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Abstract

We investigate three paradigms for polynomial-time decoding of Reed–Solomon
codes beyond half the minimum distance: the Guruswami–Sudan algorithm, Power
decoding and the Wu algorithm. The main results concern shaping the computa-
tional core of all three methods to a problem solvable by module minimisation; by
applying the fastest known algorithms for this general problem, we then obtain
realisations of each paradigm which are as fast or faster than all previously known
methods. An element of this is the “2D key equation”, a heavily generalised form
of the classical key equation, and we show how to solve such using module minimi-
sation, or using our new Demand–Driven algorithm which is also based on module
minimisation.

The decoding paradigms are all derived and analysed in a self-contained manner,
often in new ways or examined in greater depth than previously. Among a number of
new results, we give: a fast maximum-likelihood list decoder based on the Guruswami–
Sudan algorithm; a new variant of Power decoding, Power Gao, along with some
new insights into Power decoding; and a new, module based method for performing
rational interpolation for the Wu algorithm. We also show how to decode Hermitian
codes using Guruswami–Sudan or Power decoding faster than previously known,
and we show how to Wu list decode binary Goppa codes.





Resumé

Afhandlingen indholder tre paradigmer for afkodning i polynomiel tid af Reed–
Solomon-koder ud over den halve minimumsafstand: Guruswami–Sudan, Power, og
Wu afkodning. Hovedresultatet er at den beregningsmæssige kerne af alle tre metoder
kan udformes som et problem der kan løses med modul-minimering. Ved at benytte
de hurtigste kendte metoder til dette generelle problem, opnår vi realiseringer af
hvert afkodningsparadigme, som er lige så hurtige eller hurtigere end alle tidligere
kendte. Et vigtigt element i udformningen er en kraftigt generaliseret form af den
klassiske nøgleligning, de såkaldte “2D nøgleligninger”. Vi viser hvordan man kan
løse denne slags ligninger ved hjælp af modul-minimering eller ved hjælp af vores
nye Demand–Driven-algoritme, som også er baseret på modul-minimering.

I afhandlingen er afkodningsparadigmerne selvstændigt udledt og analyseret, ofte
på nye måder eller mere dybdegående end tidligere. Vi præsenterer et antal nye
resultater, blandt andet: en hurtig maximum-likelihood listeafkoder baseret på
Guruswami–Sudan algoritmen; en ny variant af Power-afkodning, Power Gao, samt
nye indsigter i Power afkodning; og en ny, modul-baseret metode for at udføre
rational interpolation i Wu algoritmen. Vi viser også hvordan man kan afkode
Hermite-koder ved hjælp af Guruswami–Sudan algoritmen eller Power-afkodning
som er hurtigere end tidligere kendt, og hvordan man kan Wu listeafkode binære
Goppa-koder.
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Chapter 1

Introduction

Polynomial-time list decoding is arguably the greatest advancement of algebraic
coding theory in the last two decades: Sudan presented in [Sud97] a conceptually
simple, polynomial-time algorithm which permits one to correct errors beyond half
the minimum distance for low-rate Generalised Reed–Solomon (GRS) codes. The
method finds all codewords within a certain radius beyond half the minimum
distance, so it realises the conceptual decoding style suggested much earlier by both
Elias [Eli57] and Wozencraft [Woz58]. Soon thereafter, Sudan’s result was polished
into the famous Guruswami–Sudan algorithm in [GS99], allowing list decoding
GRS codes for any rate. The algorithm is flexible and simple enough to have been
generalised for several classes of codes, e.g. Algebraic Geometric (AG) codes [SW99,
GS99], and Chinese Remainder codes [GSS00].

However, “polynomial-time” does not necessarily mean fast enough for practical
use, and a tremendous amount of attention by the community has been devoted to
finding a faster way to perform the algorithm. It consists of two computationally
heavy steps: the “interpolation step”, and the “root-finding step”. Various methods
have been proposed in the last decade for performing these steps in quadratic and
even quasi-linear complexity in the code length, e.g. [RR00,LO08,Ale05,BB10].

