951 research outputs found

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    Towards Large-Scale Small Object Detection: Survey and Benchmarks

    Full text link
    With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24828 high-quality traffic images and 278433 instances of nine categories. For SODA-A, we harvest 2513 high resolution aerial images and annotate 872069 instances over nine classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field. Datasets and codes are available at: \url{https://shaunyuan22.github.io/SODA}

    Vehicle Detection of Multi-source Remote Sensing Data Using Active Fine-tuning Network

    Get PDF
    Vehicle detection in remote sensing images has attracted increasing interest in recent years. However, its detection ability is limited due to lack of well-annotated samples, especially in densely crowded scenes. Furthermore, since a list of remotely sensed data sources is available, efficient exploitation of useful information from multi-source data for better vehicle detection is challenging. To solve the above issues, a multi-source active fine-tuning vehicle detection (Ms-AFt) framework is proposed, which integrates transfer learning, segmentation, and active classification into a unified framework for auto-labeling and detection. The proposed Ms-AFt employs a fine-tuning network to firstly generate a vehicle training set from an unlabeled dataset. To cope with the diversity of vehicle categories, a multi-source based segmentation branch is then designed to construct additional candidate object sets. The separation of high quality vehicles is realized by a designed attentive classifications network. Finally, all three branches are combined to achieve vehicle detection. Extensive experimental results conducted on two open ISPRS benchmark datasets, namely the Vaihingen village and Potsdam city datasets, demonstrate the superiority and effectiveness of the proposed Ms-AFt for vehicle detection. In addition, the generalization ability of Ms-AFt in dense remote sensing scenes is further verified on stereo aerial imagery of a large camping site

    Automated High-resolution Earth Observation Image Interpretation: Outcome of the 2020 Gaofen Challenge

    Get PDF
    In this article, we introduce the 2020 Gaofen Challenge and relevant scientific outcomes. The 2020 Gaofen Challenge is an international competition, which is organized by the China High-Resolution Earth Observation Conference Committee and the Aerospace Information Research Institute, Chinese Academy of Sciences and technically cosponsored by the IEEE Geoscience and Remote Sensing Society and the International Society for Photogrammetry and Remote Sensing. It aims at promoting the academic development of automated high-resolution earth observation image interpretation. Six independent tracks have been organized in this challenge, which cover the challenging problems in the field of object detection and semantic segmentation. With the development of convolutional neural networks, deep-learning-based methods have achieved good performance on image interpretation. In this article, we report the details and the best-performing methods presented so far in the scope of this challenge

    Automatic image annotation system using deep learning method to analyse ambiguous images

    Get PDF
    Image annotation has gotten a lot of attention recently because of how quickly picture data has expanded. Together with image analysis and interpretation, image annotation, which may semantically describe images, has a variety of uses in allied industries including urban planning engineering. Even without big data and image identification technologies, it is challenging to manually analyze a diverse variety of photos. The improvements to the Automated Image Annotation (AIA) label system have been the subject of several scholarly research. The authors will discuss how to use image databases and the AIA system in this essay. The proposed method extracts image features from photos using an improved VGG-19, and then uses nearby features to automatically forecast picture labels. The proposed study accounts for both correlations between labels and images as well as correlations within images. The number of labels is also estimated using a label quantity prediction (LQP) model, which improves label prediction precision. The suggested method addresses automatic annotation methodologies for pixel-level images of unusual things while incorporating supervisory information via interactive spherical skins. The genuine things that were converted into metadata and identified as being connected to pre-existing categories were categorized by the authors using a deep learning approach called a conventional neural network (CNN) - supervised. Certain object monitoring systems strive for a high item detection rate (true-positive), followed by a low availability rate (false-positive). The authors created a KD-tree based on k-nearest neighbors (KNN) to speed up annotating. In order to take into account for the collected image backdrop. The proposed method transforms the conventional two-class object detection problem into a multi-class classification problem, breaking the separated and identical distribution estimations on machine learning methodologies. It is also simple to use because it only requires pixel information and ignores any other supporting elements from various color schemes. The following factors are taken into consideration while comparing the five different AIA approaches: main idea, significant contribution, computational framework, computing speed, and annotation accuracy. A set of publicly accessible photos that serve as standards for assessing AIA methods is also provided, along with a brief description of the four common assessment signs

