1

µ
b

�

�

�

�

�

�

�

�

= 0 , ||h|| = 0.

In particular, we proved
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Proposition 5.4.1. Let y 2 Rm be an interior point, i.e. A>y < c and µ > 0. Then with
s := c� A>y, we have

�

�

�

�

�

�

�

�

1

µ
Sxµ � e

�

�

�

�

�

�

�

�

2

2

=

�

�

�

�

�

�

�

�

rf(y)� 1

µ
b

�

�

�

�

�

�

�

�

2

2

+

�

�

�

�

�

�

�

�

⇧
Null(AS�1

)

✓

1

µ
Sxµ � e

◆

�

�

�

�

�

�

�

�

2

2

.

We want to investigate the relationship between the primal-dual proximity measure
�

�

�

�

�

�

Sx
µ
� e
�

�

�

�

�

�

2

and the proximity measure
�

�

�

�

�

�

rf(y)� 1

µ
b
�

�

�

�

�

�

y
in the dual space. By continuity and

the above results, we know that when
�

�

�

�

�

�

rf(y)� 1

µ
b
�

�

�

�

�

�

y
is very close to 0, then

�

�

�

�

�

�

Sx
µ

µ
� e
�

�

�

�

�

�

2

is also very close to 0. However, to justify the choice of xµ
k

as the auxiliary primal iterate
(corresponding to y(k), µk), we also want to see if there may be better choices of primal
feasible solutions x that might act as such an auxiliary iterate. So, in the next proposition,
we consider the problem of finding best x in the a�ne subspace Ax = b minimizing the
primal-dual proximity measure for a given pair of s and µ.

Proposition 5.4.2. For every s 2 Rn
++

and every µ > 0,

min

⇢

�

�

�

�

�

�

�

�

Sx

µ
� e

�

�

�

�

�

�

�

�

2

: Ax = b

�

=

�

�

�

�

�

�

�

�

⇧R((AS�1
)

>)

✓

Sxµ

µ
� e

◆

�

�

�

�

�

�

�

�

2

.

Moreover, the minimizer is unique and it is given by

x̄ = µS�2A> �AS�2A>��1



1

µ
b� AS�1e

�

+ µS�1e,

and with this x̄,
1

µ
Sx̄� e 2 R((AS�1)>).

Proof. Consider the following minimization problem:

(P
1

) min
�

�

�

�

�

�

Sx
µ
� e
�

�

�

�

�

�

2

2

Ax = b.

Since we assume that the primal problem (P ) has a Slater point, (P
1

) is always feasible.
Moreover, since the hessian of the objective function is S2 � 0, we are minimizing a strictly
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convex function over a nonempty a�ne space, the unique minimizer always exists. Indeed
(P

1

) is equivalent to a closest point problem:

min ||⌘ � e||2
2

AS�1⌘ =
1

µ
b.

When we expand the objective function, we get

�

�

�

�

�

�

�

�

Sx

µ
� e

�

�

�

�

�

�

�

�

2

2

=
1

µ2

x>S2x� 2

µ
hs, xi+ n.

By using KKT conditions, we obtain the following optimality conditions:

There exist x̄ 2 Rn, z 2 Rm such that

2

µ2

S2x̄� 2

µ
s = A>z (5.3)

Ax̄ = b.

The above optimality conditions (5.3) are equivalent to

Ax̄ = b, and
1

µ
Sx̄� e = S�1A>

⇣µ

2
z
⌘

2 R((AS�1)>). (5.4)

Let us define y := µ
2

z. Then, we want to solve x̄ and y from the optimality conditions
(5.3). The optimality conditions (5.3) are equivalent to

1

µ
Ax̄� AS�1e =

�

AS�2A>� y

Ax̄ = b.

By substituting the second equation into the first, we get

1

µ
b� AS�1e =

�

AS�2A>� y.

Therefore, we solve for y :

y =
�

AS�2A>��1



1

µ
b� AS�1e

�

.
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Substituting y back gives

x̄ = µS�2A> �AS�2A>��1



1

µ
b� AS�1e

�

+ µS�1e.

So, we showed that such x̄ always exists and we gave a formula for it.

Moreover, from (5.4) we know that

1

µ
Sx̄� e 2 R((AS�1)>).

Then, it means that, for this special choice of x̄
�

�

�

�

�

�

�

�

Sx̄

µ
� e

�

�

�

�

�

�

�

�

2

=

�

�

�

�

�

�

�

�

⇧R((AS�1
)

>)

✓

Sx̄

µ
� e

◆

�

�

�

�

�

�

�

�

2

.

Note that A(xµ � x̄) = 0. Therefore,

�

AS�1

�

✓

1

µ
Sxµ � 1

µ
Sx̄

◆

= 0.

Thus,

⇧R((AS�1
)

>)

✓

Sx̄

µ
� e

◆

= ⇧R((AS�1
)

>)

✓

Sx̄

µ
+

1

µ
Sxµ � 1

µ
Sx̄� e

◆

= ⇧R((AS�1
)

>)

✓

Sxµ

µ
� e

◆

.

Notice that from the formula for x̄, we know that µS�1e is always positive and x̄ is
the unique minimizer of (P

1

). If S = Sµ, then x̄ = xµ.

If y is very close to yµ, i.e.
h

1

µ
b� AS�1e

i

is very small and s is very close to sµ, then

x̄ given by the above formula is very close to µS�1e (hence, x̄ is very close to xµ).

5.4.1 Experiments with two proximity measures

Besides theoretical analysis of the relationship between these two norms, we can run dif-
ferent instances using the following algorithm and compute the two proximity measures to
see the di↵erence. In these experiments, we adopt the following algorithm:
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Algorithm 2

1. Pick a randomly generated matrix A using a uniform distribution rand(m,n) in
MATLAB.

2. Let b := Ae and c := e. Then, we set y(0) := 0 and s(0) := c� A>y(0) = e.

3. Compute ↵̄ = ↵̄(y(0)) = max
�

↵ � 0 : A> �y(0) + ↵v(0)
�  c

 

.

4. Use bi-section searching method to find the largest ↵ such that y(↵) = y(0)+↵dy(0) 2
N ( 1

⇠
↵̄

(↵)
, 1
6

), where ⇠↵̄(↵) := 1 + ↵↵̄
↵̄�↵

, ↵ 2 [0, ↵̄) and dy(0) =
⇥

AS�2A>⇤�1

AS�1e.

5. Set y(1) = y(0) + ↵dy(0) , and update µ = 1

⇠
↵̄

(↵)
.

6. Apply corrector steps to y(k) for k = 1, 2, . . . until its local norm, i.e.,
�

�

�

�

�

�

rf(y(K))� 1

µ
b
�

�

�

�

�

�

2

y(K)
 10�10. Compute the corresponding xµ := µ[S(K)]�1e

7. Compute the primal-dual proximity measure
�

�

�

�

�

�

S(1)x
µ

µ
� e
�

�

�

�

�

�

2

2

and the di↵erence be-

tween two norms’ squares, i.e.,
�

�

�

�

�

�

⇧
Null(A[S(1)

]

�1
)

(S
(1)x

µ

µ
� e)

�

�

�

�

�

�

2

2

.