Simultaneously, two other approaches for decoding beyond half the minimum dis-
tance were developed. Schmidt and Sidorenko demonstrated in [SS06] the surprising
fact that one can squeeze out several—and not just one—of the classical “key equa-
tions” involving the error locator when decoding GRS codes of low rate. Solving the
key equations simultaneously, one can decode beyond half the minimum distance
most of the time: there is a slight risk that the key equations “degenerate” and have
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solutions of lower degree than the error locator. In practice, this seems to happen so
rarely that the eventuality can largely be ignored. The algorithm is thus not a “list
decoder”, but rather a unique decoder correcting beyond half the minimum distance.
The classical single key equation can e.g. be solved using the Berlekamp–Massey
algorithm, and building upon the much earlier work by Feng and Tzeng [FT91],
Schmidt and Sidorenko proposed a generalisation of this algorithm for solving the
list of key equations of their method [SSB10]. The resulting decoder turns out to be
able to decode almost exactly as many errors as the original Sudan algorithm. Due
to its original derivation, it was termed “decoding by virtual extension to an Inter-
leaved Reed–Solomon code”; in this thesis I have used the name “Power decoding”,
which seems to already have become a standard label in informal settings.

Wu suggested in [Wu08] a completely different way to continue from the key equation:
he noted that even when the number of errors exceed half the minimum distance,
then the Berlekamp–Massey algorithm on the single, classical key equation still
reveals crucial information: a “small” F[x]-linear combination of the two polynomials
calculated from the Berlekamp–Massey algorithm must equal the error locator. By
exploiting that the error locator is defined as having zeroes on all the error positions,
a fast way to find this linear combination turns out to be a simple generalisation of
the core of the Guruswami–Sudan algorithm. Surprisingly, the resulting list decoder
can correct exactly the same amount of errors as the Guruswami–Sudan algorithm.

The focus of this thesis is a deeper study of those three paradigms for decoding
beyond half the minimum distance. We are in particular concerned with fast methods
for executing them on GRS codes. The central approach we have taken for this is to
formulate the computationally heaviest part within each paradigm as instances of
similar problems, namely that of finding small-degree F[x] vectors satisfying certain
types of linear properties; for Guruswami–Sudan and Wu the computationally heavy
part is the interpolation step, and for Power decoding it is the simultaneous solving
of the key equations. We will solve the general problem by working with free F[x]-
modules, and the strategy can be described in a variety of terms, including Gröbner
bases, lattice basis reduction, and module minimisation; all these concepts largely
coincide on exactly this kind of algebraic structure. The strategy can be executed
by a range of almost standard algorithms from computational algebra: basically
we can see such an algorithm as taking any square, full rank matrix over F[x] and
bringing it to a certain “reduced” form called the weak Popov form; this form turns
out to directly reveal the solution to our problem. By simultaneously drawing on
the description as a Gröbner basis as well as the more linear algebraic one of module
minimisation, we immediately have a wealth of intuition and results on the problem
and its solutions. By first sending the input matrix through a simple mapping, we
can furthermore support a variety of “weighted weak Popov forms”; a flexibility
which will be necessary for solving all the types of decoding problems we will meet.

We review three of the fastest algorithms for computing weak Popov forms: Mulders–
Storjohann’s, Alekhnovich’s, and Giorgi–Jeannerod–Villard’s (GJV). In particular
we show how the first two can be analysed in more detail than previously done to
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reveal better performance when a certain measure—the orthogonality defect—is low
for the input matrix; basically, the number of iterations these algorithms run can
be upper bounded using the orthogonality defect. It also turns out that the same
two algorithms can be shown to perform well on matrices which are images of the
weight-mapping mentioned above, which means that the added flexibility of having
weights comes basically for free.

As a natural stepping stone between some of the decoding domain problems and
the module minimisation, we propose a family of “2D key equations”: a heavy gen-
eralisation of the form of the classical key equation. It turns out that the module
minimisation problem arising when solving exactly these equations have very low
orthogonality defect. Furthermore, by refining the Mulders–Storjohann algorithm,
we develop a computationally “demand driven” way to solve such 2D key equa-
tions, much akin to the Berlekamp–Massey algorithm, but while retaining the rich
underlying algebraic structure of Gröbner bases.

This unified approach has several advantages. In practical terms, it shows how one
can support a great many decoding algorithms by having essentially one computa-
tional core: module minimisation. One is free to choose any of the three off-the-shelf
algorithms mentioned above, and with an optimised implementation of this, one
can easily compare the practical performance of all these decoders on concrete
code parameters of interest. Such abstraction is much less interesting if it entails
computational sub-optimality: but we show how our approach matches or beats
essentially all the known decoding algorithms for GRS codes. Actually, we point
out repeatedly how known methods are special cases of our approach and even
step-for-step computationally equivalent.

