4,036 research outputs found

    Clustering of Local Optima in Combinatorial Fitness Landscapes

    Get PDF
    Using the recently proposed model of combinatorial landscapes: local optima networks, we study the distribution of local optima in two classes of instances of the quadratic assignment problem. Our results indicate that the two problem instance classes give rise to very different configuration spaces. For the so-called real-like class, the optima networks possess a clear modular structure, while the networks belonging to the class of random uniform instances are less well partitionable into clusters. We briefly discuss the consequences of the findings for heuristically searching the corresponding problem spaces.Comment: Learning and Intelligent OptimizatioN Conference (LION 5), Rome : Italy (2011

    Local Optima Networks, Landscape Autocorrelation and Heuristic Search Performance

    Get PDF
    Chicano, F., Daolio F., Ochoa G., Vérel S., Tomassini M., & Alba E. (2012). Local Optima Networks, Landscape Autocorrelation and Heuristic Search Performance. (Coello, C. A. Coello, Cutello V., Deb K., Forrest S., Nicosia G., & Pavone M., Ed.).Parallel Problem Solving from Nature - PPSN XII - 12th International Conference, Taormina, Italy, September 1-5, 2012, Proceedings, Part II. 337–347.Recent developments in fitness landscape analysis include the study of Local Optima Networks (LON) and applications of the Elementary Landscapes theory. This paper represents a first step at combining these two tools to explore their ability to forecast the performance of search algorithms. We base our analysis on the Quadratic Assignment Problem (QAP) and conduct a large statistical study over 600 generated instances of different types. Our results reveal interesting links between the network measures, the autocorrelation measures and the performance of heuristic search algorithms.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Spanish Ministry of Science and Innovation and FEDER under contract TIN2011-28194. Andalusian Government under contract P07-TIC-03044. Swiss National Science Foundation for financial support under grant number 200021-124578

    Multifractality and Dimensional Determinism in Local Optima Networks

    Get PDF
    We conduct a study of networks of local optimas in a search space using fractal dimensions. The fractal dimension (FD) of these networks is a complexity index which assigns a non-integer dimension to an object. We propose a fine-grained approach to obtaining the FD of LONs, using the probabilistic search transitions encoded in LON edge weights. We then apply multi-fractal calculations to LONs for the first time, comparing with mono-fractal analysis. For complex systems such as LONs, the dimensionality may be different between two sub-systems and multi-fractal analysis is needed. Here we focus on the Quadratic Assignment Problem (QAP), conducting fractal analyses on sampled LONs of reasonable size for the first time. We also include fully enumerated LONs of smaller size. Our results show that local optima spaces can be multi-fractal and that valuable information regarding stochastic self-similarity is encoded in the edge weights of local optima networks. Links are drawn between these phenomena and the performance of two competitive metaheuristic algorithms

    Comparing Communities of Optima with Funnels in Combinatorial Fitness Landscapes

    Get PDF
    The existence of sub-optimal funnels in combinatorial fitness landscapes has been linked to search difficulty. The exact nature of these structures — and how commonly they appear — is not yet fully understood. Improving our understanding of funnels could help with designing effective diversification mechanisms for a ‘smoothing’ effect, making optimisation easier. We model fitness landscapes as local optima networks. The relationship between communities of local optima found by network clustering algorithms and funnels is explored. Funnels are identified using the notion of monotonic sequences from the study of energy landscapes in theoretical chemistry. NK Landscapes and the Quadratic Assignment Problem are used as case studies. Our results show that communities are linked to funnels. The analysis exhibits relationships between these landscape structures and the performance of trajectory-based metaheuristics such as Simulated Annealing (SA) and Iterated Local Search (ILS). In particular, ILS gets trapped in funnels, and modular communities of optima slow it down. The funnels contribute to lower success for SA. We show that increasing the strength of ILS perturbation helps to ‘smooth’ the funnels and improves performance in multi-funnel landscapes.Authors listed as ECOM Trac

    Multi-layer local optima networks for the analysis of advanced local search-based algorithms

    Full text link
    A Local Optima Network (LON) is a graph model that compresses the fitness landscape of a particular combinatorial optimization problem based on a specific neighborhood operator and a local search algorithm. Determining which and how landscape features affect the effectiveness of search algorithms is relevant for both predicting their performance and improving the design process. This paper proposes the concept of multi-layer LONs as well as a methodology to explore these models aiming at extracting metrics for fitness landscape analysis. Constructing such models, extracting and analyzing their metrics are the preliminary steps into the direction of extending the study on single neighborhood operator heuristics to more sophisticated ones that use multiple operators. Therefore, in the present paper we investigate a twolayer LON obtained from instances of a combinatorial problem using bitflip and swap operators. First, we enumerate instances of NK-landscape model and use the hill climbing heuristic to build the corresponding LONs. Then, using LON metrics, we analyze how efficiently the search might be when combining both strategies. The experiments show promising results and demonstrate the ability of multi-layer LONs to provide useful information that could be used for in metaheuristics based on multiple operators such as Variable Neighborhood Search.Comment: Accepted in GECCO202
    corecore