
One Server Per City: Using TCP for Very Large SIP Servers

Kumiko Ono and Henning Schulzrinne
Dept. of Computer Science, Columbia University.

Email: {kumiko, hgs}@cs.columbia.edu

Abstract

The transport protocol for SIP can be chosen based on the requirements of services and network conditions. How
does the choice of TCP affect the scalability and performance compared toUDP? We experimentally analyze the im-
pact of using TCP as a transport protocol for a SIP server. We first investigate scalability of a TCP echo server, then
compare performance of a SIP server for three TCP connection lifetimes:transaction, dialog, and persistent. Our
results show that a Linux machine can establish 450,000+ TCP connections and maintaining connections does not
affect the transaction response time. Additionally, the transaction response times using the three TCP connection life-
times and UDP show no significant difference at 2,500 registration requests/second and at 500 call requests/second.
However, sustainable request rate is lower for TCP than for UDP, since using TCP requires more message processing.
More message processing causes longer delays at the thread queue for the server implementing a thread-pool model.
Finally, we suggest how to reduce the impact of TCP for a scalable SIP server especially under overload control.
This is applicable to other servers with very large connection counts.

1 Introduction
The Session Initiation Protocol (SIP) [1] is used for Internet telephony signaling, i.e., establishing and tearing down
sessions. The SIP is a request-response protocol, similar to HTTP, but can work over any transport protocol such
as UDP, TCP or SCTP (Stream Control Transmission Protocol) [2]. If SIP messages are sent over connection-less
transport protocol, UDP, the SIP server does not have to maintain connection state, and a single socket can be shared
to communicate with all the users. UDP seems a better choice to achieve a scalable SIP server in congestion-free
networks.

However, TCP is preferred to UDP even in congestion-free networks, since it addresses issues, such as the SIP
message size exceeding the MTU (Maximum Transfer Unit), firewall and NAT traversal. Due to its reliable nature,
TCP imposes additional processing cost on the SIP server, i.e., the server has to maintain a TCP socket for each
connection. Typically, to facilitate inbound calls to the user phone behind a NAT or firewall, the user phone maintains
a persistent TCP connection with the SIP server. It has generally been perceived as difficult for a SIP server to maintain
250,000+ active TCP connections and to keep up with the corresponding number of user registrations and call requests,
in order to compete a high-capacity central office, Lucent’s5E-XCTM [3], a high-capacity 5ESS.

Our goal is to measure the impact of TCP on SIP server scalability and performance, and to suggest techniques to
maintain a large number of active TCP connections, such as 300,000, on a single server. The remainder of this article
is organized as follows. We introduce requirements for SIP servers in Section 3. Then, we show the scalability and
performance measurements of an echo server in Section 4 and those of a SIP server in Section 5. We also analyze
the reason of the performance differences between TCP and UDP using component tests in Section 6. Appendices
describe system calls, system configurations and measurement tools.

2 Related Work
Since both a SIP server and an HTTP server can use TCP, they face common problems in handling a large number of
connections. Kegel [4] aggregates several tips and limits on I/O and event delivery to support more than 10,000 clients
for a scalable HTTP server. Libenzi [5] developed theepoll() system call and shows that it enables an HTTP server
to achieve a high throughput with active 27,000 connections. We built our SIP server on these tips to increase an upper
limit of sockets and to enable the server to wait for events ona larger number of connections using theepoll()
system call. However, we have to consider the differences between a SIP server and an HTTP server as explained in
Section 3.

For SIP server scalability, Shemyak and Vehmanen [6] showedthat a SIP server can maintain 100,000 inactive
TCP connections, emphasizing the effect of using theepoll() system call. However, we need to establish the limit
for the number of concurrent connections and clarify the bottleneck.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

For a scalable SIP server using UDP, Singh and Schulzrinne [7] compared the performance for different software
architectures: event-based, thread-pool, and process-pool. They suggested that the process-pool one has the best
performance in terms of response time. Additionally, they proposed a two stage architecture, where servers at the first
stage dispatch messages to multiple servers at the second stage in order to improve concurrency and reliability. For a
highly concurrent server, Welsh et al. [8] proposed a stagedevent-driven architecture. Each stage contains a thread-
pool to drive the stage execution. They showed decoupling load management from service logic increases concurrency
with the measurement using 1,024 clients. We describe the impact of the transport protocol on SIP server scalability,
not the impact of the software architecture.

3 Requirements for a SIP Server

3.1 TCP Connection Lifetime

Although SIP is similar to HTTP, it differs from HTTP in TCP connection lifetime. For example, a SIP proxy server
in transaction-stateful mode needs to wait for the responsefrom the User Agent Server (UAS). After ringing, it might
take more than 30 seconds for the UAS to answer it. If the server runs in dialog-stateful mode, it needs to wait for
the dialog between users to end. Thus, the TCP connection lifetime depends on human response time, and would be
much longer than that for HTTP/1.0 [9], but similar to that for HTTP/1.1 [10]. While HTTP/1.0 [9] opens and closes
a TCP connection to fetch each embedded object, HTTP/1.1 supports persistent connections across multiple objects
by default in order to improve server performance by avoiding unnecessary TCP connection opens and closes, by
reducing the impact of TCP slow-start, and by allowing pipelining requests and responses [11]. Typical HTTP clients
and servers close inactive TCP connections when the sessiontimeouts. For example, Mozilla Firefox sets the session
timeout to 300 seconds by default.