This leads us to some of the theoretical advantages: with a unified approach, backed
by Gröbner bases, we can more immediately and more clearly see properties, connec-
tions and generalisations. For instance, several earlier methods have not yet had Di-
vide & Conquer analogues formulated, which is a common, though often laboriously
complicated, optimisation technique. Throughout the thesis, we will discuss how
several known techniques for a variety of F[x] linear problems proposed in the coding
theory field turn out to essentially be special cases of Mulders–Storjohann; since the
Alekhnovich algorithm is exactly a D&C optimisation of Mulders–Storjohann, we
are therefore transitively immediately handed D&C optimisations of these earlier
techniques. The use of orthogonality defect for counting iterations in complexity
estimates is another example: this measure is essentially what is used in several
earlier methods, but in a much more ad-hoc fashion; and since we have analysed
once and for all the computational complexity of the minimisation algorithms with
regards to this, one easily obtains a tighter complexity in all the use cases. In some
instances, our general analysis even beats specialised ones seen in the literature.

Yet another advantage, both practical and theoretical, is the flexibility of generali-
sation to other codes by having formulated these computational methodologies in
a unified way. We demonstrate this by decoding Hermitian codes: our framework
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immediately gives us the fastest known methods for solving the core computational
problem, as well as implying properties such as the decoding radius.

It should be mentioned that module minimisation is not a completely new tool
for decoding algorithms, and a few of the applications we give are well-known
already. However, this thesis more thoroughly deals with the issue, and demonstrates
how module minimisation techniques apply much more universally. It also focus
on how the module minimisation algorithm is detached from the minimisation
problem, and how each of several standard algorithms perform and have advantages
or disadvantages in various settings.

Module minimisation is only an underlying main theme, and the thesis is by no
means restricted to this. An effort has been made for the chapters to be self-
contained, and we will in particular derive the three paradigms from scratch. We will
analyse numerous properties pertaining to the methods, such as decoding radius and
parameter choices; often more precisely or in greater detail than previously done. We
exploit module minimisation to get a fast Guruswami–Sudan based variant of the list-
decoding paradigm, namely the multi-trial decoder. In the case of Power decoding,
we give a completely new variant of it, the Power Gao decoder. Guruswami–Sudan
and Power decoding of Hermitian codes is investigated, and using our framework we
arrive at algorithms which beat all previously known methods. We also reveal new
algebraic connections between the decoding paradigms, some of which immediately
have practical as well as theoretical applications. Furthermore, we Wu list decode
binary Goppa codes, again reaching fast asymptotic complexities.

At the beginning of each chapter we give a more detailed description of the contri-
butions of that chapter.

1.1 Reader’s guide

The thesis follows a simple and lightly coupled structure. The remainder of this
chapter is devoted to some global remarks on asymptotic analysis, notation, and
GRS codes and the error model considered.

Chapter 2 introduces the module minimisation strategy and discuss the three con-
sidered algorithms for computing a weak Popov form of a matrix. It also introduces
the 2D key equation and how we solve such equations using module minimisation or
the new Demand–Driven algorithm. The concepts introduced in Section 2.1 as well
as Section 2.5 are necessary for understanding much of the later chapters; intimate
knowledge of the module minimisation algorithms, however, is not at all necessary.

Each of three following chapters are devoted to one of the decoding paradigms. They
are largely decoupled from each other; in cases where reference to results or defini-
tions in between these chapters are used, page references have been added. All three
contain a derivation of the decoding paradigm, analysis of its decoding capability as
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well as at least one way to execute it fast using module minimisation. Apart from
this, they each describe new extensions, variations and other investigations of the
respective paradigm.

Chapter 6 rounds off the thesis with a conclusion and a discussion of future work.

The text contains numerous remarks throughout where I have felt that certain issues
or correspondences were worth pointing out. Many examples have been added as well;
in Chapter 2 mostly to exemplify definitions, and in the later chapters to exemplify
decoding radii or algorithms. The algorithms deal extensively with polynomials and
matrices over polynomial rings, and it would be much to lengthy to write examples
out in full; therefore, the aim has been to give the reader a sense of the sizes of
objects, and only the degrees of the polynomials involved have been given. The
main text does not contain many references to related work, and most discussions
are deferred to a section devoted to this at the end of each chapter.

1.2 A note on asymptotic analysis

A large part of this thesis is dedicated to investigating fast methods for decoding;
by “fast” we mean those with good worst-case asymptotic behaviour. Asymptotic
analysis for arguing about the complexity of algorithms by nature speaks of infinite
families of problems: we are interested in the overall behaviour of the complexity,
when the size of the problem grows towards infinity. It is designed to be simple
to apply yet provide a good overview, and reducing the number of free variables
for selecting members of the problem family is important for both. In both these
respects, dealing with decoding algorithms is problematic, and the reader should
be clear on the limitations in the way we are treating asymptotic analysis in this
thesis.

