223 research outputs found

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning

    Zero-Shot Sketch-Image Hashing

    Get PDF
    Recent studies show that large-scale sketch-based image retrieval (SBIR) can be efficiently tackled by cross-modal binary representation learning methods, where Hamming distance matching significantly speeds up the process of similarity search. Providing training and test data subjected to a fixed set of pre-defined categories, the cutting-edge SBIR and cross-modal hashing works obtain acceptable retrieval performance. However, most of the existing methods fail when the categories of query sketches have never been seen during training. In this paper, the above problem is briefed as a novel but realistic zero-shot SBIR hashing task. We elaborate the challenges of this special task and accordingly propose a zero-shot sketch-image hashing (ZSIH) model. An end-to-end three-network architecture is built, two of which are treated as the binary encoders. The third network mitigates the sketch-image heterogeneity and enhances the semantic relations among data by utilizing the Kronecker fusion layer and graph convolution, respectively. As an important part of ZSIH, we formulate a generative hashing scheme in reconstructing semantic knowledge representations for zero-shot retrieval. To the best of our knowledge, ZSIH is the first zero-shot hashing work suitable for SBIR and cross-modal search. Comprehensive experiments are conducted on two extended datasets, i.e., Sketchy and TU-Berlin with a novel zero-shot train-test split. The proposed model remarkably outperforms related works.Comment: Accepted as spotlight at CVPR 201

    Texture Synthesis Guided Deep Hashing for Texture Image Retrieval

    Full text link
    With the large-scale explosion of images and videos over the internet, efficient hashing methods have been developed to facilitate memory and time efficient retrieval of similar images. However, none of the existing works uses hashing to address texture image retrieval mostly because of the lack of sufficiently large texture image databases. Our work addresses this problem by developing a novel deep learning architecture that generates binary hash codes for input texture images. For this, we first pre-train a Texture Synthesis Network (TSN) which takes a texture patch as input and outputs an enlarged view of the texture by injecting newer texture content. Thus it signifies that the TSN encodes the learnt texture specific information in its intermediate layers. In the next stage, a second network gathers the multi-scale feature representations from the TSN's intermediate layers using channel-wise attention, combines them in a progressive manner to a dense continuous representation which is finally converted into a binary hash code with the help of individual and pairwise label information. The new enlarged texture patches also help in data augmentation to alleviate the problem of insufficient texture data and are used to train the second stage of the network. Experiments on three public texture image retrieval datasets indicate the superiority of our texture synthesis guided hashing approach over current state-of-the-art methods.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV), 2019 Video Presentation: https://www.youtube.com/watch?v=tXaXTGhzaJ

    Semantically Tied Paired Cycle Consistency for Zero-Shot Sketch-based Image Retrieval

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordZero-shot sketch-based image retrieval (SBIR) is an emerging task in computer vision, allowing to retrieve natural images relevant to sketch queries that might not been seen in the training phase. Existing works either require aligned sketch-image pairs or inefficient memory fusion layer for mapping the visual information to a semantic space. In this work, we propose a semantically aligned paired cycle-consistent generative (SEM-PCYC) model for zero-shot SBIR, where each branch maps the visual information to a common semantic space via an adversarial training. Each of these branches maintains a cycle consistency that only requires supervision at category levels, and avoids the need of highly-priced aligned sketch-image pairs. A classification criteria on the generators' outputs ensures the visual to semantic space mapping to be discriminating. Furthermore, we propose to combine textual and hierarchical side information via a feature selection auto-encoder that selects discriminating side information within a same end-to-end model. Our results demonstrate a significant boost in zero-shot SBIR performance over the state-of-the-art on the challenging Sketchy and TU-Berlin datasets.European Union Horizon 202
    corecore