3,961 research outputs found

    Statistical Analysis and Modeling of SIP Traffic for Parameter Estimation of Server Hysteretic Overload Control, Journal of Telecommunications and Information Technology, 2013, nr 4

    Get PDF
    The problem of overload control in Session Initiation Protocol (SIP) signaling networks gives rise to many questions which attract researchers from theoretical and practical point of view. Any mechanism that is claimed to settle this problem down demands estimation of local (control) parameters on which its performance is greatly dependent. In hysteretic mechanism these parameters are those which define hysteretic loops. In order to find appropriate values for parameters one needs adequate model of SIP traffic flow circulating in the network under consideration. In this paper the attempt is made to address this issue. Analysis of SIP traffic collected from telecommunication operator’s network is presented. Traffic profile is built. It is shown that fitting with Markov Modulated Poisson Process with more than 2 phases is accurate. Estimated values of its parameters are given

    A distributed end-to-end overload control mechanism for networks of SIP servers.

    Full text link
    The Session Initiation Protocol (SIP) is an application-layer control protocol standardized by the IETF for creating, modifying and terminating multimedia sessions. With the increasing use of SIP in large deployments, the current SIP design cannot handle overload effectively, which may cause SIP networks to suffer from congestion collapse under heavy offered load. This paper introduces a distributed end-to-end overload control (DEOC) mechanism, which is deployed at the edge servers of SIP networks and is easy to implement. By applying overload control closest to the source of traf?c, DEOC can keep high throughput for SIP networks even when the offered load exceeds the capacity of the network. Besides, it responds quickly to the sudden variations of the offered load and achieves good fairness. Theoretic analysis and extensive simulations verify that DEOC is effective in controlling overload of SIP networks

    Probe-based end-to-end overload control for networks of SIP servers

    Get PDF
    The Session Initiation Protocol (SIP) has been adopted by the IETF as the control protocol for creating, modifying and terminating multimedia sessions. Overload occurs in SIP networks when SIP servers have insufficient resources to handle received messages. Under overload, SIP networks may suffer from congestion collapse due to current ineffective SIP overload control mechanisms. This paper introduces a probe-based end-to-end overload control (PEOC) mechanism, which is deployed at the edge servers of SIP networks and is easy to implement. By probing the SIP network with SIP messages, PEOC estimates the network load and controls the traffic admitted to the network according to the estimated load. Theoretic analysis and extensive simulations verify that PEOC can keep high throughput for SIP networks even when the offered load exceeds the capacity of the network. Besides, it can respond quickly to the sudden variations of the offered load and achieve good fairness

    One Server Per City: Using TCP for Very Large SIP Servers

    Get PDF
    The transport protocol for SIP can be chosen based on the requirements of services and network conditions. How does the choice of TCP affect the scalability and performance compared to UDP? We experimentally analyze the impact of using TCP as a transport protocol for a SIP server. We first investigate scalability of a TCP echo server, then compare performance of a SIP server for three TCP connection lifetimes: transaction, dialog, and persistent. Our results show that a Linux machine can establish 450,000+ TCP connections and maintaining connections does not affect the transaction response time. Additionally, the transaction response times using the three TCP connection lifetimes and UDP show no significant difference at 2,500 registration requests/second and at 500 call requests/second. However, sustainable request rate is lower for TCP than for UDP, since using TCP requires more message processing. More message processing causes longer delays at the thread queue for the server implementing a thread-pool model. Finally, we suggest how to reduce the impact of TCP for a scalable SIP server especially under overload control. This is applicable to other servers with very large connection counts

    Hysteretic Control Technique for Overload Problem Solution in Network of SIP Servers

    Get PDF
    This paper contains research and development results concerning application of hysteretic control principles to solve SIP servers overload problem, which is known from a number of IETF standards and scientific papers published over the past few years. The problem is that SIP protocol, being the application layer protocol, by default has no build-in means of overload control, as, for example, SS7, MTP2 and MTP3 protocols. It was the SS7 network, where a threshold mechanism of hysteretic signalling load control was first implemented. In this paper we describe the main up-to-date solutions of an overload control problem in a signalling network, and develop analytical models of hysteretic control, which are useful in the development of load management functions of SIP servers. We also propose the design of Open SIP signalling Node (OSN) software architecture which is intended to be used for simulations and comparison of various overload control mechanisms
    corecore