9,662 research outputs found

    Short-term Building Energy Model Recommendation System: A Meta-learning Approach

    Get PDF
    High-fidelity and computationally efficient energy forecasting models for building systems are needed to ensure optimal automatic operation, reduce energy consumption, and improve the building’s resilience capability to power disturbances. Various models have been developed to forecast building energy consumption. However, given buildings have different characteristics and operating conditions, model performance varies. Existing research has mainly taken a trial-and-error approach by developing multiple models and identifying the best performer for a specific building, or presumed one universal model form which is applied on different building cases. To the best of our knowledge, there does not exist a generalized system framework which can recommend appropriate models to forecast the building energy profiles based on building characteristics. To bridge this research gap, we propose a meta-learning based framework, termed Building Energy Model Recommendation System (BEMR). Based on the building’s physical features as well as statistical and time series meta-features extracted from the operational data and energy consumption data, BEMR is able to identify the most appropriate load forecasting model for each unique building. Three sets of experiments on 48 test buildings and one real building were conducted. The first experiment was to test the accuracy of BEMR when the training data and testing data cover the same condition. BEMR correctly identified the best model on 90% of the buildings. The second experiment was to test the robustness of the BEMR when the testing data is only partially covered by the training data. BEMR correctly identified the best model on 83% of the buildings. The third experiment uses a real building case to validate the proposed framework and the result shows promising applicability and extensibility. The experimental results show that BEMR is capable of adapting to a wide variety of building types ranging from a restaurant to a large office, and gives excellent performance in terms of both modeling accuracy and computational efficiency

    An Ensemble Approach for Multi-Step Ahead Energy Forecasting of Household Communities

    Get PDF
    This paper addresses the estimation of household communities' overall energy usage and solar energy production, considering different prediction horizons. Forecasting the electricity demand and energy generation of communities can help enrich the information available to energy grid operators to better plan their short-term supply. Moreover, households will increasingly need to know more about their usage and generation patterns to make wiser decisions on their appliance usage and energy-trading programs. The main issues to address here are the volatility of load consumption induced by the consumption behaviour and variability in solar output influenced by solar cells specifications, several meteorological variables, and contextual factors such as time and calendar information. To address these issues, we propose a predicting approach that first considers the highly influential factors and, second, benefits from an ensemble learning method where one Gradient Boosted Regression Tree algorithm is combined with several Sequence-to-Sequence LSTM networks. We conducted experiments on a public dataset provided by the Ausgrid Australian electricity distributor collected over three years. The proposed model's prediction performance was compared to those by contributing learners and by conventional ensembles. The obtained results have demonstrated the potential of the proposed predictor to improve short-term multi-step forecasting by providing more stable forecasts and more accurate estimations under different day types and meteorological conditionspublishedVersio
    • …
    corecore