Note that in this algorithm, we always have
�

�

�

�

�

�

rf(y(1))� 1

µ
b
�

�

�

�

�

�

2

y(1)
⇡ 1

6

⇡ 0.0277777777777778.

For each size of the matrix A, we run 100 instances and record the average value of the

quantity
�

�

�

�

�

�

S(1)x
µ

µ
� e
�

�

�

�

�

�

2

2

and the maximum value of
�

�

�

�

�

�

⇧
Null(A[S(1)

]

�1
)

(S
(1)x

µ

µ
� e)

�

�

�

�

�

�

2

2

over these

instances.
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average maximum value of

m n
�

�

�

�

�

�

S(1)x
µ

µ
� e
�

�

�

�

�

�

2

2

�

�

�

�

�

�

⇧
Null(A[S(1)

]

�1
)

(S
(1)x

µ

µ
� e)

�

�

�

�

�

�

2

2

over 100 instances

100 400 0.0277778180665973 4.12280280991106e-008
100 400 0.027777817916397 4.23151819556322e-008
100 800 0.0277777931297674 1.62283292359788e-008
100 800 0.0277777931313703 1.61378171832649e-008
200 400 0.0277778130403595 3.62532813560912e-008
200 400 0.0277778130904213 3.64600384571145e-008
200 800 0.0277777909218174 1.36622731461422e-008
200 800 0.0277777909008845 1.37325309179648e-008

Moreover, we want to use a tiny example and then plot the corresponding region of
these two norms to visualize the di↵erence.

For example, we fix m = 2 and n = 4. Choose A :=



a
1

a
2

1 0
a
3

a
4

0 1

�

, where ai, i =

1, 2, 3, 4 are randomly generated using randn(1,1) in MATLAB. Set b := Ae and c := e.
When µ = 1, we have sµ = xµ = e and then y = 0. In the dual space, the point y = 0 is
obviously feasible and it is an interior point since it is on the central path. Then, we want
to find all feasible ȳ such that ||rf(ȳ)� Ae||ȳ  �. On the other hand, we want to find

all feasible ŷ such that
�

�

�

�

�

�

Ŝx
1

� e
�

�

�

�

�

�

2

 �, where ŝ(y) = c� A>ŷ.

For the following figures, we try di↵erent combinations of a
1

, a
2

, a
3

and a
4

and set
� = 1

6

. The intersection of all ȳ and ŷ is in dark shade, the collection of all points that are
in ŷ but not in ȳ is in lighter shade and all other points will not be shaded.
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Figure 5.5: The collection of all ȳ and ŷ when � = 1

6

Figure 5.6: The collection of all ȳ and ŷ when � = 1

6

Similarly, we reduce � from 1

6

to 1

10

and run the experiments with di↵erent combina-
tions of a

1

, a
2

, a
3

and a
4

.The intersection of all ȳ and ŷ is in dark shade, the collection of
all points that are in ŷ but not in ȳ is in lighter shade and all other points will not be
shaded.
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Figure 5.7: The collection of all ȳ and ŷ when � = 1

10

Figure 5.8: The collection of all ȳ and ŷ when � = 1

10

From the above figures, we can see that, in this instance with tiny size, there is a small
region of points y such that it is in ŷ but not ȳ. Compared to the area of the intersection
of all ȳ and ŷ, the area of the symmetric di↵erence of ȳ and ŷ is relatively small.

Also, we change � to 1

2

and 2

3

, and draw the collection of ȳ and ŷ. The intersection
of all ȳ and ŷ is in dark shade, the collection of all points that are in ŷ but not in ȳ is in
lighter shade and all other points will not be shaded.
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Figure 5.9: The collection of all ȳ and ŷ when � = 1

2

Figure 5.10: The collection of all ȳ and ŷ when � = 1

2
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Figure 5.11: The collection of all ȳ and ŷ when � = 2

3

Figure 5.12: The collection of all ȳ and ŷ when � = 2

3

From the above figures, we can see that, in this experiment, there is a small region of
points y such that it is in ŷ but not ȳ. Compared to the area of the intersection of all ȳ
and ŷ, the area of the symmetric di↵erence of ȳ and ŷ is relatively small and it increases
as � increases.

Now, we want to consider
�

�

�

�

�

�

�

�

⇧
Null(AS�1

)

✓

Sxµ

µ
� e

◆
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�

✓

Sxµ
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◆

� ⇧R((AS�1
)

>
)

✓

Sxµ
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◆
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�

�

�

�

2

2

.
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Note that
�

�

�

�

�

�

�

�

✓

Sxµ

µ
� e

◆

�

�

�

�

�

�

�

�

2

2

=
1

µ2

x>
µS

2xµ � 2

µ
hs, xµi+ n

= e>S2S�2

µ e� 2hs, S�1

µ ei+ n

If S is very close to Sµ, equivalently y is very close to yµ, then we have

�

�

�

�

�

�

�

�

✓

Sxµ

µ
� e

◆

�

�

�

�

�

�

�

�

2

2

⇡ 0.

In this case, it is impossible that
�

�

�

�

�

�

⇧
(R(AS�1

)

>
)

⇣

Sx
µ

µ
� e
⌘

�

�

�

�

�

�

2

2

is small, but
�

�

�

�

�

�

⇧
Null(AS�1

)

⇣

Sx
µ

µ
� e
⌘

�

�

�

�

�

�

2

2

is large.

5.5 Analysis of the prediction direction via a primal-

dual approach

For iterates y(k) very close to the central path, we have that

1� �̃  (xµ)jsj

µ
 1 + �̃, 8j,

in a small neighbourhood of primal-dual central path for some small �̃ > 0.

For j 2 B, (xµ)j ! x(a)
j > 0, 8j 2 B, as µ ! 0+, and x(a)

j = ⌦(1), 8j 2 B. Since we
have

(xµ)jsj

µ
 1 + �̃, 8j 2 B,

we must also have
sj  (1 + �̃)⌦(1)µ = O(µ), 8j 2 B,

Therefore,
sj = O(µ), 8j 2 B. (5.5)

The next three lemmas use the proof techniques of Ye, Güler, Tapia, Zhang [50] and
Mehrotra [26].
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Lemma 5.5.1. Let dy be the predictor direction for the y-component of a dual iterate (y, s).
Then,

ds = �S⇧R(S�1A>
)

e.

Moreover, we have,
||(ds)B|| = O(µ),

Proof. Since dy is the unique solution of

r2f(y)dy = rf(y),

We have,
dy =

⇥r2f(y)
⇤�1 rf(y) = [AS�2A>]�1AS�1e.

Hence,

ds = �A>dy
= �A>[AS�2A>]�1AS�1e

= �S(S�1A>)[(AS�1)(AS�1)>]�1(AS�1)e

= �S⇧R(S�1A>
)

e.

For the second part, consider

�

�

�

�S�1ds
�

�

�

�  ����⇧R(S�1A>
)

�

�

�

� ||e|| = p
n. (5.6)

Then,

||(ds)B|| =
�

�

�

�SBS
�1

B (ds)B
�

�

�

�

=
�

�

�

�SB(S
�1ds)B

�

�

�

�

 ||SB||
�

�

�

�(S�1ds)B
�

�

�

�

 ||SB||
�

�

�

�S�1ds
�

�

�

�

 ||SB|| ·
p
n

= O(µ),

where the fifth line uses (5.6) and the last line uses (5.5).

