491 research outputs found

    Adaptive Multicast Multimedia Transmission Routing Protocol System (ACMMR) for Congestion Control and Load Balancing Techniques in Mobile Adhoc Networks

    Get PDF
    A MANET is a probable solution for this need to quickly establish interactions in a mobile and transient environment. Proposed congestion controlled adaptive multicasting routing protocol to achieve load balancing and avoid congestion in MANETs. The existing algorithm for finding multicasting routes computes fail-safe multiple paths, which provide all the intermediate nodes on the primary path with multiple routes to target node. Routing may let a congestion happen, which is detected by congestion control, but dealing with congestion in this reactive manner results in longer delay and redundant packet loss and requires significant overhead if a new route is needed. Transmission of real-time video typically has bandwidth, delay, and loss requirements. Video transmission over wireless network poses many challenges. To overcome these challenges, extensive research has been conducted in the various areas of video application

    Selecting source image sensor nodes based on 2-hop information to improve image transmissions to mobile robot sinks in search \& rescue operations

    Full text link
    We consider Robot-assisted Search &\& Rescue operations enhanced with some fixed image sensor nodes capable of capturing and sending visual information to a robot sink. In order to increase the performance of image transfer from image sensor nodes to the robot sinks we propose a 2-hop neighborhood information-based cover set selection to determine the most relevant image sensor nodes to activate. Then, in order to be consistent with our proposed approach, a multi-path extension of Greedy Perimeter Stateless Routing (called T-GPSR) wherein routing decisions are also based on 2-hop neighborhood information is proposed. Simulation results show that our proposal reduces packet losses, enabling fast packet delivery and higher visual quality of received images at the robot sink

    Enhancement of Network Life Time using Binary Tree Based Multicast Routing Protocol for Mobile Ad hoc Network

    Get PDF
    A mobile ad hoc network (MANET) is an interconnected system of mobile hosts without a fixed infrastructure. In MANETs, each mobile host has multi-hop transmission capability, and it has to serve as a router. Owing to the dynamic topology and limited resources of mobile hosts, the routing scheme in MANETs presents an important challenge. In this study, a Enhancement of Network Life Time using Binary Tree Based Multicast Routing Protocol for MANET is proposed. In this proposed scheme, all nodes are randomly classified into two types, group-1 and group-2. To achieve the load balance, two multicast trees (tree-1 for group-1 and tree-2 for group-2) are constructed. The proposed system mainly focused on maintaining route stability. Thus proposed system outperform AOMDV version of AODV in term of Performance evaluation metrics such as packet delivery ratio, control overhead , Network life time, Normalized delay

    Receiver-based ad hoc on demand multipath routing protocol for mobile ad hoc networks

    Get PDF
    Decreasing the route rediscovery time process in reactive routing protocols is challenging in mobile ad hoc networks. Links between nodes are continuously established and broken because of the characteristics of the network. Finding multiple routes to increase the reliability is also important but requires a fast update, especially in high traffic load and high mobility where paths can be broken as well. The sender node keeps re-establishing path discovery to find new paths, which makes for long time delay. In this paper we propose an improved multipath routing protocol, called Receiver-based ad hoc on demand multipath routing protocol (RB-AOMDV), which takes advantage of the reliability of the state of the art ad hoc on demand multipath distance vector (AOMDV) protocol with less re-established discovery time. The receiver node assumes the role of discovering paths when finding data packets that have not been received after a period of time. Simulation results show the delay and delivery ratio performances are improved compared with AOMDV

    Resource Sharing via Planed Relay for HWN

    Get PDF
    We present an improved version of adaptive distributed cross-layer routing algorithm (ADCR) for hybrid wireless network with dedicated relay stations () in this paper. A mobile terminal (MT) may borrow radio resources that are available thousands mile away via secure multihop RNs, where RNs are placed at pre-engineered locations in the network. In rural places such as mountain areas, an MT may also communicate with the core network, when intermediate MTs act as relay node with mobility. To address cross-layer network layers routing issues, the cascaded ADCR establishes routing paths across MTs, RNs, and cellular base stations (BSs) and provides appropriate quality of service (QoS). We verify the routing performance benefits of over other networks by intensive simulation

    Multipath Ant Colony Optimization Algorithm (MBEEACO) to Improve the Life Time of MANET

    Get PDF
    MANET selects a path with least number of intermediate nodes to reach the destination node. As the distance between each node increases, the quantity of transmission control increases. The power level of nodes affects the simplicity with which a route is constituted between a couple of nodes. This research paper utilizes the swarm intelligence technique through the artificial bee colony (ABC) algorithm to optimize the energy consumption in a dynamic source routing (DSR) protocol in MANET. The ABC algorithm is used to identify the optimal path from the source to the destination to overcome energy problems. The performance of the proposed MBEEACO algorithm is compared with DSR and bee-inspired protocols. The comparison was conducted based on average energy consumption, average throughput, average end-to-end delay, routing overhead, and packet delivery ratio performance metrics, varying the node speed and packet size. The proposed MBEEACO algorithm is superior in performance than other protocols in terms of energy conservation and delay degradation relating to node speed and packet size
    corecore