However, a SIP client behind a NAT needs to maintain even an inactive TCP connection in order to wait for
incoming calls [12]. In this case, the TCP connection lifetime for SIP would be much longer even than HTTP/1.1.
Therefore, the number of sustainable TCP connections and sustainable request rate are crucial factor for the scalability
of an outbound SIP server.

3.2 Traffic Model

We assume a target traffic model where a single server accommodates 300,000 subscribers, which is similar scalability
to that of Lucent’s 5E-XCTM , 256,000 subscribers. Each user quotes their location every 3,600 seconds as defined by
default in [1]. The average call duration is 180 seconds. Thetraffic is 0.1 erlangs. Thus, the target throughput for
registrations is 300,000 BHCA (Busy Hour Call Attempt), which corresponds to 83 requests per second. The target
throughput for calls is 600,000 BHCA (= 300,000 * 0.1 * (3,600/ 180)), which corresponds to 167 requests/second.
If four mid-call requests,PRACK, ACK, UPDATE and BYE, are also counted as requests, the rate rises to 833
requests/second.

4 Basic TCP Measurements Using an Echo Server
Prior to the measurement for a SIP server, we measured the scalability and performance of an echo server in order
to clarify the threshold and bottlenecks in terms of creating and maintaining a large number of concurrent TCP con-
nections. We expected these basic measurements to make it easier to estimate the scalability of a SIP server using
TCP.

4.1 Measurement Metrics

First, to establish the limit for the number of concurrent TCP connections on a single server, we measured the number
of sustainable TCP connections, memory usage and CPU utilization by theepoll() system call. Figure 1 shows
that the echo server with polling accepts several TCP connection requests and receiving user messages depending on
the order of data delivery.

Second, we measured the impact of a large number of TCP connections from two perspectives: of establishing and
of maintaining active TCP connections. When echo clients send 512 byte messages to the echo server over separate
TCP connections. In other words, TCP does not bundle multiple messages into a single packet when sending out.
Appendix C describes the measurement tools for these metrics.

4.2 Measurement Environment

Figure 2 illustrates our measurement environment consisting of the server under test (SUT) and the echo clients. The
SUT is an echo server using a single-process and single-thread which runs on a dedicated host with Pentium IV 3 GHz
32-bit dual-core CPU and 4 GB of memory. The SUT runs Linux 2.6.16 configured with a 2G/2G virtual memory

2

Figure 1: Message exchanges for echo
server measurement Figure 2: TCP measurement environment

split, where the kernel can use 2 GB of memory. For the echo clients, we used ten hosts with Pentium IV 3 GHz
32-bit CPU and 1 GB of memory running Redhat Linux 2.6.9. These hosts communicated over a 100 Mb/s Ethernet
connection at light load. The round trip time (RTT) measuredby ping was roughly 0.1 ms.

We configured the SUT and clients to allow a large number of concurrent connections. The upper limit of file
descriptors was increased to 1,000,000 at the SUT and to 60,000 at every client. The ephemeral local port range at
the clients was expanded to 10,000 - 65,535, so that each client can establish approximately 55,000 (= 65535 - 1000)
concurrent connections. Appendix B details the system configurations.

4.3 Results from Basic TCP Measurement

4.3.1 Number of Sustainable TCP Connections

We measured the number of sustainable TCP connections at three request sending rates, 200, 2,500 and 14,800 re-
quests/second for the echo server in the message sequence shown in Figure 1. Figure 3 indicates that the echo server
can sustain approximately 520,000 connections at any request rate of them. Figure 3 also shows the overall memory
usage and memory usage for TCP socket buffers for the echo server. The “high” line indicates the system limit of
TCP socket buffer memory, 800 MB, which is automatically configured at boot time based on available memory. The
overall memory usage increases linearly at any request rateand the amount of used memory is approximately 1.2 GB.
However, memory usage for TCP socket buffers is less than 20 MB at any request rate of them. We can deduce that
the bottleneck is the amount of memory for TCP connections, which is allocated 2.3 KB per connection as long as the
connection remains open, not the amount of socket buffer memory, which is dynamically allocated depending on the
request rate.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600

m
em

or
y

us
ag

e
(M

B
)

of TCP connections (1,000)

high

total mem at 200 req/sec
total mem at 2,500 req/sec

total mem at 14,800 req/sec
socket buffers at 200 req/sec

socket buffers at 2,500 req/sec
socket buffers at 14,800 req/sec

Figure 3: Memory usage as a function of number of TCP
connections at echo server

 0

 200

 400

 600

 800

 1000

 1200

 1400

S
la

b
us

ag
e

(M
B

)

size-512
skbuff head cache

eventpoll epi
eventpoll pwq

filp
dentry cache

sock inode cache
TCP sock

Figure 4: Slab cache usage for TCP connections for echo
server

To get a detailed picture of the memory usage for TCP connections, we monitored the usage of the slab cache,

3

where the Linux kernel allocates TCP socket data structuresincluding socket buffers at 14,800 requests/second rate.
Figure 4 shows that the slab cache usage for approximately 520,000 TCP connections is 1.2 GB including the data

structures for theepoll() system call: eventpollepi and evenpollpwq. Figure 4 also indicates that the slab cache
usage dynamically allocated for the socket buffer heads anduser data is only 12 MB. This result is coherent with the
result in Figure 3.