Now, let us bound the norm of (ds)N .
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Lemma 5.5.2. Let dy and ds be the predictor directions in y-space and s-space respectively.
Then, when the current iterate is on the central path, v̄ := dy is a solution to the following
least-squares problem

minv
1

2

�

�

�

�S�1

N A>
Nv
�

�

�

�

2

s.t. A>
Bv = �(ds)B.

Proof. First, we check that v̄ satisfies the constraint.

A>
B v̄ + (ds)B = A>

Bdy + (ds)B
= A>

Bdy + A>
Ndy + (ds)B � A>

Ndy
= A>

Bdy + A>
Ndy + (ds)B + (dS)N

= A>dy + ds
= 0.

Next, notice that

ABS
�2

B (ds)B � ANS
�2

N A>
N v̄ = ABS

�2

B (ds)B + ANS
�2

N (ds)N
= AS�2ds
= � (AS�1)(S�1A>)[(AS�1)(AS�1)>]�1

| {z }

=I

(AS�1)e

= �AS�1e.

When the iterate is on the central path,

[Diag (S(µ))] x(µ) = µe,

() [S(µ)] =
1

µ
x(µ),

) A [S(µ)] =
1

µ
Ax(µ) =

1

µ
b. (5.7)

Note that x⇤
N = 0 for all optimal x⇤, so we must have ABx⇤

B = b. Therefore, we have
b 2 R(AB). Then, �AS�1e 2 R(AB). Then, using (5.7), we deduce

ANS
�2

N A>
N v̄ 2 R(AB).

Since v̄ satisfies the constraints, we know that v̄ satisfies the feasibility condition of the
Karush-Kuhn-Tucker (KKT) conditions for the given problem. Moreover,

ANS
�2

N A>
N v̄ 2 R(AB)
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implies that
9� 2 Rm such that AB� = ANS

�2

N A>
N v̄.

Then, we have that
�r (g(v)) = �r (h(v)) ,

where g(v) := 1

2

�

�

�

�S�1

N A>
Nv
�

�

�

�

2

and h(v) := A>
Bv+(ds)B. This gives the stationary conditions

of the Karush-Kuhn-Tucker (KKT) conditions. Hence, v̄ satisfies the KKT conditions of
the given problem.

Lemma 5.5.3. Let ds be the predictor direction in the s-space, then

||(ds)N || = O(µ).

Proof. Because the least-squares problem defined in Lemma 5.5.2 is always feasible, there
must be a feasible v such that

A>
Bv = �(ds)B.

|B| may not equal m, so AB is not necessary a square matrix. Now, we consider the
augmented system

⇥

A>
B |� (ds)B

⇤

.

Applying a row permutation to the augmented matrix to bring a maximal linearly
independent set of rows of A>

B to the first rank(A>
B) rows. Denote the indices of those first

rank(A>
B) rows by B̄. If necessary, we then do a column permutation so that A>

B is r-by-r,
where rank(A>

B) = r. Then, we apply elementary row operations to the submatrix of the
augmented system which consisting row r + 1 to row |B| so that this submatrix is 0. We
can always do it since the augmented system is feasible.

The found augmented matrix may have the empty matrix in any of the blocks:
(1, 2), (2, 1), (2, 2), (2, 3). The found augmented matrix should look like:



A>
¯B

| ⇤ | �(ds) ¯B

0 | 0 | 0

�

.

Hence, we can derive the subvector (v)
¯B of v as (v)

¯B = �A�>
¯B
(ds) ¯B.

Therefore,
||v|| = O(||(ds)B||),

By Lemma 5.5.1, we know that

||v|| = O(||(ds)B||) = O(µ).
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Furthermore, by Lemma 5.5.1 and Lemma 5.5.2,

||(ds)N || =
�

�

�

�SNS
�1

N (ds)N
�

�

�

�

 ||SN ||
�

�

�

�S�1

N (ds)N
�

�

�

�

= ||SN ||
�

�

�

�S�1

N A>
Ndy

�

�

�

�

 ||SN ||
�

�

�

�S�1

N A>
Nv
�

�

�

� , if (y, s) is on the central path

 ||SN ||
�

�

�

�S�1

N

�

�

�

�

�

�

�

�A>
N

�

�

�

� ||v||
= O(||v||)
= O(µ).

Let v̄ be defined as a minimizer of the problem defined in Lemma 5.5.2 and s̄ be the
corresponding vector in s-space. If the current (y, s) is not on the central path, then by
the statement of the algorithm, we know that

�

�

�

�

�

�

�

�

rf(y)� 1

µ
b

�

�

�

�

�

�

�

�

y

=

�

�

�

�

�

�

�

�

AS�1e� 1

µ
b

�

�

�

�

�

�

�

�

y

=
�

�

�

�AS�1e� AS̄�1e
�

�

�

�

y
 1

25
.

Note that

�

�

�

�S�1

N A>
Ndy

�

�

�

�

2

=
�

�

�

�S�1

N (ds)N
�

�

�

�

2

=
�

�

�

�S�1

N SN(S
�1

N A>
N)[(ANS

�1

N )(ANS
�1

N )>]�1(ANS
�1

N )e
�

�

�

�

2

=
�

�

�

�

�

�

⇧R((AS�1
)

>
N

)e
�

�

�

�

�

�

2

= e>
⇣

⇧R((AS�1
)

>
N

)

⌘>
⇧R((AS�1

)

>
N

)e

= e>⇧R((AS�1
)

>
N

)e, since⇧R((AS�1
)

>
N

) is an orthogonal projection.
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Therefore,
�

�

�

�S�1

N A>
Ndy

�

�

�

�

2 � ����S̄�1

N A>
N v̄
�

�

�

�

2

=
�

�

�

�

�

�

⇧R((AS�1
)

>
N

)e
�

�

�

�

�

�

2

�
�

�

�

�

�

�

�

�

⇧
R
⇣
(A ¯S�1)

>
N

⌘e

�

�

�

�

�

�

�

�

2

=

✓

�

�

�

�

�

�

⇧R((AS�1
)

>
N

)e
�

�

�

�

�

�

+

�

�

�

�

�

�

�

�

⇧
R
⇣
(A ¯S�1)

>
N

⌘e

�

�

�

�

�

�

�

�

◆✓

�

�

�

�

�

�

⇧R((AS�1
)

>
N

)e
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

⇧
R
⇣
(A ¯S�1)

>
N

⌘e

�

�

�

�

�

�

�

�

◆

 (||e||+ ||e||)
✓

�

�

�

�

�

�

⇧R((AS�1
)

>
N

)e
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

⇧
R
⇣
(A ¯S�1)

>
N

⌘e

�

�

�

�

�

�

�

�

◆

 2
p
n

✓

�

�

�

�

�

�

⇧R((AS�1
)

>
N

)e
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

⇧
R
⇣
(A ¯S�1)

>
N

⌘e

�

�

�

�

�

�

�

�

◆

.

