8,906 research outputs found

    On globally sparse Ramsey graphs

    Full text link
    We say that a graph GG has the Ramsey property w.r.t.\ some graph FF and some integer r2r\geq 2, or GG is (F,r)(F,r)-Ramsey for short, if any rr-coloring of the edges of GG contains a monochromatic copy of FF. R{\"o}dl and Ruci{\'n}ski asked how globally sparse (F,r)(F,r)-Ramsey graphs GG can possibly be, where the density of GG is measured by the subgraph HGH\subseteq G with the highest average degree. So far, this so-called Ramsey density is known only for cliques and some trivial graphs FF. In this work we determine the Ramsey density up to some small error terms for several cases when FF is a complete bipartite graph, a cycle or a path, and r2r\geq 2 colors are available

    Combinatorial theorems relative to a random set

    Get PDF
    We describe recent advances in the study of random analogues of combinatorial theorems.Comment: 26 pages. Submitted to Proceedings of the ICM 201

    Properly coloured copies and rainbow copies of large graphs with small maximum degree

    Full text link
    Let G be a graph on n vertices with maximum degree D. We use the Lov\'asz local lemma to show the following two results about colourings c of the edges of the complete graph K_n. If for each vertex v of K_n the colouring c assigns each colour to at most (n-2)/22.4D^2 edges emanating from v, then there is a copy of G in K_n which is properly edge-coloured by c. This improves on a result of Alon, Jiang, Miller, and Pritikin [Random Struct. Algorithms 23(4), 409-433, 2003]. On the other hand, if c assigns each colour to at most n/51D^2 edges of K_n, then there is a copy of G in K_n such that each edge of G receives a different colour from c. This proves a conjecture of Frieze and Krivelevich [Electron. J. Comb. 15(1), R59, 2008]. Our proofs rely on a framework developed by Lu and Sz\'ekely [Electron. J. Comb. 14(1), R63, 2007] for applying the local lemma to random injections. In order to improve the constants in our results we use a version of the local lemma due to Bissacot, Fern\'andez, Procacci, and Scoppola [preprint, arXiv:0910.1824].Comment: 9 page

    On small Mixed Pattern Ramsey numbers

    Full text link
    We call the minimum order of any complete graph so that for any coloring of the edges by kk colors it is impossible to avoid a monochromatic or rainbow triangle, a Mixed Ramsey number. For any graph HH with edges colored from the above set of kk colors, if we consider the condition of excluding HH in the above definition, we produce a \emph{Mixed Pattern Ramsey number}, denoted Mk(H)M_k(H). We determine this function in terms of kk for all colored 44-cycles and all colored 44-cliques. We also find bounds for Mk(H)M_k(H) when HH is a monochromatic odd cycles, or a star for sufficiently large kk. We state several open questions.Comment: 16 page

    Ramsey properties of randomly perturbed graphs: cliques and cycles

    Full text link
    Given graphs H1,H2H_1,H_2, a graph GG is (H1,H2)(H_1,H_2)-Ramsey if for every colouring of the edges of GG with red and blue, there is a red copy of H1H_1 or a blue copy of H2H_2. In this paper we investigate Ramsey questions in the setting of randomly perturbed graphs: this is a random graph model introduced by Bohman, Frieze and Martin in which one starts with a dense graph and then adds a given number of random edges to it. The study of Ramsey properties of randomly perturbed graphs was initiated by Krivelevich, Sudakov and Tetali in 2006; they determined how many random edges must be added to a dense graph to ensure the resulting graph is with high probability (K3,Kt)(K_3,K_t)-Ramsey (for t3t\ge 3). They also raised the question of generalising this result to pairs of graphs other than (K3,Kt)(K_3,K_t). We make significant progress on this question, giving a precise solution in the case when H1=KsH_1=K_s and H2=KtH_2=K_t where s,t5s,t \ge 5. Although we again show that one requires polynomially fewer edges than in the purely random graph, our result shows that the problem in this case is quite different to the (K3,Kt)(K_3,K_t)-Ramsey question. Moreover, we give bounds for the corresponding (K4,Kt)(K_4,K_t)-Ramsey question; together with a construction of Powierski this resolves the (K4,K4)(K_4,K_4)-Ramsey problem. We also give a precise solution to the analogous question in the case when both H1=CsH_1=C_s and H2=CtH_2=C_t are cycles. Additionally we consider the corresponding multicolour problem. Our final result gives another generalisation of the Krivelevich, Sudakov and Tetali result. Specifically, we determine how many random edges must be added to a dense graph to ensure the resulting graph is with high probability (Cs,Kt)(C_s,K_t)-Ramsey (for odd s5s\ge 5 and t4t\ge 4).Comment: 24 pages + 12-page appendix; v2: cited independent work of Emil Powierski, stated results for cliques in graphs of low positive density separately (Theorem 1.6) for clarity; v3: author accepted manuscript, to appear in CP

    Ramsey numbers of Berge-hypergraphs and related structures

    Get PDF
    For a graph G=(V,E)G=(V,E), a hypergraph H\mathcal{H} is called a Berge-GG, denoted by BGBG, if there exists a bijection f:E(G)E(H)f: E(G) \to E(\mathcal{H}) such that for every eE(G)e \in E(G), ef(e)e \subseteq f(e). Let the Ramsey number Rr(BG,BG)R^r(BG,BG) be the smallest integer nn such that for any 22-edge-coloring of a complete rr-uniform hypergraph on nn vertices, there is a monochromatic Berge-GG subhypergraph. In this paper, we show that the 2-color Ramsey number of Berge cliques is linear. In particular, we show that R3(BKs,BKt)=s+t3R^3(BK_s, BK_t) = s+t-3 for s,t4s,t \geq 4 and max(s,t)5\max(s,t) \geq 5 where BKnBK_n is a Berge-KnK_n hypergraph. For higher uniformity, we show that R4(BKt,BKt)=t+1R^4(BK_t, BK_t) = t+1 for t6t\geq 6 and Rk(BKt,BKt)=tR^k(BK_t, BK_t)=t for k5k \geq 5 and tt sufficiently large. We also investigate the Ramsey number of trace hypergraphs, suspension hypergraphs and expansion hypergraphs.Comment: Updated to include suggestions of the refere

    Graph removal lemmas

    Get PDF
    The graph removal lemma states that any graph on n vertices with o(n^{v(H)}) copies of a fixed graph H may be made H-free by removing o(n^2) edges. Despite its innocent appearance, this lemma and its extensions have several important consequences in number theory, discrete geometry, graph theory and computer science. In this survey we discuss these lemmas, focusing in particular on recent improvements to their quantitative aspects.Comment: 35 page
    corecore