Therefore, we have determined that a TCP connection requires 2.3 KB of the slab cache and the bottleneck of
sustainable concurrent connections is the amount of allocatable kernel memory for the slab cache, since this slab
cache is statically allocated as long as the TCP connection remains open. For exchanging TCP control messages and
user data, extra amount of the slab cache for socket buffers is required, depending on the request rate and the size of
user data. If a target traffic model requires more than 500,000 connections, we recommend to have more than 2 GB
of kernel memory, since we have experienced that the server hung without any error message when adding concurrent
TCP connections because of memory exhaustion.

In later versions of Linux, e.g., Linux 2.6.20, the system produces an error, “out of memory”, then the “oomkiller”
process kills heavy processes including the echo server process when it tries to allocates kernel memory for the
TCP socket data structures.

To increase kernel memory, installing more physical memoryfor a 32-bit kernel does not help since the kernel
process can only handle 4 GB of memory including user space. The only way to increase kernel space for a 32-bit
kernel is to modify the memory split to 3G/1G, where kernel space is 3 GB. Another way is to switch to a 64-bit
kernel. Once kernel can support more than 4 GB of physical memory, the bottleneck would move to other factors,
such as the number of file descriptors, which is currently 1024*1024.

4.3.2 The Cost of Establishing TCP Connections

Figure 5 compares the response time and peak CPU time across different connection lifetimes for TCP and to UDP at
two request rates, 2,500 and 14,800 requests/second. Transaction-based TCP opens a TCP connection before sending
a user data, i.e., a 512 byte message in ANSI text, and closingthe TCP connection after receiving the echoed message.
Persistent TCP has two scenarios: with open, where the echo server opens and maintains TCP connections, and without
open, where the echo server reuses existing connections.

Comparing the results between the two persistent TCP scenarios indicates the cost of establishing a new TCP
connection. This costs 0.2 ms of the response time and 15 percent of CPU time at high request rate in our measurement
environment. Comparing the results between transaction-based and persistent TCP with open indicates the cost of
closing a TCP connection. This costs a negligible amount of the response time and 14 percent of CPU time at high
request rate. Since the maximum CPU time of our server running on a dual-core CPU is 200 percent, these CPU cost
is not so significant.

Thus, the cost of establishing TCP connections is not significant at low request rate, 2,500 requests/second, which is
significantly above the requirement. Furthermore, up to a request rate of 14,800 requests/second, the amount of kernel
memory, rather than CPU cycles, limits the scalability of the echo server , as we have determined in Section 4.3.1.

4.3.3 The Cost of Maintaining TCP Connections

Figure 6 shows the response time consisting of the TCP handshake and message exchange as a function of the number
of concurrent TCP connections for the echo server. The echo server establishes new TCP connections at 14,800
connections/second and leaves them. The “handshake” data points show the elapsed time for the TCP three-way
handshake to establish a new connection, and the “send-recv” data points show the interval between sending and
receiving an echoed message after the handshake. The “total” data points shows the sum of them.

Regardless of the number of maintaining TCP connections, the response time remains constant around at 0.3 ms
for ‘send-recv”, which matches the results of persistent TCP in Figure 5, and at 0.4-0.5 ms for “total”, of which average
matches the results of persistent TCP with open. Thus, maintaining TCP connections affects neither the performance
of establishing new TCP connections nor of exchanging user data.

5 SIP Server Measurements
From the results of the basic TCP measurements, we have determined that TCP impacts mainly on kernel memory.
Although each TCP connection consumes 2.3 KB of kernel memory, establishing and maintaining 300,000 TCP
connections themselves does not significantly affect the performance. Compared to the echo server, a SIP server
requires no additional kernel memory. Thus, the TCP impact on kernel memory is the same for a SIP server. Therefore,
we can focus on measuring the performance for a SIP server.

4

 0

 0.2

 0.4

 0.6

 0.8

 1

transaction
-based TCP

persistent
TCP w/open

persistent
TCP

UDP
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
tr

an
sa

ct
io

n
re

sp
on

se
 ti

m
e

(m
s)

C
P

U
 (

%
)

response time at 2,500 req/sec
response time at 14,800 req/sec

CPU at 2,500 req/sec
CPU at 14,800 req/sec

Figure 5: Response times and CPU utilization for echo
server

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

re
sp

on
se

 ti
m

e
(m

s)

of TCP connections (1,000)

total
handshake
send-recv

Figure 6: Response times as a function of number of TCP
connections for echo server

Although [1] does not strictly define that a SIP server and UAssupport persistent TCP connections, we can assume
that a SIP server supports persistent TCP connections, but SIP UA behaviors may vary. Thus, we need to clarify how
TCP connection handling affects throughput on a SIP server and data latency, i.e., the sustainable request rate and
the transaction response time. We measured them for three cases of TCP connection lifetime: transaction, dialog and
persistent. These three cases of TCP connection lifetime differ in how many SIP messages share a connection and how
often TCP connections are established and closed.