Hence, when the current iterate (y, s) is very close to the central path,
�

�

�

�S�1

N A>
Ndy

�

�

�

�

2 �
�

�

�

�S̄�1

N A>
N v̄
�

�

�

�

2

is small. Then, we can still obtain

||SN ||
�

�

�

�S�1

N A>
Ndy

�

�

�

�  ||SN ||
�

�

�

�S�1

N A>
Nv
�

�

�

�

 ||SN ||
�

�

�

�S�1

N

�

�

�

�

�

�

�

�A>
N

�

�

�

� ||v||
= O(||v||)
= O(µ).

From above, we showed that ||ds|| = O(µ). In addition, we need the convergence
property of the corrector steps. From Section 8 in [30], we can see that after applying
predictor step, we need to apply a corrector step such that the next iterate y(k+1) 2
N (µk+1

, 1

25

). Therefore, we minimize the following function using Newton Method:

g(y) := f(y)� 1

µk+1

b>y.

The Newton direction which minimizes the above function g is actually the unique solution
d to the following system: (The first corrector direction in the Appendix A)

r2f(y(k))d = �


rf(y(k))� 1

µk+1

b

�

.

Nesterov and Tunçel [30] showed that this corrector direction achieves quadratic conver-
gence due to the properties of self-concordant barrier function and Newton decrement being
small enough. So, this result requires a proximity (to the central path) hypothesis.
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Chapter 6

Computational Experiments

In this chapter, we computationally observe and test the superlinear convergence properties
of a variant of the dual algorithm of [30]. We restate the algorithm with more details. All
of the following experiments are performed using this version of the algorithm.
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Algorithm 3

1. Input: µ̄ 2 (0, 1), a pair of positive integers m,n such that n > m � 1.

2. Pick a randomly generated matrix A using a uniform distribution rand(m,n) in
MATLAB.

3. Let b := Ae, c := e, y(0) := 0, s(0) := c� A>y(0) = e, µ
0

:= 1 and k := 0.

4. If µk  µ̄, then output y(k), µk and stop. Otherwise, execute the following loop:

(a) Compute the predictor direction dy(k) =
⇥

AS�2A>⇤�1

AS�1e and compute ↵̄k =
↵̄(y(k)) = max

�

↵ � 0 : A> �y(k) + ↵dy(k)
�  c

 

.

(b) Use bi-section method to find the largest ↵ such that y(↵) = y(k) + ↵dy(k) 2
N ( µ

k

⇠
↵̄

k

(↵
k

)

, 1
6

), where ⇠↵̄(↵) := 1 + ↵↵̄
↵̄�↵

, ↵ 2 [0, ↵̄).

(c) Set p(k) = y(k) + ↵kdy(k) , and update µk+1

= µ
k

⇠
↵̄

k

(↵
k

)

.

(d) Apply one corrector step to p(k) to obtain y(k+1) 2 N (µk+1

, 1

25

), y(k+1) := p(k) +

�(k)
y , where �(k)

y := 1

µ

⇥

f 00(y(k))
⇤�1

b� ⇥f 00(y(k))
⇤�1

f 0(y(k)).

(e) Update k = k + 1, and go back to Step 4.

Note that f 0(y(0)) = AIe = b. We set µ
0

:= 1 and then y(0) 2 N (µ
0

, �), where � = 1

25

.

The experiments of this chapter are performed by using the software MATLAB R2013a,
on a Intel(R) Core(TM) i7-4770 CPU @3.40GHz with 12GB of memory. In the test exam-
ples, our data: A, b are randomly generated by the command rand(m,n) in MATLAB.

In order to present the information better, when µk  µ̄ and the algorithm is about
to stop, we can compute a ”final pair” of primal-dual solutions (x̂.ŝ) as follows:

• Let ŝ := s(k) = c� A>y(k);

• Find the smallest � � 0 such that A (��F 0
⇤(ŝ)) ⇠= b. That is, we want to find �̄ � 0

which minimizes ||b+ �A (F 0
⇤(ŝ))||2

2

. Since ||b+ �A (F 0
⇤(ŝ))||2

2

is a quadratic function
in �, the minimizer � satisfies the following equation.

2�̄(h>h) = �2b>h

where h := A (F 0
⇤(ŝ)). Hence, the minimizer �̄ � 0 satisfies �̄ = max

n

0,� b>h
h>h

o

.
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• Define x̂ := ��̄F 0
⇤(ŝ);

• Compute µ of (x̂.ŝ) : µ := hx̂.ŝi
n

and report ||Ax̂� b||2.

We performed the experiment 100 times where m = 100 and n = 400 using the Algo-
rithm 3 with termination criterion: µ  µ̄ and 300 as the maximum number of corrector
steps allowed per iteration. Even though the theory guarantees, if all computations are
carried out in exact arithmetic, one corrector step su�ces in each iteration. In compu-
tational experiments as µ goes below 10�9, due to numerical inaccuracies, the algorithm
may require very many corrector steps. We collected the results on the di↵erent values
of µ when the algorithm terminates under various stopping criterion µ̄. All results are
presented in the following table.

max num of corrector steps
Final value of µ µ̄� µ̄

10

µ̄
10

� µ̄
10

3
µ̄
10

3 � µ̄
10

5
µ̄
10

5 � µ̄
10

7 < µ̄
10

7 per iteration per instance
on avg over 100 instances

µ̄ = 10�8 68 32 0 0 0 1
µ̄ = 10�9 46 52 2 0 0 1
µ̄ = 10�10 40 48 12 0 0 59.81
µ̄ = 10�12 21 79 0 0 0 259.72

Table 6.1: Distribution of final values of µ when m = 100 and n = 400

The following table shows the result of the experiment when m = 100 and n = 800
using the above algorithm with di↵erent termination criterion choices of µ̄ and 300 as the
maximum number of corrector steps allowed.

max num of corrector steps
Final value of µ µ̄� µ̄

10

µ̄
10

� µ̄
10

3
µ̄
10

3 � µ̄
10

5
µ̄
10

5 � µ̄
10

7 < µ̄
10

7 per iteration per instance
on avg over 100 instances

µ̄ = 10�8 63 37 0 0 0 1
µ̄ = 10�9 52 47 1 0 0 1
µ̄ = 10�10 28 72 0 0 0 64.85
µ̄ = 10�12 91 9 0 0 0 248.34

Table 6.2: Distribution of final values of µ when m = 100 and n = 800
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The following table shows the result of the experiment when m = 200 and n = 400
using the above algorithm with di↵erent termination criterion choices of µ̄ and 300 as the
maximum number of corrector steps allowed.

max num of corrector steps
Final value of µ µ̄� µ̄

10

µ̄
10

� µ̄
10

3
µ̄
10

3 � µ̄
10

5
µ̄
10

5 � µ̄
10

7 < µ̄
10

7 per iteration per instance
on avg over 100 instances

µ̄ = 10�8 88 12 0 0 0 1
µ̄ = 10�9 69 31 0 0 0 1
µ̄ = 10�10 48 46 6 0 0 27.96
µ̄ = 10�12 34 66 0 0 0 236.65

Table 6.3: Distribution of final values of µ when m = 200 and n = 400

The following table shows the result of the experiment when m = 200 and n = 800
using the above algorithm with di↵erent termination criterion choices of µ̄ and 300 as the
maximum number of corrector steps allowed.