GRS codes exists for any code length n so it is a natural parameter in the asymptotic
expressions. Customarily, the dimension k is then chosen as nR for some constant
R < 1. The decoding radius τ is usually also assumed a constant times n. The alpha-
bet over which the code is defined, however, must grow in size as n grows; in reality,
this adds a factor logn to all expressions, since computing in Fqm (usually) requires
O(m) operations over the field Fq. In practice, these are left out of complexity es-
timates, and the estimates are always taken to describe the number of operations
over the field used. Note that this choice of notation equates e.g. all the expressions
O(k), O(n − k), O(τ), O(n − τ) and O(n). In practice, we might choose k close to
n so n− k � n; however, this can’t readily be expressed in big-O notation. In this
thesis, we sometimes express complexities involving such compound expressions like
n− k, in cases where it is completely clear that the dependence is directly on n− k;
in all such cases we provide “relaxed” expressions where e.g. this is rewritten as n.

For all decoding algorithms, we will have a parameter `, and for Guruwami–Sudan
and Wu also a parameter s. There are a number of possibilities, all of which are
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employed somewhere in the literature.

1. We could treat s and ` as constants. This leaves them out of the big-O
estimates. In practice their impact is quite large, however, so this is clearly
very rough.

2. We could estimate s and ` in terms of n. We will see in Section 3.1.2 that
s, ` ∈ O(n2) and this could be applied; however, such large s and ` would
never be employed in practice and can easily be avoided. Choosing instead
s, ` ∈ O(n) discounts decoding very close to the upper bound, and is possibly
also more realistic. For some uses s, ` ∈ O(1) could even be considered
technically sound but see the previous point.

3. We could leave both s and ` in the expressions. This is problematic exactly
because s and ` depend on n for high τ . In Power decoding or Guruswami–
Sudan with s = 1, then `(k − 1) < n, and in general for Guruswami–Sudan
or Wu then s and ` are related by a slightly more complicated description;
great restrictions must be placed on the allowed use of such rewriting rules
in big-O notation if we wish to retain the sought intuition (since, e.g. the
above relation allows O(`n2) = O(`kn) = O(n2)).

4. We could describe e.g. s in terms of ` and leave ` in the expressions. We
will also see in Section 3.1.2 that s = γ` for some constant γ < 1 is usually
sensible. But again, in practical settings, γ might be very small, and an
algorithm with O(s3) is obviously better than one with O(`3).

We have opted for leaving both s and ` in the expressions, and have avoided any
rewriting of the terms from relations such as those mentioned. We just remind
the reader that the estimates need to be treated and understood in the proper
fashion. When comparing complexities of algorithms, we will usually be considering
n > ` > s, i.e. that minimising dependence on n is the primary goal. However, by
the nature of our results—i.e. that any module minimisation algorithm can be used
for solving the core problems which we will meet—we always present a selection of
complexities.

For other codes, e.g. binary Goppa codes, there are similar problems: here we cannot
choose n and k independently, and n/k goes to zero for n→∞. We shortly discuss
this in Section 5.3 on page 152 when Wu decoding these codes.

For many complexity estimates, we will draw on fast multiplication techniques. We
let P(n) be the asymptotic computation cost of multiplying together two polynomi-
als of degree at most n over the field in question. For binary fields we have P(n) ≤
18n logn + O(n) = O(n logn) by using the Fast Fourier transformation, while for
general fields, using Schönhage–Strassen’s algorithm gives P(n) = n logn log logn,
see e.g. [vzGG03, Corollary 8.19 and Theorem 8.23]. In practice, Schönhage–Strassen
on small to medium degree polynomials performs worse than other methods such as
Karatsuba (O(n1.585), [KO64]) or Toom–Cook (O(n1.465), [Coo66]); I have not been
able to find good empirical evidence for the cross-over points for finite field computa-
tions, however. There is also the recent algorithm by Fürer (O(n logn2log∗2 n), [Für09])
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which theoretically beats Schönhage–Strassen on enormous degree polynomials.

Similarly, we let M(m) be the asymptotic cost of multiplying two m×m matrices
over the field. The trivial method is O(n3); Strassen’s method gives O(n2.81) [Str69];
while the fastest known method is William’s variant of Coppersmith–Winograd with
O(n2.37) [Wil12]. In practice, the latter is only faster for extremely large matrices,
and Strassen’s method also needs quite large matrices to beat the trivial. However,
we will mostly be multiplying matrices over F[x], which means that single-entry
multiplication is quite expensive; therefore the asymptotic benefits of the more
complicated algorithms should be evident much sooner. Again, I am unfortunately
not aware of a serious empirical study of the cross-over points.