Transaction-based TCP: UAs create new TCP connections for each transaction, e.g.,REGISTER-200 OK, BYE-
200 OK, INVITE-200 OK, ACK, BYE-200 OK, UPDATE-200 OK. For the average call or dialog, four TCP
connections are established and closed. The maximum transaction duration with the default configuration in [1]
is 32 seconds.

Dialog-based TCP: UAs create and share new TCP connections for a dialog, i.e., from sendingINVITE requests to
exchangingBYE requests and the200 OK responses. In our traffic model, a TCP connection is maintained for
180 seconds on average.

Persistent TCP: UAs and SIP servers keep TCP connections created when sending REGISTER requests, and reuse
them to sendINVITE requests or to update the registration. The default registration interval is 3,600 seconds.

5.1 Measurement Environment

The SUT is our SIP server, sipd [13], running on the same host as the echo server in Section 4.2. The sipd SIP
server implements a single process and a thread-pool model,where a fixed number of threads is spawned on startup,
is pooled, and handles tasks upon requests. If more tasks arerequested than the number of threads, the tasks wait
in a queue. The SIP proxy and registrar functions are co-located on a single server to measure the effect of reusing
TCP connections established at registration. The SIP server runs as an outbound proxy for both a User Agent Client
(UAC) and the User Agent Server (UAS), and also as their inbound proxy for simplification. In other words, we used
a single server model, instead of trapezoid model, where twoservers connect to UAs and interconnect with each other.
User information including registered locations is storedin a MySQL DBMS running on a different server on the
same local network. For SIP UAs, we used a SIP UA emulator, part of sipstone test suite [14], running on the same
hosts as the echo clients in Section 4.2. Figure 7 shows theseentities and message exchanges. All SIP requests and
responses traverse the SIP server to emphasize the impact ofthe TCP connection for the SIP server. By dividing the
sequences into two, we applied two scenarios of tests: a registration test, i.e.,REGISTER-200 OK test, and a call
test, i.e.,INVITE-200 OK test. Table 1 compares these two tests to the basic TCP measurement using echo server.
The registration test is similar to the basic measurement using echo server except parsing messages and SIP operation,
while the call test is more complicated especially in terms of the number of SIP messages and transactions.

5

Figure 7: Message exchanges for SIP server
measurement

Figure 8: Transaction-
based TCP sequence for
REGISTER-200 OK test

Figure 9: Persistent TCP se-
quence forREGISTER-200
OK test

5.2 Registration Test Scenario:REGISTER-200 OK Test

For the registration test, the UAC sendsREGISTER requests and receives the200 OK response from the SIP server.
Since registrations create no dialog, we measured the transaction response time ofREGISTER-200 OK for two
connection lifetimes: transaction in Figure 8 and persistent in Figure 9. Under persistent TCP, we measured the
response time in two cases: initial registration that requires TCP connection establishment, which is corresponding to
persistent TCP with open for the basic TCP measurement, and subsequent registration that reuses the existing TCP
connection.

5.3 Results fromREGISTER-200 OK Test

Figure 10 compares the transaction response times at various request sending rates at 100% success rate. The sus-
tainable request rate for transaction-based TCP is 2,900 requests/second, that for persistent TCP with open is 3,300
requests/second, that for persistent TCP is 4,100 requests/second, and that for UDP is 5,300 requests/second. Below
1,600 requests/second, the gaps in their response times remain constant, but above that, the gaps enlarge exponen-
tially. This exponential increase of the response time conforms to Little’s theorem. Since sipd has a M/D/1 queue for

Table 1: Comparison between TCP measurements for echo server and SIP server
Echo server SIP server

Registration test Call test

Processing processing sockets Yes Yes Yes, including sockets to
UAS

at server reading buffer Yes Yes Yes
parsing messages No Yes Yes
SIP operation No Yes, including DB access Yes, including DB access

Number of SIP messages per request2 (rcv 1, snd 1) 2 (rcv 1, snd 1) 14 (outbound: rcv 3, snd 5,
inbound rcv 3, snd 3)

Number of transactions per request 1 1 6 (outbound 3, inbound 3)
Software model Single process/threadSingle process, thread-pool Single process, thread-pool

6

handling tasks, we can deduce the increase of the response time is caused by waiting tasks’ exceeding the maximum
queue length at these request rates.