max num of corrector steps
Final value of µ µ̄� µ̄

10

µ̄
10

� µ̄
10

3
µ̄
10

3 � µ̄
10

5
µ̄
10

5 � µ̄
10

7 < µ̄
10

7 per iteration per instance
on avg over 100 instances

µ̄ = 10�8 89 11 0 0 0 1
µ̄ = 10�9 62 38 0 0 0 1
µ̄ = 10�10 48 52 0 0 0 31.25
µ̄ = 10�12 93 7 0 0 0 257.28

Table 6.4: Distribution of final values of µ when m = 200 and n = 800

In addition, the information on µk and ↵k for the last five iterations for four arbitrary
instances is displayed in the following table. Note that in these instances, we use 100 as
the maximum number of corrector steps per iteration allowed.
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µ max num of
m n stopping corrector steps per µk ↵k

criterion iteration used

100 400 10�12 1

4.80474514595144e-07 0.551063635397001
1.4592004581876e-07 0.691190889629855
2.05359061879439e-08 0.856899609035453
5.23766329266451e-10 0.974066312468676
3.67638556580905e-13 0.999286584241041

100 400 10�12 100

5.60491798541484e-07 0.58558450345391
1.42213909306164e-07 0.742373160901109
1.32200050759574e-08 0.905608052820261
1.35122781623248e-10 0.989621151297221
5.47919615567409e-14 0.999592858640363

100 400 10�12 1

5.99381347417163e-08 0.522369353382105
2.04737980006565e-08 0.652600815435237
3.70938336671908e-09 0.815737575328919
1.66111013852665e-10 0.954456109146829
3.75776646145919e-13 0.997700516973209

100 400 10�12 100

3.13782051139735e-08 0.58389829908813
8.27899583254401e-09 0.731669774620126
8.61055450452595e-10 0.894227408227521
1.13412415898217e-11 0.986604966620684
6.55774716921468e-14 0.994214798778116

Table 6.5: Information of µk and ↵k for the last five iterations

From the algorithm, we know that the value of ↵k stands for the largest step size to
keep the iterate in the larger neighbourhood. We noticed that the values of ↵k seem quite
random for several iterations until the algorithm is at the last few iterations, and there is
no certain trend in the distribution of even the fifth last ↵k over 100 instances. Therefore,
we present the following figures which show us the distributions of the fifth last ↵k over
100 instances for each di↵erent size of the problem.
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(a) The fifth last ↵k wherem = 100 and n = 400.

(b) The fifth last ↵k where m = 100 and n =

5000

Figure 6.1: Histogram on the distributions of the fifth last ↵k

(a) The fifth last ↵k where m = 100 and n =

10000

(b) The fifth last ↵k where m = 100 and n =

20000

Figure 6.2: Histogram on the distributions of the fifth last ↵k

These four figures show us the distribution of the fifth last ↵ over 100 randomly
generated instances in four di↵erent cases. We can see that the distributions behave almost
like a normal distribution with a little right-skewness despite the changes in the size of the
problem. Next, we will present the distributions of the fourth last ↵k, the third last ↵k,
the second last ↵k and the last ↵k. In each case of di↵erent size of the problem, instead of
observing normal distributions, we are able to see an obvious trend in the values of ↵k as

75



the algorithm is going to stop from those distributions. Based on these observations, we
can conclude that ↵k is approaching 1 as the algorithm is approaching to terminate.

The following four figures show the results of ↵k for the last four iterations over 100
instances where m=100, n=400 and µ̄ = 10�12.

(a) The distribution of the fourth last ↵k (b) The distribution of the third last ↵k

Figure 6.3: Histogram on the distribution of the fourth and the third last ↵k

(a) The distribution of the second last ↵k (b) The distribution of the last ↵k

Figure 6.4: Histogram on the distribution of the second last and the last ↵k

From the above figures, we observe that the distribution of the fourth last one behaves
like a normal distribution and it is not skewed, i.e., the mean is approximately equal to
the median. As the algorithm goes to the next iteration, we can see that the distribution
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of the third last one is lefty-skewed. For the distributions of the second last and the last
ones, they are skewed more to the left. Therefore, these figures show us that the value of
↵k is approaching 1 when the algorithm terminates.

In addition, we can generate A such that it is a sparse matrix with m rows and n
columns, and we require that every column of A to have several nonzero entries.

The following instance is under the scenario where, there are 5 nonzero entries for every
column, m = 100, n = 5000, and µ̄ = 10�12, and then we plot the following histograms
based on the distributions of ↵k for the last 4 iterations.

(a) The distribution of the fourth last ↵k (b) The distribution of the third last ↵k

Figure 6.5: Histogram on the distribution of the fourth and the third last ↵k for a sparse
instance where m = 100 and n = 5000
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(a) The distribution of the second last ↵k (b) The distribution of the last ↵k

Figure 6.6: Histogram on the distribution of the second last and the last ↵k for a sparse
instance where m = 100 and n = 5000

The above four figures are similar to the ones of the case when m = 100 and n = 400.
The distribution of the fourth one is not skewed. Then, the distributions of the third, the
second last and the last ones are skewed to the left, and the distribution of the last ↵k is
skewed to the largest degree.

The following instance is under the scenario where m = 100, n = 10000, there are 4
nonzero entries for every column, and µ̄ = 10�12, and then we plot the following histograms
based on the distributions of ↵k for the last 4 iterations.
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(a) The distribution of the fourth last ↵k (b) The distribution of the third last ↵k

Figure 6.7: Histogram on the distribution of the fourth and the third last ↵k for a sparse
instance where m = 100 and n = 10000

(a) The distribution of the second last ↵k
(b) The distribution of the last ↵k before rescal-

ing

Figure 6.8: Histogram on the distribution of the second last and the last ↵k for a sparse
instance where m = 100 and n = 10000

The above four figures are similar to the ones of the case when m = 100 and n = 400.
The distribution of the fourth one is not too skewed. Then, the distributions of the third,
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the second last and the last ones are skewed to the left, and the distribution of the last ↵k

is skewed to the largest degree.

The following instance is under the scenario where m = 100, n = 20000, there are 5
nonzero entries for every column, and µ̄ = 10�12, and then we plot the following histograms
based on the distributions of ↵k for the last 4 iterations.

(a) The distribution of the fourth last ↵k (b) The distribution of the third last ↵k

Figure 6.9: Histogram on the distribution of the fourth and the third last ↵k for a sparse
instance where m = 100 and n = 20000

(a) The distribution of the second last ↵k
(b) The distribution of the last ↵k before rescal-

ing

Figure 6.10: Histogram on the distribution of the second and the last ↵k for a sparse
instance where m = 100 and n = 20000
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The above four figures are similar to the ones of the case when m = 100 and n =
400. However, the distribution of the fourth one is a little left-skewed. Moreover, the
distributions of the third, the second last and the last ones are skewed more to the left.

From the observation on the distributions of ↵k for the last five iterations, we can see
that there is a relationship between the convergence of ↵k to 1 and the termination of the
algorithm, i.e., the convergence of the duality gap to 0. Now, we will make some statements
on the relation between the convergence of ↵k to 1 and the convergence of µk to 0 and
prove the correspondence. We will use the following figure to demonstrate the relationship.
Note that to have such discrete separation between intervals (as in the figure), one has to
fix constants and rates of convergence.