For overview, we give “relaxed” versions of all complexities reported in this thesis.
There we relax P(n) into O(n logn log logn). Since our main interest will be rather
small matrices, we relax M(m) into O(m3). Note that we can multiply together two
matrices of F[x]m×m with entries of degree at most t, in time M(m)P(t).

It is an important and often valid objection to fast polynomial multiplication tech-
niques that the constant hidden in the big-O notation is too high for them to be
useful in many applications. Throughout the thesis, we therefore present decoding
algorithms with and without the use of fast multiplication.

1.3 Notation

Throughout the thesis we will use certain notational conventions and standard
operators. Some of these are completely global, and most of them rather common,
so we shortly list them here. The remaining will be introduced at their first usage.
The reader should also be aware of the list of symbols and notation, Appendix A,
which can be consulted whenever a name is used far from its original definition. The
operators given here are also listed in Appendix A.

Vectors are always typeset in bold and most often named in lowercase, e.g. u.
Matrices are named in uppercase: V . A row of V is named by the same letter in
lowercase and indexed: vi. We often won’t introduce the rows of a matrix explicitly,
but let them automatically be named after this convention; especially in Chapter 2.
If v is a vector, then vj are its elements; the cells of matrices naturally end up with
double subscripts: vi,j . Except if otherwise introduced, we’ll index from 1, so if v
has length m its elements are v1, . . . , vm.

We extensively work with matrices and vectors over a polynomial ring F[x] for some
field F, and we have a set of notation for this.

• The degree of v ∈ F[x]m is deg v = maxi{deg vi}.
• The degree of V ∈ F[x]m×n is deg V =

∑
i deg vi, i.e. it’s ’‘summed row-degree”.

• The max-degree of this V is maxdeg V = maxi,j{deg vi,j}.
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• The leading position of a non-zero vector v ∈ F[x]m is LP(v) = max{j | deg vj =
deg v}. Note that if more than one entry in v has degree deg v, it is the right-
most entry which is the leading position. The leading term is the polynomial
LT(v) = vLP(v).

• The leading coefficient of a polynomial p is denoted LC(p).

Example 1.1. If V =
(

1 x2

x x

)
, then deg V = 3 and maxdeg V = 2. By convention

v1 =
(
x x2) and v2 =

(
x x

)
so deg v1 = 2 and deg v2 = 1. Furthermore,

LP(v1) = LP(v2) = 2. ♠

We will also work with multivariate polynomial rings. For a monomialm = α
∏
xθii ∈

F[x1, . . . , xκ], then the (w1, . . . , wκ)-weighted degree is degw1,...,wκ m =
∑
wiθi,

where wi ∈ R. For a polynomial in this ring, the (w1, . . . , wκ)-weighted degree
is the maximal of its monomials’ (w1, . . . , wκ)-weighted degrees. We also have two
short-hands:

• degP , deg(1,...,1) P . This will also be referred to as “the degree of P”.
• degxi P , deg(0,...,0,1,0,...,0) P where the 1 is on the ith position.

Lastly, the thesis contains numerous examples; the main purpose is to exemplify
the dimensions and relative sizes of the involved objects, rather than being fully
calculated examples. For vectors and matrices over F[x], we therefore only state the
elements’ degrees, and for this introduce the operator E: if p ∈ F[x] then p E n for
any n ≥ deg p, and E is then extended element-wise to vectors and matrices. We
use the special symbol ⊥ for which only 0 E ⊥.

Example 1.2. Let V be as before. Then V E

(
0 2
1 1

)
. ♠

1.4 Generalised Reed–Solomon codes and channel
model

For two vectors α,β ∈ Fn, introduce an evaluation function evα,β : F[x]→ Fn by

evα,β(f) =
(
β1f(α1), . . . , βnf(αn)

)
(1.1)

The codes we will be focusing on in this thesis can then be defined as follows:

Definition 1.3. An [n, k, d] Generalised Reed-Solomon code, or GRS code, over a
finite field F is the set

C =
{
evα,β(f) | f ∈ F[x] ∧ deg f < k

}
for α ∈ Fn with all elements distinct, as well as β ∈ Fn with all elements non-zero
(not necessarily distinct). The αi are called evaluation points and the βi column
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multipliers. It is easy to show that d = n − k + 1 and the code is therefore MDS.
See e.g. [Rot06] for a comprehensive introduction to GRS codes.