    CAD-Net: A Context-Aware Detection Network for Objects in Remote Sensing Imagery

    Full text link
    Accurate and robust detection of multi-class objects in optical remote sensing images is essential to many real-world applications such as urban planning, traffic control, searching and rescuing, etc. However, state-of-the-art object detection techniques designed for images captured using ground-level sensors usually experience a sharp performance drop when directly applied to remote sensing images, largely due to the object appearance differences in remote sensing images in term of sparse texture, low contrast, arbitrary orientations, large scale variations, etc. This paper presents a novel object detection network (CAD-Net) that exploits attention-modulated features as well as global and local contexts to address the new challenges in detecting objects from remote sensing images. The proposed CAD-Net learns global and local contexts of objects by capturing their correlations with the global scene (at scene-level) and the local neighboring objects or features (at object-level), respectively. In addition, it designs a spatial-and-scale-aware attention module that guides the network to focus on more informative regions and features as well as more appropriate feature scales. Experiments over two publicly available object detection datasets for remote sensing images demonstrate that the proposed CAD-Net achieves superior detection performance. The implementation codes will be made publicly available for facilitating future researches

    Remote Sensing Object Detection Meets Deep Learning: A Meta-review of Challenges and Advances

    Full text link
    Remote sensing object detection (RSOD), one of the most fundamental and challenging tasks in the remote sensing field, has received longstanding attention. In recent years, deep learning techniques have demonstrated robust feature representation capabilities and led to a big leap in the development of RSOD techniques. In this era of rapid technical evolution, this review aims to present a comprehensive review of the recent achievements in deep learning based RSOD methods. More than 300 papers are covered in this review. We identify five main challenges in RSOD, including multi-scale object detection, rotated object detection, weak object detection, tiny object detection, and object detection with limited supervision, and systematically review the corresponding methods developed in a hierarchical division manner. We also review the widely used benchmark datasets and evaluation metrics within the field of RSOD, as well as the application scenarios for RSOD. Future research directions are provided for further promoting the research in RSOD.Comment: Accepted with IEEE Geoscience and Remote Sensing Magazine. More than 300 papers relevant to the RSOD filed were reviewed in this surve

    Boundary-semantic collaborative guidance network with dual-stream feedback mechanism for salient object detection in optical remote sensing imagery

    Full text link
    With the increasing application of deep learning in various domains, salient object detection in optical remote sensing images (ORSI-SOD) has attracted significant attention. However, most existing ORSI-SOD methods predominantly rely on local information from low-level features to infer salient boundary cues and supervise them using boundary ground truth, but fail to sufficiently optimize and protect the local information, and almost all approaches ignore the potential advantages offered by the last layer of the decoder to maintain the integrity of saliency maps. To address these issues, we propose a novel method named boundary-semantic collaborative guidance network (BSCGNet) with dual-stream feedback mechanism. First, we propose a boundary protection calibration (BPC) module, which effectively reduces the loss of edge position information during forward propagation and suppresses noise in low-level features without relying on boundary ground truth. Second, based on the BPC module, a dual feature feedback complementary (DFFC) module is proposed, which aggregates boundary-semantic dual features and provides effective feedback to coordinate features across different layers, thereby enhancing cross-scale knowledge communication. Finally, to obtain more complete saliency maps, we consider the uniqueness of the last layer of the decoder for the first time and propose the adaptive feedback refinement (AFR) module, which further refines feature representation and eliminates differences between features through a unique feedback mechanism. Extensive experiments on three benchmark datasets demonstrate that BSCGNet exhibits distinct advantages in challenging scenarios and outperforms the 17 state-of-the-art (SOTA) approaches proposed in recent years. Codes and results have been released on GitHub: https://github.com/YUHsss/BSCGNet.Comment: Accepted by TGR
    • …
    corecore