↵ = 0

(y := y(k))
obj. value = b>y(k)

↵̄
↵
(y(k) + ↵dy(k) 2 bd(Q))↵ � ↵̂

1↵ � ↵̂
3

↵ � ↵̂
2

) quadratic convergence

) superlinear convergence

) linear convergence

Figure 6.11: The schematic relationship between the value of ↵ and the duality gap f ⇤ �
hb, yi

• If

↵k � ↵̂
1

:=
1

1 +  [f ⇤ � b>y(k)]
,

for  := 2
r
, r 2 (0, 1),then it implies that µk ! 0 Q-quadratically.

• If

↵k � ↵̂
2

:=
1

1 +  [f ⇤ � b>y(k)]r
,

for some r 2 (0, 1),then it implies that µk ! 0 Q-superlinearly.

• If

↵k � ↵̂
3

:=
1

r +  [f ⇤ � b>y(k)]
,

for some r > 1, then it implies that µk ! 0 Q-linearly.

We will use the following proposition to illustrate the reasoning behind the above state-
ments.
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Proposition 6.0.1. Let ↵̂
1

:= 1

1+(f⇤�hb,yi) for some  > 0, ↵̂
4

:= 1

1+(f⇤�hb,yi)
1
2
for some

 > 0, and ↵̂
2

:= 1

1+(f⇤�hb,yi)r for some  > 0 and r 2 (0, 1). Assume that y(↵̂
1

) is feasible

for the dual problem (D) and f ⇤ � hb, y(↵̂
1

)i  ̃(f ⇤ � hb, yi)2, for some ̃ > 0. Moreover,

1. if ↵ � ↵̂
1

, then (f ⇤ � hb, yi) converges to 0 quadratically;

2. if ↵ � ↵̂
4

, then (f ⇤ � hb, yi) converges to 0 with order at least 3

2

;

3. if ↵ � ↵̂
2

, then (f ⇤ � hb, yi) converges to 0 superlinearly;

Proof. We will first prove for the first case. By applying the similar argument, we can
prove the other two cases.

Recall that y(↵) = y+↵d, where d represents the predictor step for y. Then, we know
that

f ⇤ � hb, y(↵)i = f ⇤ � hb, yi � ↵hb, di
 f ⇤ � hb, yi+ ↵

↵̂
1

⇥

̃(f ⇤ � hb, yi)2 � f ⇤ + hb, yi⇤

= f ⇤ � hb, yi � ↵



f ⇤ � hb, yi � ̃(f ⇤ � hb, yi)2
↵̂
1

�

= (1� ↵)(f ⇤ � hb, yi) + ↵(̃� ) [f ⇤ � hb, yi]2 + ↵̃ [f ⇤ � hb, yi]3

If we set ↵ = ↵̂
1

, then

(1� ↵)(f ⇤ � hb, yi) = 

1 + (f ⇤ � hb, yi)(f
⇤ � hb, yi)2.

Also note that if ↵ ⇡ 1, then (1�↵)(f ⇤�hb, yi) ⇡ 0. Therefore, if ↵ � ↵̂
1

, then (f ⇤�hb, yi)
converges to 0 Q-quadratically.

Therefore, we can conclude that if ↵k is larger enough, then (f ⇤ � hb, yi) converges
to 0 quadratically, i.e., µk converges to 0 Q-quadratically. As shown in the figures of the
distribution of the last five values of ↵, we see that ↵k is converging very fast to 1. Then,
it means that we can achieve Q-quadratic convergence of µk to 0.

LU decomposition and QR decomposition, instead of Cholesky decomposition are also
been adopted. However, I did not observe a big di↵erence in the results between these
three decomposition methods.
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max num of
m n Methods µ̄ corrector steps µ̄� µ̄

10

µ̄
10

� µ̄
10

3
µ̄
10

3 � µ̄
10

5
µ̄
10

5 � µ̄
10

7 < µ̄
10

7

allowed

100 400
Cholesky

10�12 300
25 75 0 0 0

LU 26 74 0 0 0
QR 25 75 0 0 0

100 400
Cholesky

10�12 300
27 73 0 0 0

LU 28 72 0 0 0
QR 29 71 0 0 0

100 400
Cholesky

10�12 100
21 79 0 0 0

LU 21 79 0 0 0
QR 23 77 0 0 0

100 400
Cholesky

10�12 100
26 74 0 0 0

LU 27 73 0 0 0
QR 27 73 0 0 0

Table 6.6: Distribution of final values of µ using three di↵erent decomposition methods
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Chapter 7

Superlinear Convergence in
Semidefinite Programming,
Conclusion and Future Research

After analyzing the behaviour of the algorithm in the special case of Linear Programming,
let us investigate the behaviour of the algorithm in the case of Semidefinite Programming.
Similar to Linear Programming, Semidefinite Programming has many nice and special
properties compared to general convex optimization. Therefore, based on the algorithm
proposed in [30], we should be able to approach superlinear convergence analysis that
maintains polynomial iteration complexity bound and use weaker assumptions in the case
of Semidefinite Programming than the general convex optimization case.

Superlinear and quadratic convergence properties of polynomial-time interior-point
methods in the case of Linear Programming is interesting and useful. However, some may
argue that that in case of Linear Programming, there are very e↵ective finite termination
algorithms (purification algorithms, projection based routines etc.) which generate exact
optimal solutions if the current iterate is close enough to the optimal solution set (in
addition to work based on Tapia indicators, see for instance Ye [49], Mehrotra and Ye
[27], Vavasis and Ye [47]). So, in this sense, the utility of superlinear convergence results
for LP, in practice seems a bit less critical. On the other hand, the case of Semidefinite
Programming is more complicated than the case of Linear Programming in the sense that
the cone of positive semidefinite matrices is not polyhedral while the cone of nonnegative
vectors is a polyhedral cone. Regardless of how close an approximately optimal solution is
to the optimal solution set, we do not yet have an e�cient algorithm (in case of SDP) to
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“jump” to an exact optimal solution. These issues make superlinear convergence properties
more critical in SDP compared to LP. Moreover, Halická, de Klerk and Roos (in [16]) show
that the central path does not converge to the analytic centre in general for the SDP case
by providing counterexamples in SDP case and Second Order Cone case. It will make the
analysis of the limiting behaviour of the central paths more complicated since it is shown
that the central path always converges to the analytic centre of the optimal solution set in
the case of Linear Programming.

We use the following arguments in [30] to illustrate the possibility of using weaker
assumptions in the case of Semidefinite Programming.

For the cone of positive semidefinite matrices K = K⇤ = Sn
+

, we choose

F (X) = � ln detX, F⇤(S) = �n� ln detS.

Then,
hI,r2F⇤(Sµ)S

⇤i = hI, S�1

µ S⇤S�1

µ i.
It seems di�cult to get an upper bound for this value in terms of ||S⇤||2S

µ

= hS�1

µ S⇤S�1

µ , S⇤i.
However, we can apply the following approach:

hI, S�1

µ S⇤S�1

µ i = µ�2hX2

µ, S
⇤i = µ�2h(Xµ �X⇤)2, S⇤i.