To investigate these gaps more closely, we compare the response time and CPU utilization at 2,500 requests/second
sending rate with those of the basic TCP measurements in Figure 5, as shown in Figure 11. Since the number of
messages and transactions are same as shown in Table 1, this comparison indicates the cost of handling SIP requests:
message parsing and SIP operations or the difference of the software model. The cost of handling SIP requests in
CPU time is 15-18 percent for all cases, and the cost in the transaction response time is 0.4-1.2 ms. These cost
gaps among three TCP cases and UDP increase more in the transaction response time than those in CPU time. For
example, the difference in the transaction response time between the two persistent TCP cases, indicating the cost
of establishing a TCP connections, is 0.4 ms, which is 0.2 ms in the basic TCP measurement. Thus, we determined
that this increased cost of establishing TCP connections were caused by the software model of the SIP server. The
bottleneck of sustainable request rate is the thread queue,where the number and lifetime of threads cause queuing
delay of threads in the thread-pool model. Section 6 shows the result of component tests that focus on threads in sipd
to investigate this reason.

Figures 12 and 13 show that the SIP server starts to fail in handling SIP requests far before exhausting system
resources for persistent TCP and UDP. Although we omit presenting the results of transaction-based TCP and persistent
TCP with open, their results are similar to that for persistent TCP except the sustainable rate. For all cases, CPU
utilization is still below 40 percent and usage of physical memory in RSS and virtual memory in VSZ is below 200
MB and below 800 MB, respectively. Clearly, the bottleneck is neither memory usage nor CPU utilization.

 0

 2

 4

 6

 8

 10

 0 1000 2000 3000 4000 5000 6000

tr
an

sa
ct

io
n

re
sp

on
se

 ti
m

e
(m

s)

sending rate (requests/second)

transaction-based TCP
persistent TCP w/open

persistent TCP
UDP

Figure 10: Response times as a function of sending rate for
REGISTER-200 OK test for TCP and UDP

 0

 0.5

 1

 1.5

 2

transaction
-based TCP

persistent
TCP w/open

persistent
TCP

UDP
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
tr

an
sa

ct
io

n
re

sp
on

se
 ti

m
e

(m
s)

C
P

U
 (

%
)

response time for echo server
CPU for echo server

response time for SIP server
CPU for SIP server

Figure 11: Response times and CPU utilization for
REGISTER-200 OK test at 2,500 requests/second

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

su
cc

es
s

ra
te

 o
r

C
P

U
 u

sa
ge

 (
%

)

R
S

S
 a

nd
 V

S
Z

 (
M

B
)

requests/second

Figure 12: Success rate, CPU utilization and memory usage
for REGISTER-200 OK test: persistent TCP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

su
cc

es
s

ra
te

 o
r

C
P

U
 u

sa
ge

 (
%

)

R
S

S
 a

nd
 V

S
Z

 (
M

B
)

requests/second

success rate
CPU
RSS
VSZ

Figure 13: Success rate, CPU utilization and memory usage
for REGISTER-200 OK test: UDP

7

Figure 14: Transaction-based TCP sequence
for INVITE-200 OK test

Figure 15: Dialog-based TCP
sequence for INVITE-200
OK test

Figure 16: Persistent TCP se-
quence forINVITE-200 OK
test

When the success rate drops, the SIP server produces warning messages saying that the overload control drops
83% of requests for persistent TCP and 10-28% of requests forUDP. Since sipd detects overload by monitoring the
thread queue of waiting tasks for available threads, we havedetermined the bottleneck is the thread queue.

Furthermore, the success rate for persistent TCP steeply drops, while that for UDP gradually decreases. The
difference between persistent TCP and UDP in drooping the success rate implies that the overload control works
ruthlessly for TCP, while it works gracefully for UDP. The overload control at sipd set threshold of tasks in the thread
queue and drops tasks to handle new requests excludingBYE requests, which have fewer subsequent SIP messages. To
investigate the difference between TCP and UDP, Section 6 discusses the details of the overload control mechanism.

5.4 Call Test Scenario:INVITE-200 OK Test

For a call test, UACs and UASes should register their locations beforehand. UACs sendINVITE requests, receive180
Ringing and200 OK responses from the UASes, and sendACK for the200 OK. Just after establishing a dialog, the
UACs sendBYE request to tear down the dialog and receive the200 OK response. For the call test, we measured the
transaction response time ofINVITE-200 OK test for three cases of TCP connection lifetimes: transaction-based TCP
in Figure 14, dialog-based TCP in Figure 15 and persistent TCP in Figure 16.

To simplify the sequence of theINVITE-200 OK test, we assume zero ringing duration, zero dialog duration, and
no mid-dialog request. By this simplification, the three cases differ only in the number of TCP control messages, such
asSYN or FIN.

As described in Section 5.1, the SIP server runs as an outbound proxy and also as an inbound proxy. As an
outbound proxy, the SIP server operates in passive open and close mode. However, as an inbound proxy, the SIP
server opens a connection in active mode, requesting a new connection to the UAS, while it closes TCP connections
in passive mode, based on TCP close requests from the UAS. In our configuration, since the UAS closes a TCP
connection after each transaction, the SIP server as an inbound proxy operates similarly to the transaction-based TCP.
This configuration between the SIP server and the UAS might make unclear the difference among the TCP connection
lifetimes between the SIP server and the UAC. However, we could see the largest impact of transaction-based TCP for
a SIP server compared to UDP.

