2,498 research outputs found
Assessment of ecosystem integrity of lowland dipterocarp forest ecosystem using remote sensing
Ecosystem Integrity Index (EII) is a concept to determine the quality or the health of an ecosystem. The EII development can assist forest managers and decision makers in the conservation effort and forest management in Malaysia through the development of a simple and easy-to-adopt index. The aim of this study is to assess and evaluate the EII through the development of forest structure empirical models from remotely sensed data for lowland dipterocarp forest in Malaysia. The objectives of this study are: (i) to assess the structure and composition of lowland dipterocarp forest in Malaysia, (ii) to develop empirical model for estimating stand structure from remotely sensed data, and (iii) to derive the ecosystem integrity index for lowland dipterocarp forest. Tree Basal Area (BA), aboveground biomass (AGB) and volume plot from plot data were used as dependent variables, while remote sensing data from Landsat, Pleiades and LiDAR were used as independent variables for model development. Tree plot census was carried out from 17 to 19 May 2016, while remote sensing data acquisition dates for Landsat, Pleiades and LiDAR were 13 March 2016, 24 January 2015 and April 2015 respectively. Forest Structure Modeling was carried out by means of a correlation analysis with the calibration of dependent and independent data to select the most significant and accurate remote sensing variables to derive empiric equation (model), fitting stage to select the best model with the highest coefficient of determination (R2) and the lowest root mean square error ( RMSE) validation of the final selected. The Ecosystem Integrity Index was developed by the average percentage of the predicted BA, AGB and model volume. The EII was categorised at five integrity levels as high (81–100%), medium high (61–80%), moderate (41–60%), medium low (21–40%) and low (0–20%). A total of 1035 trees with diameter at breast height (DBH) of 5.0 cm and above were recorded in 69.115 ha sampling areas. The total trees recorded represented 150 species from 87 genera and 34 families. Shorea macroptera (Dipterocarpaceae), S. leprosula (Dipterocarpaceae) and S. parviflora (Dipterocarpaceae) are three dominant species, with Species Important Value Index (SIVi) of 6.49%, 6.23% and 5.51%, respectively. Dipterocarpaceae is the most dominant with Family Important Value Index (FIVi) of 33.54%. The developed final model is robust and consistent with high R2 with range of 0.84 to 0.87. The final models constructed for AGB, BA and volume value of R2 are 0.85, 0.84 and 0.87 respectively. The RMSE of AGB, BA and volume model are 53.1 Mg/ha, 3.54 m2/ha and 46.4 m3/ha, respectively. The overall stand AGB, BA and volume for Sungai Menyala Forest Reserve is 282.29 Mg/ha, 17.68 m2/ha and 239.51 m3/ha. An Ecosystem Integrity Index (EII) assessment has been successfully demonstrated by this study with production of practical, multi-scaled, flexible, adjustable and policy-relevant index. The overall EII of Sungai Menyala Forest Reserve is in Category 3, which shows that the area is within the medium value
A describing function for resonantly commutated H-bridge inverters
Abstract—The paper presents the derivation of a describing function to model the dynamic behavior of a metal oxide semiconductor field effect transistor-based, capacitively commutated H-bridge, including a comprehensive explanation of the various stages in the switching cycle. Expressions to model the resulting input current, are also given. The derived model allows the inverter to be accurately modeled within a control system simulation over a number of utility input voltage cycles, without resorting to computationally
intensive switching-cycle level, time-domain SPICE simulations. Experimental measurements from a prototype H-bridge inverter employed in an induction heating application, are used to demonstrate a high degree of prediction accuracy over a large variation of load conditions is possible using the simplified model
Two-stage optimization method for efficient power converter design including light load operation
Power converter efficiency is always a hot topic for switch mode power supplies. Nowadays, high efficiency is required over a wide load range, e.g., 20%, 50% and 100% load. Computer-aided design optimization is developed in this research work, to optimize off-line power converter efficiency from light load to full load. A two-stage optimization method to optimize power converter
efficiency from light load to full load is proposed. The optimization procedure first breaks the converter design variables into many switching frequency loops. In each fixed switching frequency loop, the optimal designs for 20%, 50% and 100% load are derived separately in the first stage, and an objective function using the optimization results in the first stage is formed in the second stage to consider optimizing efficiency at 20%, 50% and 100% load. Component efficiency models are also established to serve as the objective functions of optimizations. Prototypes 400V to 12V/25A 300W two-FET forward converters
are built to verify the optimization results
A Low-power CMOS 2-PPM Demodulator for Energy Detection IR-UWB Receivers
This paper presents an integrated 2-PPM CMOS demodulator for non-coherent energy detection receivers which inherently provides analog-to-digital conversion. The device, called Bi-phase integrator, employs an open loop Gm - C integrator loaded with a switched capacitor network. The circuit has been simulated in a mixed-mode UMC 0.18mum technology and its performance figures are obtained through a mixed-signal simulation environment developed with the aid of ADVanceMS (ADMS, mentor graphics). Bit-error-rate simulations show that the circuit performance is about the same of an ideal energy detection receiver employing infinite quantization resolution. In addition, the simulations show that the circuit provides a complete offset rejection. Thanks to its low power consumption (1 mW during demodulation), its application is appealing for portable devices which aim at very low-power consumption
Augmented Models of High-Frequency Transformers for SMPS
The modeling of high-frequency transformers via augmented equivalent circuits is addressed. The augmented models are composed of a low-frequency equivalent and a supplemental element modeled via real rational fitting. They offer both high accuracy levels and a physical meaning that helps the interpretation of simulation results. Parasitics effects between the windings and between the windings and the carrying board can be also included. The use of an augmented model for the simulation of a dc-dc converter is demonstrate
Power Processing for Electrostatic Microgenerators
Microgenerators are electro-mechanical devices which harvest energy from local environmental
from such sources as light, heat and vibrations. These devices are used to
extend the life-time of wireless sensor network nodes. Vibration-based microgenerators
for biomedical applications are investigated in this thesis.
In order to optimise the microgenerator system design, a combined electro-mechanical
system simulation model of the complete system is required. In this work, a simulation
toolkit (known as ICES) has been developed utilising SPICE. The objective is to
accurately model end-to-end microgenerator systems. Case-study simulations of electromagnetic
and electrostatic microgenerator systems are presented to verify the operation
of the toolkit models. Custom semiconductor devices, previously designed for microgenerator
use, have also been modelled so that system design and optimisation of complete
microgenerator can be accomplished.
An analytical framework has been developed to estimate the maximum system effectiveness
of an electrostatic microgenerator operating in constant-charge and constant-voltage
modes. The calculated system effectiveness values are plotted with respect to microgenerator
sizes for different input excitations. Trends in effectiveness are identified and
discussed in detail. It was found that when the electrostatic transducer is interfaced with
power processing circuit, the parasitic elements of the circuit are reducing the energy generation
ability of the transducer by sharing the charge during separation of the capacitor
plates. Also, found that in constant-voltage mode the electrostatic microgenerator has a
better effectiveness over a large operating range than constant-charge devices. The ICES
toolkit was used to perform time-domain simulation of a range of operating points and
the simulation results provide verification of the analytical results
- …
