10 research outputs found

    List-Decoding of Binary Goppa Codes up to the Binary Johnson Bound

    Get PDF
    International audienceWe study the list-decoding problem of alternant codes (which includes obviously that of classical Goppa codes). The major consideration here is to take into account the (small) size of the alphabet. This amounts to comparing the generic Johnson bound to the q-ary Johnson bound. The most favourable case is q = 2, for which the decoding radius is greatly improved. Even though the announced result, which is the list-decoding radius of binary Goppa codes, is new, we acknowledge that it can be made up from separate previous sources, which may be a little bit unknown, and where the binary Goppa codes has apparently not been thought at. Only D. J. Bernstein has treated the case of binary Goppa codes in a preprint. References are given in the introduction. We propose an autonomous and simplified treatment and also a complexity analysis of the studied algorithm, which is quadratic in the blocklength n, when decoding away of the relative maximum decoding radius

    Re-encoding reformulation and application to Welch-Berlekamp algorithm

    Full text link
    The main decoding algorithms for Reed-Solomon codes are based on a bivariate interpolation step, which is expensive in time complexity. Lot of interpolation methods were proposed in order to decrease the complexity of this procedure, but they stay still expensive. Then Koetter, Ma and Vardy proposed in 2010 a technique, called re-encoding, which allows to reduce the practical running time. However, this trick is only devoted for the Koetter interpolation algorithm. We propose a reformulation of the re-encoding for any interpolation methods. The assumption for this reformulation permits only to apply it to the Welch-Berlekamp algorithm

    On Quasi-Cyclic Codes as a Generalization of Cyclic Codes

    Get PDF
    In this article we see quasi-cyclic codes as block cyclic codes. We generalize some properties of cyclic codes to quasi-cyclic ones such as generator polynomials and ideals. Indeed we show a one-to-one correspondence between l-quasi-cyclic codes of length m and ideals of M_l(Fq)[X]/(X^m-1). This permits to construct new classes of codes, namely quasi-BCH and quasi-evaluation codes. We study the parameters of such codes and propose a decoding algorithm up to half the designed minimum distance. We even found one new quasi-cyclic code with better parameters than known [189, 11, 125]_F4 and 48 derivated codes beating the known bounds as well.Comment: (18/08/2011

    On Rational Interpolation-Based List-Decoding and List-Decoding Binary Goppa Codes

    Get PDF
    We derive the Wu list-decoding algorithm for Generalised Reed-Solomon (GRS) codes by using Gr\"obner bases over modules and the Euclidean algorithm (EA) as the initial algorithm instead of the Berlekamp-Massey algorithm (BMA). We present a novel method for constructing the interpolation polynomial fast. We give a new application of the Wu list decoder by decoding irreducible binary Goppa codes up to the binary Johnson radius. Finally, we point out a connection between the governing equations of the Wu algorithm and the Guruswami-Sudan algorithm (GSA), immediately leading to equality in the decoding range and a duality in the choice of parameters needed for decoding, both in the case of GRS codes and in the case of Goppa codes.Comment: To appear in IEEE Transactions of Information Theor

    List Decoding of Algebraic Codes

    Get PDF
    corecore