Therefore, we get an upper bound for ||r2F⇤(Sµ)S⇤||T assuming ||Xµ �X⇤||T 2 O(µ).
This last condition has been used in superlinear convergence analyses in the literature for
Semidefinite Programming case, as we noted in Chapter 4.

Based on the above discussion, decomposing the iterates S according the partition B
and N would be a useful start.

Furthermore, notice that the Proposition 5.2.1 does not directly apply to Semidefinite
Programming case. Since we need the fact that the feasible region of the dual problem (D)
is a polyhedron in the proof of Proposition 5.2.1 and the cone of the positive semidefinite
matrices is not polyhedral, we are not able to show that infy is feasible

cos(\(y⇤ � y, b)) > 0
in the Semidefinite Programming case. Hence, Proposition 5.2.1 does not directly apply
to Semidefinite Programming case.
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[46] R. H. Tütüncü. Quadratic convergence of potential-reduction methods for degenerate
problems. Math. Program., 90(1, Ser. A):169–203, 2001.

[47] S. A. Vavasis and Y. Ye. A primal-dual interior point method whose running time
depends only on the constraint matrix. Mathematical Programming, 74(1):79–120,
1996.

[48] S. J. Wright. A path-following interior-point algorithm for linear and quadratic prob-
lems. Annals of Operations Research, 62(1):103–130, 1996.

[49] Y. Ye. On the finite convergence of interior-point algorithms for linear programming.
Mathematical Programming, 57(1-3):325–335, 1992.

[50] Y. Ye, O. Güler, R. A. Tapia, and Y. Zhang. A quadratically convergent o(
p
nl)-

iteration algorithm for linear programming. Mathematical programming, 59(1-3):151–
162, 1993.

89



APPENDICES

90



Appendix A

Di↵erent ways of computing
corrector steps for dual
path-following algorithms

In the Algorithm 1, we need to take one predictor step and one (or more) corrector step(s)
in each iteration. For the predictor step, we use dy = [r2f(y)]�1 rf(y). However, for
corrector step(s), we think of di↵erent ways of deriving it.

The purpose of taking corrector step(s) is to make the next iterate y(k+1) get back
to the smaller neighbourhood. We can achieve this goal by minimizing the distance
from the current iterate y(k) to the central path or considering the constrained problem
�

min f(y) : b>y = b>y(k)
 

and finding the Newton’s direction of this problem. Therefore,
we could find di↵erent types of corrector steps through minimizing the neighbourhood
parameter N (µ, �) for the central path, applying Newton’s method to the KKT system
of the problem (Pµ), using the dual problem (D) and projecting the Newton’s direction,
eliminating one of the variables y

1

, y
2

, . . . , ym, or using optimality conditions of the con-
strained problem

�

min f(y) : b>y = b>y(k)
 

. Hence, we derive the following five corrector
directions, which are pure dual step(s), according to five di↵erent approaches.
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A.1 Minimizing the neighbourhood parameter

Consider the following optimization problem:

(P̄µ) min f(y)� 1

µ
b>y,

for some µ fixed by the algorithm.

We can see that the hessian of the objective function r2f(y) satisfies r2f(y) � 0.
Hence, (P̄µ) is an unconstrained minimization problem whose objective function is strictly
convex. Then, we know that (P̄µ) has a unique minimizer characterized by

f 0(y)� 1

µ
b = 0.

Therefore, we are able to obtain the Newton’s direction for minimizing (f(y) � 1

µ
b>y) as

follows:

� ⇥f 00(y(k))
⇤�1



f 0(y(k))� 1

µ
b

�

=
1

µ

⇥

f 00(y(k))
⇤�1

b� ⇥f 00(y(k))
⇤�1

f 0(y(k)).

The resulting algorithm is quadratically convergent, provided that the initial y lies in
N (µ, 1

6

). See Lemma 8.3 in [30].

A.2 Using the primal-dual symmetric system

Now, let us derive the corrector direction based on the primal-dual system and Newton’s
Method applied to the KKT system of the problem (Pµ) defined in 3.3. Applying Newton’s
Method, we obtain the following system:

Adx = 0 (A.1)

A>dy + ds = 0 (A.2)

Sdx+Xds = �Xs+ µe (A.3)

where X is the n-by-n diagonal matrix with diagonal entries xi, for i 2 {1, 2, . . . , n}.
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Equation (A.3) gives us:

dx = �x+ µS�1e�XS�1ds.

Using (A.2) to eliminate ds and substitute into (1), we can get:

0 = Adx = �b+ µAS�1e+
�

AXS�1A>� dy.

Algorithm 1 does not generate primal iterates x(k). However, the iterates stay close to the
central path. Therefore, xµ ⇡ µS�1e and Xµ ⇡ µS�1. Thus, we replace X by µS�1 in
�

AXS�1A>�.

Since AXS�1A> is positive definite, dy is the unique Newton’s direction at (x, y, s) to
compute the point on the central path corresponding to µ.

Then, we need to solve µ
�

AS�2A>� dy = b�µAS�1e for dy and let y(k+1) = y(k)+dy.

Therefore,
dy = 1

µ

⇥

f 00(y(k))
⇤�1

b� ⇥f 00(y(k))
⇤�1

f 0(y(k)),

which leads to the same algorithm as in A.1, with the same properties.

In the next three sections, we consider some other approaches that a continuous opti-
mizer might utilize to derive a computationally e↵ective algorithm for the corrector steps.

A.3 Projected Newton’s method

The corrector direction we obtained above is derived from the primal-dual system using
Newton’s Method. Moreover, we can only use the dual problem and Newton’s Method to
derive another corrector direction.

For k � 0, consider the following problem:

(Pc) min f(y)
b>y = b>y(k),

where y(k) is the dual variable for the current iterate k and b>y(k) is the current objective
value.

If the above problem is unconstrained, by using Newton’s Method, we know that the
Newton’s direction is � ⇥f 00(y(k))

⇤�1

f 0(y(k)). Then for this constrained problem, in order
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to find the Newton’s direction, we may choose to project � ⇥f 00(y(k))
⇤�1

f 0(y(k)) onto the
hyperplane

�

y 2 Rm : b>y = 0
 

. Then, we can calculate the projection matrix as follows:

h

I � b
�

b>b
��1

b>
i

=

"

I � 1

||b||2
2

bb>
#

.

Therefore, the corresponding corrector direction is:

�
"

I � 1

||b||2
2

bb>
#

⇥

f 00(y(k))
⇤�1

f 0(y(k))

=
1

||b||2
2

bb>
⇥

f 00(y(k))
⇤�1

f 0(y(k))� ⇥f 00(y(k))
⇤�1

f 0(y(k))

=
b>
⇥

f 00(y(k))
⇤�1

f 0(y(k))

||b||2
2

b� ⇥f 00(y(k))
⇤�1

f 0(y(k)).

A.4 Eliminating one variable

Another approach to find the corrector direction is to eliminate a variable from (Pc) using
the equation:

b>y = b>y(k) =: .

For instance, we may assume bm 6= 0, then

b>y = b>y(k) , ym =
(b>y(k)�

P
m�1
i=1 b

i

y
i

)
b
m

.

So, (Pc) is equivalent to the unconstrained problem:

min h(y
1

, y
2

, . . . , ym�1

) := f

✓

y
1

, y
2

, . . . , ym�1

,
(b>y(k)�

P
m�1
i=1 b

i

y
i

)
b
m

◆

,

where h : Rm�1 ! R is a function with m� 1 variables.