5.5 Results ofINVITE-200 OK test

Figure 17 shows that the sustainable request rate for all TCPcases is at 700 requests/second and that for UDP is at
900 requests/second. Both sustainable rates are only approximately 17 percent of those for the registration tests, since
the call test sequence contains seven times as many SIP messages as the registration sequence, and additional TCP
connections between the SIP server and the UAS as compared inTable 1. However, this sustainable request rate, 700

8

requests/second, is much above the requirement in our traffic model, 167 requests/second in Section 3.2. Also for
the requirement including mid-dialog requests, this sustainable rate, which is translated to 1,400 requests/second by
addingBYE requests, is above the requirement, 833 requests/seconds.

Figures 18 and 19 show that the success rate, CPU time and memory usage as a function of throughput for the
SIP server, for persistent TCP and for UDP, respectively. For persistent TCP, the success rate drops dramatically to
seven percent above 700 requests/second. On the other hand,for UDP, the success rate gradually decreased above 900
requests/second. We omit presenting the results for transaction-based and dialog-based TCP, since they are similar to
that for persistent TCP. This is probably because the SIP server performs as an inbound proxy for transaction-based
TCP for all the three cases.

As we discussed in the results of the registration test, we have determined that this drop of the success rate is not
caused by exhausting system resources e.g., CPU or memory, but caused by the overload control at sipd. Figures 18
and 19 shows that CPU utilization is still below 40 percent and virtual memory consumes at most 1,050 MB, which are
slightly more than the registration test. When the success rate drops, sipd produced warning messages saying dropping
93 percent of requests by the overload control.

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400

tr
an

sa
ct

io
n

re
sp

on
se

 ti
m

e
(m

s)

sending rate (requests/second)

TCP transaction
TCP dialog

TCP persistence
UDP

Figure 17: Transaction response times as a function of sending rate forINVITE-200 OK test

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

su
cc

es
s

ra
te

 o
r

C
P

U
 u

sa
ge

 (
%

)

R
S

S
 o

r
V

S
Z

 (
M

B
)

requests/second

success rate
CPU
RSS
VSZ

Figure 18: Success rate, CPU utilization and memory usage
for INVITE-200 OK test: persistent TCP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

su
cc

es
s

ra
te

 o
r

C
P

U
 u

sa
ge

 (
%

)

R
S

S
 o

r
V

S
Z

 (
M

B
)

requests/second

success rate
CPU
RSS
VSZ

Figure 19: Success rate, CPU utilization and memory usage
for INVITE-200 OK test: UDP

6 Component Tests
From the results of the SIP measurement, we have determined that the major cause of the difference in the sustainable
request rate between TCP and UDP is message processing in a thread-pool model, rather than socket handling. Also,

9

we have determined the overload control for the SIP server works worse for TCP than for UDP.
Since TCP is a connection-oriented protocol, the SIP serverneeds to handle control messages for the connections,

such as TCP open and close requests. This requires more messages to be handled. Also, since TCP transfers byte-
stream data, the SIP server needs to find the end of the messageby parsing. This requires longer thread lifetime
that causes lower throughput. Furthermore, this makes overload control harder, since it disables sorting messages
by parsing the first line of the message before parsing the whole message. To confirm these analysis, we performed
component tests to focus on message processing.

6.1 Message Processing Test

We performed theREGISTER-200 OK tests as a white-box test, i.e., measuring the called times and the elapsed
time of the functions involved in message processing. To avoid the influence of queuing, we set the load low to 10
requests/second, and ran the test for 10 seconds.

Figure 20 compares the number of function calls and new threads required for sipd to process aREGISTER
message. The base thread, not a new thread, processes sockets, e.g., calling theaccept() system call to create a
new connection. For TCP, a new thread reads butter and parsesa message. Transaction-based TCP requires most
function calls for processing sockets, and most threads forreading buffers, since it receivesTCP-SYN and FIN.
Although receivingTCP-SYN does not require to read buffer,FIN require to read a zero-sized buffer. Persistent
TCP with open requires the second most function calls since it receivesTCP-SYN. For UDP, on the other hand, the
base thread reads buffer and parses the first line to sort messages for the overload control, then a new thread parses a
message again for SIP operations. This makes the overall elapsed time for UDP slightly longer than that for persistent
TCP as seen in Figure 21, although persistent TCP and UDP require the same number of function calls and threads.

However, the elapsed time for reading and sorting messages for the overload control for UDP is one forth of that
for persistent TCP, since sorting message for UDP limits thenumber of lines to be parsed to one. Furthermore, the
elapse time for parsing message by a new thread is slightly shorter for UDP than for persistent TCP, since reading
buffer has already been processed by the base thread for UDP.Therefore, we can determine that these two differences
cause the better sustainable rate for UDP than for persistent TCP in the registration test, although these differences in
the thread lifetime is much smaller that the elapsed time of SIP operation, which dominate in the elapsed time. The
cost of sorting message for the overload control makes the SIP server performance significantly worse for TCP at high
loads.

