8,733 research outputs found

    Streaming Multimedia via Overlay Networks using Wi-Fi Peer-to-Peer Connections

    Get PDF

    Smart hospital emergency system via mobile-based requesting services

    Get PDF
    In recent years, the UK’s emergency call and response has shown elements of great strain as of today. The strain on emergency call systems estimated by a 9 million calls (including both landline and mobile) made in 2014 alone. Coupled with an increasing population and cuts in government funding, this has resulted in lower percentages of emergency response vehicles at hand and longer response times. In this paper, we highlight the main challenges of emergency services and overview of previous solutions. In addition, we propose a new system call Smart Hospital Emergency System (SHES). The main aim of SHES is to save lives through improving communications between patient and emergency services. Utilising the latest of technologies and algorithms within SHES is aiming to increase emergency communication throughput, while reducing emergency call systems issues and making the process of emergency response more efficient. Utilising health data held within a personal smartphone, and internal tracked data (GPU, Accelerometer, Gyroscope etc.), SHES aims to process the mentioned data efficiently, and securely, through automatic communications with emergency services, ultimately reducing communication bottlenecks. Live video-streaming through real-time video communication protocols is also a focus of SHES to improve initial communications between emergency services and patients. A prototype of this system has been developed. The system has been evaluated by a preliminary usability, reliability, and communication performance study

    Survey of End-to-End Mobile Network Measurement Testbeds, Tools, and Services

    Full text link
    Mobile (cellular) networks enable innovation, but can also stifle it and lead to user frustration when network performance falls below expectations. As mobile networks become the predominant method of Internet access, developer, research, network operator, and regulatory communities have taken an increased interest in measuring end-to-end mobile network performance to, among other goals, minimize negative impact on application responsiveness. In this survey we examine current approaches to end-to-end mobile network performance measurement, diagnosis, and application prototyping. We compare available tools and their shortcomings with respect to the needs of researchers, developers, regulators, and the public. We intend for this survey to provide a comprehensive view of currently active efforts and some auspicious directions for future work in mobile network measurement and mobile application performance evaluation.Comment: Submitted to IEEE Communications Surveys and Tutorials. arXiv does not format the URL references correctly. For a correctly formatted version of this paper go to http://www.cs.montana.edu/mwittie/publications/Goel14Survey.pd

    Digital Use and Internet Access in Fayetteville, Arkansas

    Get PDF
    A report on data gathered from a spring 2019 survey by the UA Center for Communication Research. The data will provide the City of Fayetteville with a baseline picture regarding residents’ current levels of internet access, their daily activities online, the importance of the internet to them, and the barriers they see to enhanced online access. Future study will consider the homework gap in homes with K-12 students as well as general internet access issues for residential multi-tenant environments. Data from this survey will inform the City of Fayetteville\u27s Digital Equity Plan

    Three applications for mobile epidemic algorithms

    Get PDF
    This paper presents a framework for the pervasive sharing of data using wireless networks. 'FarCry' uses the mobility of users to carry files between separated networks. Through a mix of ad-hoc and infrastructure-based wireless networking, files are transferred between users without their direct involvement. As users move to different locations, files are then transmitted on to other users, spreading and sharing information. We examine three applications of this framework. Each of these exploits the physically proximate nature of social gatherings. As people group together in, for example, business meetings and cafés, this can be taken as an indication of similar interests, e.g. in the same presentation or in a type of music. MediaNet affords sharing of media files between strangers or friends, MeetingNet shares business documents in meetings, and NewsNet shares RSS feeds between mobile users. NewsNet also develops the use of pre-emptive caching: collecting information from others not for oneself, but for the predicted later sharing with others. We offer observations on developing this system for a mobile, multi-user, multi-device environment