We will not be performing any information theoretic calculations, so a formal chan-
nel model is not actually necessary. However, the underlying assumptions in many
discussions is that we are working over a q-ary symmetric channel with some, rela-
tively low, symbol error probability, or at least a channel which closely resembles
this. Here, q is the size of the field of the code. In particular, the clear focus is in
hard-decision decoding of individual symbol errors on a field level. Only in related
work do we discuss other models, such as burst errors (across field elements) and
soft-decision decoding.

A common antipode to the q-ary symmetric channel is Hamming’s adversarial
channel where the channel is allowed to choose the errors in a malicious way, up to a
certain error weight. This harsh channel is fine for list decoding but will render the
Power decoding paradigm useless: the channel can force the decoder to fail at any
error weight beyond half the minimum distance. Over a random-behaving channel,
however, it performs almost perfectly as well as Sudan decoding. Power decoding is
the subject of Chapter 4.
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Chapter 2

Module minimisation

We will in this thesis extensively deal with free F[x] modules. Consider such a
module V of dimension m. Any basis of V can be represented as a list of vectors
v1, . . . ,vm ∈ F[x]m, or as a matrix V ∈ F[x]m×m whose rows are the vi. Any element
in V will then be some unique F[x]-linear combination of the rows of V . Similarly,
any other basis of V will as a matrix V ′ be unimodular equivalent to V , i.e. there
exists some U ∈ F[x]m×m with detU ∈ F such that V ′ = UV .

The aim of this chapter is to present algorithms for “minimising” bases of such
modules, in the sense of computing from one basis, another basis having a certain
form; we show that a basis of this form always exists and has many desirable
properties which allow to reason about and solve problems related to finding “small”
elements in the module. The reduced basis is essentially a Gröbner basis with respect
to a certain module monomial ordering.

It turns out that many decoding algorithms can be formulated to have a problem
of exactly this type at its computational core. The remainder of the thesis will
be presenting a host of these, and show exactly how the relatively simple and
abstract algorithms given in this chapter elegantly handle these cases with little or
no additional modelling.

In the next section, we will make precise the hinted notions of “reduced basis” and
“small elements”, as well as show exactly how these types of bases are Gröbner
bases of V. Sections 2.2–2.4 each discuss an algorithm for module minimisation. The
algorithms’ running times are all different and put weight on different measures of
complication of the considered problem, which means that for each there are cases
where this is the fastest. In particular, we introduce the measure “orthogonality
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defect” upon which the complexity of the first two of the considered algorithms
can be shown to depend. In Section 2.5, we will introduce the 2D key equation:
a class of equations which strongly generalise the classical key equation of coding
theory; we will see many examples from this class—exercising all its generality—in
the remainder of the thesis. We show how solving such equations can be done by
module minimisation, and in particular how the bases we give have very low orthog-
onality defect. We give a new algorithm for solving these which is a Demand–Driven
variant of the Mulders–Storjohann from Section 2.2. In Section 2.6 we summarise
the complexities of the various algorithms for the various problems in tables for
future reference. Finally, Section 2.7 discusses related work not already explicitly
covered.

In the thesis, we will abuse the term “basis” of an F[x] module V of dimension m to
additionally refer to any matrix from F[x]m×m whose rows constitute a basis of V.
Note that such a matrix must have full rank. Furthermore, throughout this chapter
we will let V be such a module of dimension m.

Contributions
• A more precise and general description of how module minimisation, in the

sense of weak Popov form, is related to Gröbner bases. Among other things,
this has made supporting the very general weights of Φν,w easy, as well as
an improved uncovering of the deep algebraic nature of module minimisation.
Proposition 2.14 on page 17 and Proposition 2.26 on page 21 are concrete
examples of this.

• The description of the complexity of the Mulders–Storjohann and Alekhnovich
algorithms using the orthogonality defect.

• The general form of the 2D key equation, which is one possible description
that encompass a long list of equations and approximations, see Table 2.1 on
page 28, as well as a host of naturally weighted variants of these.

• How to solve any 2D key equation using module minimisation. This also im-
proves the connection between computational algebra and sequence synthesis,
and this chapter contains examples in both directions of how known results
from one side are news to the other.

• The Demand–Driven speedup of Mulders–Storjohann for solving 2D key
equations is completely new, see Section 2.5.2.

• Theorem 2.35 on page 30 describes precisely the set of all solutions to a 2D
key equation once a certain matrix in weak Popov form has been obtained.
Naturally this is new, and it generalises and describes in a simple manner
similar results from on the set of solutions to more classical key equations
and approximations.