By Newton’s Method for unconstrained problem, the corrector direction is:

�h00 (y
1

, y
2

, . . . , ym�1

)�1 h0 (y
1

, y
2

, . . . , ym�1

) .
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The function h can be thought as a composition of two functions: h = f � g, where

g(y
1

, y
2

, . . . , ym�1

) :=

2

6

6

6

6

6

4

y
1

y
2

...
ym�1

(b>y(k)�
P

m�1
i=1 b

i

y
i

)
b
m

3

7

7

7

7

7

5

(A.4)

=


bm
em + Z

2

6

6

6

4

y
1

y
2

...
ym�1

3

7

7

7

5

(A.5)

is a function from Rm�1 to Rm and Z =

0

B

B

B

B

B

B

B

@

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
� b1

b
m

� b2
b
m

� b3
b
m

· · · � b
m�1

b
m

1

C

C

C

C

C

C

C

A

.

Then,

h0(y) = Z>f 0

 

y
1

, y
2

, . . . , ym�1

,

�

b>y(k) �Pm�1

i=1

biyi
�

bm

!

,

h00(y) = Z>f 00

 

y
1

, y
2

, . . . , ym�1

,

�

b>y(k) �Pm�1

i=1

biyi
�

bm

!

Z.

For the first step, starting with y := y(k), we have:

2

6

6

6

4

y
1

y
2

...
ym�1

3

7

7

7

5

new

:=

2

6

6

6

4

y(k)
1

y(k)
2

...

y(k)m�1

3

7

7

7

5

� �Z>f 00 �y(k)
�

Z
��1

Z>f 0(y(k)). (A.6)

We denote the m-dimensional vector obtained from the above(m � 1)-dimensional new y
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vector, ynew 2 Rm. Then,

ynew :=


bm
em + Z

2

6

6

6

4

y(k)
1

y(k)
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...

y(k)m�1

3
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7

7

5

� Z
�

Z>f 00 �y(k)
�

Z
��1

Z>f 0(y(k)) (A.7)

= y(k) � Z
�

Z>f 00 �y(k)
�

Z
��1

Z>f 0(y(k)). (A.8)

Let b̄> denote the last row of Z and H
1

denote the submatrix of f 00(y) consisting of the
first m � 1 rows and m � 1 columns. Let H

2

be the first m � 1 components of the last
column of f 00(y) and H

3

be the mth entry of the last column. Then, we know that

Z>f 00(y)Z =
⇥
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H
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H
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H
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� 
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H
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2
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Note that the 2-by-2 matrix

⇢

I +
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2

b̄>

�

H�1

1

⇥
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2
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3
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⇤

�

is nonsingular.
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�

H�1

1

⇥

b̄ H
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The two rows of the above matrix are linearly independent, so it is nonsingular.

Then, by the Sherman-Morrison-Woodbury formula, we have
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where C =



c
11

c
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c
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c
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�
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Hence, we have that:
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We know that the above matrix is anm-by-mmatrix with rank 2. So,
n
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is a rank 2 update of the matrix
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Let R denote the above matrix, i.e, the rank 2 update. Let f 0(y)
1:m�1

denote the
(m � 1)-dimensional vector obtained from taking the first m � 1 entries of f 0(y(k)) and
letf 0(y)m denote the last entry of f 0(y(k)).

Therefore, we have
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Using the idea of finding Schur Complement, we have the following:
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A.5 Using optimality conditions and Newton’s method

Based on the problem (Pc), we can write down the optimality conditions of (Pc) using
KKT Theorem:

f 0(y)� �b = 0
b>y = b>y(k)

� 2 R.

Then, we can apply Newton’s Method to the above system to obtain:

f 00(y)dy � (d�)b = �b� f 0(y) (A.9)

b>dy = 0. (A.10)

Multiply b>f 00(y)�1 on the left to equation (A.9) and substituting (A.10) into it gives
us:

d� =
b>f 00(y)�1f 0(y)

b>f 00(y)�1b
� �.

Then, we substitute into (A.9) to get the formula for the corrector direction:

dy = (d�+ �)f 00(y)�1b� f 00(y)�1f 0(y)

=

✓

b>f 00(y)�1f 0(y)

b>f 00(y)�1b

◆

f 00(y)�1b� f 00(y)�1f 0(y).

A.6 Comparison of five corrector directions

In order to analyze the e�ciency of computing the five di↵erent corrector directions, we
want to first compare all five corrector directions.

From A.1 and A.2, we note that the expressions of the first and the second corrector
steps are the same.

Now, we will first compare the first corrector direction and the fifth one.

If the current point is on the central path, then we know that f 0(y) = 1

µ
b. Therefore,

⇣

b>f 00
(y)�1f 0

(y)
b>f 00
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⌘

= 1

µ
. So, the coe�cient of

⇥

f 00(y(k))
⇤�1

b in the fifth corrector direction is
1

µ
. Then, the fifth corrector direction is the same as the first one.
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Otherwise, we can write the coe�cient of
⇥

f 00(y(k))
⇤�1

b in the fifth corrector direction
as follows:
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Next, we will compare the first corrector direction with the third corrector direction. Since
they both have the common term

⇥

f 00(y(k))
⇤�1

f 0(y(k)), it su�ces to just compare the first
term in each expression.

Consider the first term of the third corrector step as follows:

b>
⇥
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⇤�1
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||b||2
2

b� 1

µ

⇥
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b.

If the current point is on the central path, then we will have:
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�

=
1

µ
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�

b.
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If b is an eigenvector of f 00(y(k)) determining the eigenvalue ||b||2
||b||

y

, then these two corrector

directions coincide.

In our preliminary computational experiments we found that the corrector direction
derived by the methods given in Appendices A.1 and A.2 worked the best.

101


	List of Tables
	List of Figures
	Introduction
	Superlinear Convergence in Continuous Optimization
	R-convergence,Q-convergence and superlinear convergence rates
	Details of Kantorovich's theory and Smale's Theorem

	Linear Programming, Semidefinite Programming and Central Path
	Linear Programming
	Semidefinite Programming
	General Convex Optimization
	Strict Complementarity
	Linear Programming case
	Semidefinite Programming Case

	Literature survey on superlinear convergence in polynomial iteration complexity interior-point methods

	Superlinear and Quadratic Convergence in modern, primal-dual Interior Point Methods
	Linear Programming Case
	Semidefinite Programming Case

	Superlinear Convergence of an algorithm of Nesterov and Tunçel in Linear Programming
	Proposed approach towards a proof of the conjecture
	Towards weaker assumptions
	Analysis of the predictor step
	Auxiliary primal sequence and comparing proximity measures for centrality
	Experiments with two proximity measures

	Analysis of the prediction direction via a primal-dual approach

	Computational Experiments
	Superlinear Convergence in Semidefinite Programming, Conclusion and Future Research
	References
	APPENDICES
	Different ways of computing corrector steps for dual path-following algorithms
	Minimizing the neighbourhood parameter
	Using the primal-dual symmetric system
	Projected Newton's method
	Eliminating one variable
	Using optimality conditions and Newton's method
	Comparison of five corrector directions


