8,460 research outputs found

    Reconstruction of piecewise constant layered conductivities in electrical impedance tomography

    Get PDF
    This work presents a new constructive uniqueness proof for Calder\'on's inverse problem of electrical impedance tomography, subject to local Cauchy data, for a large class of piecewise constant conductivities that we call "piecewise constant layered conductivities" (PCLC). The resulting reconstruction method only relies on the physically intuitive monotonicity principles of the local Neumann-to-Dirichlet map, and therefore the method lends itself well to efficient numerical implementation and generalization to electrode models. Several direct reconstruction methods exist for the related problem of inclusion detection, however they share the property that "holes in inclusions" or "inclusions-within-inclusions" cannot be determined. One such method is the monotonicity method of Harrach, Seo, and Ullrich, and in fact the method presented here is a modified variant of the monotonicity method which overcomes this problem. More precisely, the presented method abuses that a PCLC type conductivity can be decomposed into nested layers of positive and/or negative perturbations that, layer-by-layer, can be determined via the monotonicity method. The conductivity values on each layer are found via basic one-dimensional optimization problems constrained by monotonicity relations.Comment: 12 pages, 1 figur

    Monotonicity Analysis over Chains and Curves

    Get PDF
    Chains are vector-valued signals sampling a curve. They are important to motion signal processing and to many scientific applications including location sensors. We propose a novel measure of smoothness for chains curves by generalizing the scalar-valued concept of monotonicity. Monotonicity can be defined by the connectedness of the inverse image of balls. This definition is coordinate-invariant and can be computed efficiently over chains. Monotone curves can be discontinuous, but continuous monotone curves are differentiable a.e. Over chains, a simple sphere-preserving filter shown to never decrease the degree of monotonicity. It outperforms moving average filters over a synthetic data set. Applications include Time Series Segmentation, chain reconstruction from unordered data points, Optical Character Recognition, and Pattern Matching.Comment: to appear in Proceedings of Curves and Surfaces 200

    High-order conservative finite difference GLM-MHD schemes for cell-centered MHD

    Get PDF
    We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. (J. Comput. Phys. 175 (2002) 645-673). The resulting family of schemes is robust, cost-effective and straightforward to implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms. Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computations involving both smooth and discontinuous features.Comment: 32 pages, 14 figure, submitted to Journal of Computational Physics (Aug 7 2009

    Efficient implementation of finite volume methods in Numerical Relativity

    Full text link
    Centered finite volume methods are considered in the context of Numerical Relativity. A specific formulation is presented, in which third-order space accuracy is reached by using a piecewise-linear reconstruction. This formulation can be interpreted as an 'adaptive viscosity' modification of centered finite difference algorithms. These points are fully confirmed by 1D black-hole simulations. In the 3D case, evidence is found that the use of a conformal decomposition is a key ingredient for the robustness of black hole numerical codes.Comment: Revised version, 10 pages, 6 figures. To appear in Phys. Rev.
    • …
    corecore