11,674 research outputs found

    Teams organization and performance analysis in autonomous human-robot teams

    Get PDF
    This paper proposes a theory of human control of robot teams based on considering how people coordinate across different task allocations. Our current work focuses on domains such as foraging in which robots perform largely independent tasks. The present study addresses the interaction between automation and organization of human teams in controlling large robot teams performing an Urban Search and Rescue (USAR) task. We identify three subtasks: perceptual search-visual search for victims, assistance-teleoperation to assist robot, and navigation-path planning and coordination. For the studies reported here, navigation was selected for automation because it involves weak dependencies among robots making it more complex and because it was shown in an earlier experiment to be the most difficult. This paper reports an extended analysis of the two conditions from a larger four condition study. In these two "shared pool" conditions Twenty four simulated robots were controlled by teams of 2 participants. Sixty paid participants (30 teams) were recruited to perform the shared pool tasks in which participants shared control of the 24 UGVs and viewed the same screens. Groups in the manual control condition issued waypoints to navigate their robots. In the autonomy condition robots generated their own waypoints using distributed path planning. We identify three self-organizing team strategies in the shared pool condition: joint control operators share full authority over robots, mixed control in which one operator takes primary control while the other acts as an assistant, and split control in which operators divide the robots with each controlling a sub-team. Automating path planning improved system performance. Effects of team organization favored operator teams who shared authority for the pool of robots. © 2010 ACM

    PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-based Planning

    Full text link
    We present PRM-RL, a hierarchical method for long-range navigation task completion that combines sampling based path planning with reinforcement learning (RL). The RL agents learn short-range, point-to-point navigation policies that capture robot dynamics and task constraints without knowledge of the large-scale topology. Next, the sampling-based planners provide roadmaps which connect robot configurations that can be successfully navigated by the RL agent. The same RL agents are used to control the robot under the direction of the planning, enabling long-range navigation. We use the Probabilistic Roadmaps (PRMs) for the sampling-based planner. The RL agents are constructed using feature-based and deep neural net policies in continuous state and action spaces. We evaluate PRM-RL, both in simulation and on-robot, on two navigation tasks with non-trivial robot dynamics: end-to-end differential drive indoor navigation in office environments, and aerial cargo delivery in urban environments with load displacement constraints. Our results show improvement in task completion over both RL agents on their own and traditional sampling-based planners. In the indoor navigation task, PRM-RL successfully completes up to 215 m long trajectories under noisy sensor conditions, and the aerial cargo delivery completes flights over 1000 m without violating the task constraints in an environment 63 million times larger than used in training.Comment: 9 pages, 7 figure

    Parallelizing RRT on distributed-memory architectures

    Get PDF
    This paper addresses the problem of improving the performance of the Rapidly-exploring Random Tree (RRT) algorithm by parallelizing it. For scalability reasons we do so on a distributed-memory architecture, using the message-passing paradigm. We present three parallel versions of RRT along with the technicalities involved in their implementation. We also evaluate the algorithms and study how they behave on different motion planning problems

    Multiple cooperating manipulators: The case of kinematically redundant arms

    Get PDF
    Existing work concerning two or more manipulators simultaneously grasping and transferring a common load is continued and extended. Specifically considered is the case of one or more arms being kinematically redundant. Some existing results in the modeling and control of single redundant arms and multiple manipulators are reviewed. The cooperating situation is modeled in terms of a set of coordinates representing object motion and internal object squeezing. Nominal trajectories in these coordinates are produced via actuator load distribution algorithms introduced previously. A controller is developed to track these desired object trajectories while making use of the kinematic redundancy to additionally aid the cooperation and coordination of the system. It is shown how the existence of kinematic redundancy within the system may be used to enhance the degree of cooperation achievable

    Parallelizing RRT on large-scale distributed-memory architectures

    Get PDF
    This paper addresses the problem of parallelizing the Rapidly-exploring Random Tree (RRT) algorithm on large-scale distributed-memory architectures, using the Message Passing Interface. We compare three parallel versions of RRT based on classical parallelization schemes. We evaluate them on different motion planning problems and analyze the various factors influencing their performance

    Thermal Recovery of Multi-Limbed Robots with Electric Actuators

    Get PDF
    The problem of finding thermally minimizing configurations of a humanoid robot to recover its actuators from unsafe thermal states is addressed. A first-order, data-driven, effort based, thermal model of the robots actuators is devised, which is used to predict future thermal states. Given this predictive capability, a map between configurations and future temperatures is formulated to find what configurations, subject to valid contact constraints, can be taken now to minimize future thermal states. Effectively, this approach is a realization of a contact-constrained thermal inverse-kinematics (IK) process. Experimental validation of the proposed approach is performed on the NASA Valkyrie robot hardware
    corecore