 0

 2

 4

 6

 8

 10

transaction
-based TCP

persistent
TCP w/open

persistent
TCP

UDP
 0

 2

 4

 6

 8

 10

nu
m

be
r

of
 fu

nc
tio

n
ca

lls

nu
m

be
r

of
 th

re
ad

s

process socket (and reading for UDP)
parsing msg (and reading for TCP)

SIP operation

Figure 20: Number of function calls and threads for reading
and parsing aREGISTER message

 0

 0.2

 0.4

 0.6

 0.8

 1

transaction
-based TCP

persistent
TCP w/open

persistent
TCP

UDP

el
ap

se
d

tim
e

(m
s)

0.070
/1

0.068
/1

0.068
/1 0.016

/0

processing socket (and reading for UDP)
parsing msg (and reading for TCP)

SIP operation
sorting msg for overload control /#thread

Figure 21: Elapsed time for reading and parsing aREGIS-
TER message

7 Suggestions for Reducing the Impact of TCP on a SIP Server
Under our target traffic model, we can conclude that the impact of TCP on the scalability of a SIP server is relatively
small, since it only includes the setup delay for the TCP three-way handshake and 690 MB of kernel memory for
300,000 concurrent TCP connections. However, as HTTP/1.1 defines persistent TCP to improve the HTTP server
performance, persistent TCP is also recommended to avoid unnecessary the setup delay for a SIP server.

10

Under heavy loads, however, persistent TCP is not efficient enough to compete with the sustainable rate for UDP,
since a SIP server falls to overload condition earlier than using UDP. We suggest some approaches to reduce the impact
under heavy load.

7.1 Accelerating Parsing for Overload Control

We first suggest that the SIP server sort messages by parsing the first-line of a buffered message without determining
the exact message boundary. As found in Section 6, the sorting message for UDP, which is by parsing the first line of
the message is much lighter than that for TCP. The speeding upof sorting messages can make it easy to process the
overload control for the SIP server.

Although this sorting is accurate not for all messages, it works mostly. The messages with a higher priority for the
overload control, i.e., responses andBYE request, are relatively short in size. Thus, the message is unlikely to be sent
partially. As a result, the size of receiving buffer to be read by user applications is usually large enough to buffer a SIP
message at once. Thus, with a high possibility, the SIP server can parse the first line without determining the message
size by parsing theContent-Length header. Even if the SIP server cannot determine the message type because of
partial delivery or bundled delivery, the server can simplydrop such a message fragment under overload.

Another suggestion is that a function required for the overload control, such as sorting messages, be processed by
the base thread that does not need to wait for an additional thread. This is only applicable in a thread-pool model.

Furthermore, the software architecture should handle manyconcurrent requests efficiently. Rather than the thread-
pool model like our environment, a small set of multiple processes running a single thread each is more appropriate to
avoid causing large queuing delay and unnecessary context-switching.

8 Conclusions and Future Work
We have shown measurement results to clarify the impact of TCP on SIP server scalability and performance. Choosing
TCP requires 2.3 KB of kernel memory per TCP connection and additional CPU cycles mainly for the TCP handshake.
Establishing TCP connections causes a setup delay of 0.2 ms in our environment, while maintaining TCP connections
only consumes kernel memory. The impact on the response timeis not significant under our target traffic model.

However, under heavy loads, e.g., 700 requests/second for the call test, the major impact is on the performance
and on the success rate. The response time exponentially increases around the sustainable rate. This increase is caused
by queuing delay in the thread pool model, when thread queuesexceeds the maximum length. To avoid this, the
software architecture should be selected to achieve a largenumber of concurrent requests. Above the sustainable rate,
the success rate drops steeply by the overload control for the SIP server. From the results of the component tests, we
suggest to speed up message parsing to ease overload controlfor a SIP server.

We will measure the impact of choosing SCTP (Stream Control Transmission Protocol), which is defined as a
transport protocol for SIP, on server scalability. Since this new transport protocol seems more complicated than TCP,
it would be important to clarify the impact of sustainable connections.

References
[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and E. Schooler.

SIP: Session Initiation Protocol. RFC 3261, IETF, June 2002.

[2] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and
V. Paxson. Stream Control Transmission Protocol. RFC 2960,IETF, October 2000.

[3] Lucent-Alcatel. Lucent Technologies new high-capacity switch accelerates cost-effective migration to Internet
Protocol networks (news release).http://www.alcatel-lucent.com/, December 2002.

[4] D. Kegel. The C10K problem.http://www.kegel.com/c10k.html (accessed in January 2006).

[5] D. Libenzi. Improving (network) I/O performance.http://www.xmailserver.org/linux-patch
es/nio-improve.html (accessed in January, 2006).

[6] K. Shemyak and K. Vehmanen. Scalability of TCP Servers, Handling Persistent Connections. Technical report,
April 2007.

[7] K. Singh and H. Schulzrinne. Failover and Load Sharing inSIP Telephony. InInternational Symposium on
Performance Evaluation of Computer and TelecommunicationSystems (SPECTS), July 2005.