• Pointing out that the Alekhnovich algorithm is a Divide & Conquer speedup
of Mulders–Storjohann. Also that several module minimisation, Gröbner basis,
or sequence synthesis algorithms are special cases of Mulders–Storjohann or
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the Demand–Driven algorithm, see Section 2.7.

Many of these ideas, as well as a less general variant of the 2D key equation (with
ρ = 1) and the Demand–Driven variant of Mulders–Storjohann appeared in [Nie13b].
The complexity of the Alekhnovich algorithm from the orthogonality defect also
appeared in [NZ13].

2.1 Preliminaries

2.1.1 Reduced forms

For our notion of “degree” of a matrix, see Section 1.3, the most natural concept of
“minimal” basis is the following:

Definition 2.1. A basis V of V is row reduced if deg V is minimal over all bases
of V.

Obviously, any F[x] module must have a row reduced basis, and such a basis turns
out to have many useful properties. However, we will mostly be using a slightly
less obvious form, which turns out to be stronger and possess even more interesting
properties, but can still be found at essentially the same computational cost.

Definition 2.2. A square matrix V is in weak Popov form if an only if the leading
position of all rows are different.

One reasons this definition is more useful, computationally, is that it is immediately
clear whether a given matrix is in weak Popov form or not, while it seems difficult
to tell whether it is row reduced.

Example 2.3. Consider the following two matrices from F2[x]3×3:

A(1) =

x4 + x 1 x

x2 + 1 x2 x

x3 1 x

 A(2) =

 x x+ 1 x2 + x

x2 + 1 x2 x

x3 1 x


We will see later that the F[x] row spaces of A(1) and A(2) are the same. A(1) is not
in weak Popov form since it has leading positions 1, 2, 1 respectively. A(2) is, however,
in weak Popov form since its leading positions are 3, 2, 1 respectively (remember that
in case of a tie, such as in row 2, it is the right-most position with the row’s degree
that is leading). ♠

Unlike row reduced bases, it is not immediately clear whether a given module always
admits a basis in weak Popov form. We answer this in the affirmative in Section 2.2
by presenting an algorithm for finding such a matrix. The form, however, is not
unique for a given basis; for this requirement, we would need the stronger notion of
Popov form, see e.g. [Pop70,MS03]. This will not be necessary for our aims, though.
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Definition 2.4. The orthogonality defect of V is ∆(V ) , deg V − deg detV .

The concept of orthogonality defect was introduced for F[x] matrices by Lenstra
[Len85] for estimating the running time of his algorithm on module minimisation;
we will use it to a similar effect. The following proposition links together the above
definitions, and shows that the orthogonality defect is a measure of the “distance”
a matrix has from being in weak Popov form.

Proposition 2.5. If a square matrix V is in weak Popov form then ∆(V ) = 0 and
V is row reduced.

Proof. In the alternating sum-expression for detV , the term
∏m
i=1 LT(vi) will occur

since the leading positions of vi are all different. Thus deg detV =
∑m
i=1 deg LT(vi) =

deg V unless leading term cancellation occurs in the determinant expression. How-
ever, no other term in the determinant has this degree: regard some (unsigned) term
in detV , say t =

∏m
i=1 vi,φ(i) for some permutation φ ∈ Sm. If not φ(i) = LP(vi)

for all i, then there must be an i such that φ(i) > LP(vi) since
∑
j φ(j) is the

same for all φ ∈ Sm. Thus, deg vi,φ(i) < deg vi,LP(vi). As none of the other terms
in t can have greater degree than their corresponding row’s leading term, we get
deg t <

∑m
i=1 deg LT(vi).

Thus, ∆(V ) = 0. However, the above also proves that the orthogonality defect is at
least 0 for any matrix. Since any other basis of the same module as that spanned by
V is unimodular equivalent to V, it has the same determinant, and so if ∆(V ) = 0,
V must therefore have minimal degree among these matrices.

Example 2.6. Continuing the example of Example 2.3, one can find that detA(1) =
detA(2) = x7+x6+x5+x2. Now degA(1) = 9 and degA(2) = 7, whence ∆(A(1)) = 2
and ∆(A(2)) = 0, where the latter was indeed expected. ♠

2.1.2 The equivalence to certain Gröbner bases

We could now proceed to prove how certain “minimal” vectors in a given module V
are found directly from the rows of any basis in weak Popov form, akin to [Ale05,
Proposition 2.3] or [Len85, Proposition 1.2]. However, this is just a special case of the
more general observation that a basis in weak Popov form is also a Gröbner basis of V
with respect to a certain module monomial ordering. We will even go one step further
than this and support a whole family of “weighted” module monomial orderings by
considering bases whose images are in weak Popov form after a particular injective
mapping. We will also remind the reader of those properties of Gröbner bases which
will be important for us in the remainder of the thesis. For a wholesome introduction
to Gröbner bases of modules, see e.g. [CLO98].

