6,549 research outputs found

    Reconstruction of piecewise constant layered conductivities in electrical impedance tomography

    Get PDF
    This work presents a new constructive uniqueness proof for Calder\'on's inverse problem of electrical impedance tomography, subject to local Cauchy data, for a large class of piecewise constant conductivities that we call "piecewise constant layered conductivities" (PCLC). The resulting reconstruction method only relies on the physically intuitive monotonicity principles of the local Neumann-to-Dirichlet map, and therefore the method lends itself well to efficient numerical implementation and generalization to electrode models. Several direct reconstruction methods exist for the related problem of inclusion detection, however they share the property that "holes in inclusions" or "inclusions-within-inclusions" cannot be determined. One such method is the monotonicity method of Harrach, Seo, and Ullrich, and in fact the method presented here is a modified variant of the monotonicity method which overcomes this problem. More precisely, the presented method abuses that a PCLC type conductivity can be decomposed into nested layers of positive and/or negative perturbations that, layer-by-layer, can be determined via the monotonicity method. The conductivity values on each layer are found via basic one-dimensional optimization problems constrained by monotonicity relations.Comment: 12 pages, 1 figur

    Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography

    Get PDF
    The inverse problem of electrical impedance tomography is severely ill-posed, meaning that, only limited information about the conductivity can in practice be recovered from boundary measurements of electric current and voltage. Recently it was shown that a simple monotonicity property of the related Neumann-to-Dirichlet map can be used to characterize shapes of inhomogeneities in a known background conductivity. In this paper we formulate a monotonicity-based shape reconstruction scheme that applies to approximative measurement models, and regularizes against noise and modelling error. We demonstrate that for admissible choices of regularization parameters the inhomogeneities are detected, and under reasonable assumptions, asymptotically exactly characterized. Moreover, we rigorously associate this result with the complete electrode model, and describe how a computationally cheap monotonicity-based reconstruction algorithm can be implemented. Numerical reconstructions from both simulated and real-life measurement data are presented

    Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations

    Get PDF
    One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology

    A Hybrid High-Order method for nonlinear elasticity

    Full text link
    In this work we propose and analyze a novel Hybrid High-Order discretization of a class of (linear and) nonlinear elasticity models in the small deformation regime which are of common use in solid mechanics. The proposed method is valid in two and three space dimensions, it supports general meshes including polyhedral elements and nonmatching interfaces, enables arbitrary approximation order, and the resolution cost can be reduced by statically condensing a large subset of the unknowns for linearized versions of the problem. Additionally, the method satisfies a local principle of virtual work inside each mesh element, with interface tractions that obey the law of action and reaction. A complete analysis covering very general stress-strain laws is carried out, and optimal error estimates are proved. Extensive numerical validation on model test problems is also provided on two types of nonlinear models.Comment: 29 pages, 7 figures, 4 table

    Monotonicity and local uniqueness for the Helmholtz equation

    Full text link
    This work extends monotonicity-based methods in inverse problems to the case of the Helmholtz (or stationary Schr\"odinger) equation (Δ+k2q)u=0(\Delta + k^2 q) u = 0 in a bounded domain for fixed non-resonance frequency k>0k>0 and real-valued scattering coefficient function qq. We show a monotonicity relation between the scattering coefficient qq and the local Neumann-Dirichlet operator that holds up to finitely many eigenvalues. Combining this with the method of localized potentials, or Runge approximation, adapted to the case where finitely many constraints are present, we derive a constructive monotonicity-based characterization of scatterers from partial boundary data. We also obtain the local uniqueness result that two coefficient functions q1q_1 and q2q_2 can be distinguished by partial boundary data if there is a neighborhood of the boundary where q1≥q2q_1\geq q_2 and q1≢q2q_1\not\equiv q_2

    Efficient implementation of finite volume methods in Numerical Relativity

    Full text link
    Centered finite volume methods are considered in the context of Numerical Relativity. A specific formulation is presented, in which third-order space accuracy is reached by using a piecewise-linear reconstruction. This formulation can be interpreted as an 'adaptive viscosity' modification of centered finite difference algorithms. These points are fully confirmed by 1D black-hole simulations. In the 3D case, evidence is found that the use of a conformal decomposition is a key ingredient for the robustness of black hole numerical codes.Comment: Revised version, 10 pages, 6 figures. To appear in Phys. Rev.

    Enhanced Lasso Recovery on Graph

    Get PDF
    This work aims at recovering signals that are sparse on graphs. Compressed sensing offers techniques for signal recovery from a few linear measurements and graph Fourier analysis provides a signal representation on graph. In this paper, we leverage these two frameworks to introduce a new Lasso recovery algorithm on graphs. More precisely, we present a non-convex, non-smooth algorithm that outperforms the standard convex Lasso technique. We carry out numerical experiments on three benchmark graph datasets
    • …
    corecore