11

[8] M. Welsh, D. Culler, and E. Brewer. SEDA: An Architecturefor Well-Conditioned, Scalable Internet Services.
In the Eighteenth Symposium on Operating Systems Principles (SOSP-18), October 2001.

[9] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol – HTTP/1.0. RFC 1945, IETF, May
1996.

[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext Transfer
Protocol – HTTP/1.1. RFC 2616, IETF, June 1999.

[11] H.F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux, H. Lie, and C. Lilley. Network Performance Effects
of HTTP/1.1, CSS1, and PNG. September 1997.

[12] C. Jennings and R. Mahy. Managing Client Initiated Connections in
the Session Initiation Protocol(SIP). Internet-draft, IETF, November 2007.
http://www.ietf.org/internet-drafts/draft-ietf-sip-outbound-11.txt.

[13] H. Schulzrinne. Cinema:sipd.http://www.cs.columbia.edu/IRT/cinema.

[14] S. Narayanan, A Yu, T Kapoor, and H. Schulzrinne. Sipstone test suite.
http://www.cs.columbia.edu/IRT/cinema/sipstone.

A Comparison of System Calls to Wait for Events
We used theepoll() system call to wait for events, instead of thepoll() or select() system call. This is
because theepoll() system call is the most scalable.

Theselect() system call has an upper limit on the file descriptor set size of 1,024, while user applications
increase an upper limit for thepoll() system call. Theepoll() system call is more scalable than thepoll()
system call for the following reasons.

Separated interface

Both ofpoll() andselect() provide a combined interface for setting up the polling listand for retrieving events.
Theepoll() system call separates interfaces for each,epoll create(), epoll wait() andepoll ctl(),
so that the system can build efficient data structure in kernel and user spaces.

Theepoll() system call is only for Linux, but similar system calls existfor other OS, such askqueue() for
FreeBSD or/dev/poll for Solaris.

Theepoll create() system call builds the persistent data structure for a set ofpolling file descriptors only in
kernel space, while thepoll() system call builds the interest sets both in kernel and user space.

Efficient event retrieval

After the epoll ctl() system call adds or removes a polling file descriptor from theset, theepoll wait()
system call waits for events with preparing a data structurein user space for retrieving events. The data structure in
user space is much shorter list than that forpoll(), since theepoll wait() can set the list only for the number
of events to be handled at once.

When an event occurs on a file descriptor, the kernel sets the event at the top of the list, while the kernel using
poll() sets it corresponding to the prepared file descriptor. Then,a user application scans the list to find the new
event from the top. Thus, user applications usingepoll() can find the event more efficiently than that usingpoll()
that needs to scan the full list. Therefore,epoll() system calls improves I/O performance.

B System Configurations

B.1 Server Configurations

The following command line increases the number of file descriptors in the system;

% echo 1048576 > /proc/sys/fs/file-max

1,048,576 (= 1024*1024) is the system limit defined as a constant,NR FILE in include/linux/fs.h. To
increase this limit when enough memory is installed, we needto modify and recompile the kernel.
To change the/proc/sys parameters at boot time, we need to add them to/etc/sysctl.conf as follows:

12

fs.file-max=1048576

Theulimit command can be used to increase the number of file descriptorsper process:

% ulimit -n 1000000

To allow a remote shell to access a large number of file descriptors for our measurement, we need to specify the user
name and the parameter in/etc/security/limits.conf:

special_user soft nofile 1000000
special_user hard nofile 1000000

To allow a remote shell to access a larger number of file descriptors via ssh, we need to restartsshd in /etc/rc.local:

% ulimit -n 1000000
% /etc/rc.d/init.d/sshd restart

The memory space for TCP socket buffer is configured as follows:

net.ipv4.tcp_rmem = 4096 87380 174760
net.ipv4.tcp_wmem = 4096 16384 131072
net.ipv4.tcp_mem = 98304 131072 196608

These parameters are automatically configured at boot time based on available memory as well as TCP established
and bind hash table entries. We can see the variables at boot log in/var/sys/message:

kernel: TCP established hash table entries: 524288 (order: 10, 4194304 bytes)
kernel: TCP bind hash table entries: 65536 (order: 7, 524288 bytes)
kernel: TCP: Hash tables configured (established 524288 bind 65536)

B.2 Client Configurations

To increase the number of file descriptors for a shell, we again use theulimt command:

% ulimit -n 60000

To increase the range of local ports, we modify theip local port range file:

% echo 10000 65535 > /proc/sys/net/ipv4/ip_local_port_range

C Measurement Tools
We monitored our measurement metrics every second by the following tools. We monitored the “inuse” field to mea-
sure the number of TCP connections, and the “mem” field to monitor the allocated pages for TCP socket buffers in
/proc/net/sockstat file at server. We used thefree command to measure the total memory usage at server,
andslabinfo command to measure slab cache. We measured the response timeand elapsed time by adding the
timestamps at programs,gettimeofday(). For accuracy, we subtracted the overhead of callinggettimeofday().
To monitor how many resources an application consumes, we measured CPU utilization with thetop command, and
memory usage, RSS (resident set size) and VSZ (virtual memory size), with theps command.

13