    RMSRS: Rover Multi-purpose Surveillance Robotic System

    Get PDF
    أصبح تطوير إنترنت الأشياء (IoT) وإنترنت الروبوتات (IoR) أكثر وأكثر مشاركة في حياتنا اليومية. إنه يخدم مجموعة متنوعة من المهام بعضها مهم في الحياة البشرية مثل المراقبة في الوقت الفعلي عن بعد لتجنب المخاطر في الاماكن الخطرة . الهدف الرئيسي من نظام المراقبة المتنقل الذكي هو تطوير نظام مراقبة للكشف عن الأماكن المشبوهة والمستهدفة للمستخدمين دون أي خسائر في الأرواح البشرية. تعرض هذه الورقة تصميم وتنفيذ منصة مراقبة آلية للمراقبة في الوقت الفعلي بمساعدة معالجة الصور ، والتي يمكن أن تستكشف أماكن الوصول الصعب أو المخاطرة العالية. يتدفق البث المباشر الآلي عبر كاميرتين، الأولى ثابتة مباشرة على الطريق والثانية ديناميكية مع إمكانية الإمالة. كلتا الكامرتين لديها قدرات المعالجة الصورية لتحليل وكشف وتعقب الكائنات بالإضافة إلى عدد قليل من الوظائف الرسومية. المكونات المذكورة أعلاه مبنية على قمة نظام المركبات الرباعي مع عزم دوران عالي لتوفير القدرة على الحركة في المناطق الوعرة. يستند هذا العمل إلى الراسبيري باي ويمكن التحكم فيه عبر الواي فاي محليًا أو عالميا عبر الإنترنت. تظهر النتائج إنشاء روبوت ذو إمكانات عالية ومنخفض الكلفة نسبيًا مع الكثير من الميزات والوظائف التي يمكن أن تؤدي مهام متعددة في وقت واحد ، وكلها مهمة للغاية بالنسبة لمشاكل المراقبة ، والتي يتحكم فيها المستخدم من مسافات بعيدة ولفترة طويلة.The development of the internet of things (IoT) and the internet of robotics (IoR) are becoming more and more involved with our daily lives. It serves a variety of tasks some of them are essential to us. The main objective of SRR is to develop a surveillance system for detecting suspicious and targeted places for users without any loss of human life. This paper shows the design and implementation of a robotic surveillance platform for real-time monitoring with the help of image processing, which can explorer places of difficult access or high risk. The robotic live streaming is via two cameras, the first one is fixed straight on the road and the second one is dynamic with tilt-pan ability. All cameras have image processing capabilities to analyze, detect and track objects plus few other graphical functions. The components mentioned above built on top of the four-wheel vehicle system with high torque to provide mobility on rough terrain. This work is based on Raspberry Pi and can be controlled over Wi-Fi locally or publicly over the internet. The results show making a high potential, relatively low price robot with lots of features and functions that can perform multiple tasks simultaneously, all are crucial to surveillance and monitoring problems, controlled by a user from far distances and for a long time

    Low-Cost UAV Swarm for Real-Time Object Detection Applications

    Get PDF
    With unmanned aerial vehicles (UAVs), also known as drones, becoming readily available and affordable, applications for these devices have grown immensely. One type of application is the use of drones to fly over large areas and detect desired entities. For example, a swarm of drones could detect marine creatures near the surface of the ocean and provide users the location and type of animal found. However, even with the reduction in cost of drone technology, such applications result costly due to the use of custom hardware with built-in advanced capabilities. Therefore, the focus of this thesis is to compile an easily customizable, low-cost drone design with the necessary hardware for autonomous behavior, swarm coordination, and on-board object detection capabilities. Additionally, this thesis outlines the necessary network architecture to handle the interconnection and bandwidth requirements of the drone swarm. The drone on-board system uses a PixHawk 4 flight controller to handle flight mechanics, a Raspberry Pi 4 as a companion computer for general-purpose computing power, and a NVIDIA Jetson Nano Developer Kit to perform object detection in real-time. The implemented network follows the 802.11s standard for multi-hop communications with the HWMP routing protocol. This topology allows drones to forward packets through the network, significantly extending the flight range of the swarm. Our experiments show that the selected hardware and implemented network can provide direct point-to-point communications at a range of up to 1000 feet, with extended range possible through message forwarding. The network also provides sufficient bandwidth for bandwidth intensive data such as live video streams. With an expected flight time of about 17 minutes, the proposed design offers a low-cost drone swarm solution for mid-range aerial surveillance applications
    corecore