35,670 research outputs found

    Weakly Submodular Functions

    Full text link
    Submodular functions are well-studied in combinatorial optimization, game theory and economics. The natural diminishing returns property makes them suitable for many applications. We study an extension of monotone submodular functions, which we call {\em weakly submodular functions}. Our extension includes some (mildly) supermodular functions. We show that several natural functions belong to this class and relate our class to some other recent submodular function extensions. We consider the optimization problem of maximizing a weakly submodular function subject to uniform and general matroid constraints. For a uniform matroid constraint, the "standard greedy algorithm" achieves a constant approximation ratio where the constant (experimentally) converges to 5.95 as the cardinality constraint increases. For a general matroid constraint, a simple local search algorithm achieves a constant approximation ratio where the constant (analytically) converges to 10.22 as the rank of the matroid increases

    Sonet Network Design Problems

    Full text link
    This paper presents a new method and a constraint-based objective function to solve two problems related to the design of optical telecommunication networks, namely the Synchronous Optical Network Ring Assignment Problem (SRAP) and the Intra-ring Synchronous Optical Network Design Problem (IDP). These network topology problems can be represented as a graph partitioning with capacity constraints as shown in previous works. We present here a new objective function and a new local search algorithm to solve these problems. Experiments conducted in Comet allow us to compare our method to previous ones and show that we obtain better results

    Algorithms for the minimum sum coloring problem: a review

    Get PDF
    The Minimum Sum Coloring Problem (MSCP) is a variant of the well-known vertex coloring problem which has a number of AI related applications. Due to its theoretical and practical relevance, MSCP attracts increasing attention. The only existing review on the problem dates back to 2004 and mainly covers the history of MSCP and theoretical developments on specific graphs. In recent years, the field has witnessed significant progresses on approximation algorithms and practical solution algorithms. The purpose of this review is to provide a comprehensive inspection of the most recent and representative MSCP algorithms. To be informative, we identify the general framework followed by practical solution algorithms and the key ingredients that make them successful. By classifying the main search strategies and putting forward the critical elements of the reviewed methods, we wish to encourage future development of more powerful methods and motivate new applications

    Diversification Based Static Index Pruning - Application to Temporal Collections

    Full text link
    Nowadays, web archives preserve the history of large portions of the web. As medias are shifting from printed to digital editions, accessing these huge information sources is drawing increasingly more attention from national and international institutions, as well as from the research community. These collections are intrinsically big, leading to index files that do not fit into the memory and an increase query response time. Decreasing the index size is a direct way to decrease this query response time. Static index pruning methods reduce the size of indexes by removing a part of the postings. In the context of web archives, it is necessary to remove postings while preserving the temporal diversity of the archive. None of the existing pruning approaches take (temporal) diversification into account. In this paper, we propose a diversification-based static index pruning method. It differs from the existing pruning approaches by integrating diversification within the pruning context. We aim at pruning the index while preserving retrieval effectiveness and diversity by pruning while maximizing a given IR evaluation metric like DCG. We show how to apply this approach in the context of web archives. Finally, we show on two collections that search effectiveness in temporal collections after pruning can be improved using our approach rather than diversity oblivious approaches

    Parallel local search for solving Constraint Problems on the Cell Broadband Engine (Preliminary Results)

    Full text link
    We explore the use of the Cell Broadband Engine (Cell/BE for short) for combinatorial optimization applications: we present a parallel version of a constraint-based local search algorithm that has been implemented on a multiprocessor BladeCenter machine with twin Cell/BE processors (total of 16 SPUs per blade). This algorithm was chosen because it fits very well the Cell/BE architecture and requires neither shared memory nor communication between processors, while retaining a compact memory footprint. We study the performance on several large optimization benchmarks and show that this achieves mostly linear time speedups, even sometimes super-linear. This is possible because the parallel implementation might explore simultaneously different parts of the search space and therefore converge faster towards the best sub-space and thus towards a solution. Besides getting speedups, the resulting times exhibit a much smaller variance, which benefits applications where a timely reply is critical
    corecore