Gröbner bases and monomial orderings for free modules mimic closely the corre-
sponding theory for ideals andmost of the intuition can be carried over. A “monomial”
of V has the form αxδei where α ∈ F, δ ∈ N0 and ei = (0, . . . , 0, 1, 0, . . . , 0) with the
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1 on the i’th position; {e1, . . . , em} is called the standard basis of F[x]m. A module
monomial ordering ≤ should then obey rules similar to that of an ideal monomial
ordering, i.e. it is a total order on F[x]m, it is a well-ordering, and if a1 ≤ a2 then
xδa1 ≤ xδa2 for all δ ∈ N0, where a1,a2 are monomials. As with ideals, a module
monomial ordering can be extended linearly to an ordering on any element in F[x]m
(where it is no longer total).

Example 2.7. Consider F[x]3, and define a module monomial ordering ≤ as follows:
for any i, j then xδ1ei ≤ xδ2ej if δ1 + i < δ2 + j; to handle when δi + i = δ2 + j,
we define x2e1 ≤ e3 ≤ xe2 and extend by the rules above. Thus, for example
x5e1 ≥ x2e3 ≥ x2e2 ≥ xe3 ≥ x3e1. ♠

We will extend our earlier notation so that for any module monomial order ≤ and
any v ∈ F[x]m, LP≤(v) is the index i such that viei ≥ vjej for j 6= i. Naturally, we
also define LT≤(v) = vLP≤(v).

We remind the reader that any set of vectors G ⊂ F[x]m is a Gröbner basis with
respect to ordering ≤ if and only if all S-vectors reduce to zero, where for two
vi,vj ∈ G

S(vi,vj) = t

LT≤(vi)
vi −

t

LT≤(vj)
vj , where

t =
{

lcm(LT≤(vi), LT≤(vj)) if LP≤(vi) = LP≤(vj)
0 otherwise

See e.g. [CLO98, p. 215]

Definition 2.8. A weighing is a pair (ν,w) ∈ Z+ × Nm0 .

Definition 2.9. For any weighing ν,w, the module monomial ordering �ν,w is
given, for p1, p2 ∈ F[x], by

p1ei �ν,w p2ej ⇐⇒(
ν deg p1 + wi < ν deg p2 + wj ∨ (ν deg p1 + wi = ν deg p2 + wj ∧ i ≤ j)

)
Thus, �ν,w is a flexibly weighted variant of the term-over-position ordering with
positions ordered naturally, i.e. xw1e1 < . . . < xwmem. The most important case
in this thesis will be with weighings having ν = 1, so the reader might pay special
attention to the simplicity of this case in the remainder of the chapter. However, for
the full generality, and in particular the application to Hermitian codes in Section 4.4,
we will treat general ν in all results.

Example 2.10. Continue Example 2.7. It would have been easy had ties been broken
in the natural order x2e1 ≤ xe2 ≤ e3, for then the weighing

(
1, (1, 2, 3)

)
would induce

a module monomial ordering �1,(1,2,3) which could be used. As it stands, we can
instead employ ν > 1 to achieve the tie breaking:

ν = 3 w = (3, 8, 10) = (3 + ε1, 6 + ε2, 9 + ε3)
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This will suffice since if δi + i < δj + j then also 3δi + 3i+ εi < 3δj + 3j + εj, since
εi, εj are both less than 3. Furthermore, if δi + i = δj + j then considering whether
or not 3δi + 3i+ εi < 3δj + 3j + εj with the chosen ε will break the ties exactly as
prescribed.

We leave it to the reader to prove that also the weighing (ν,w) =
(
2, (0, 3, 4)

)
would

work. ♠

We then introduce a mapping which will “embed” these weights into vectors of the
module in question:

Definition 2.11. For any weighing ν,w, the weight-embedding mapping Φν,w :
F[x]m → F[x]m is given by(

v1(x), . . . , vm(x)
)
7→
(
xw1v1(xν), . . . , xwmvm(xν)

)
We extend Φν,w element-wise to sets of vectors, and extend Φν,w row-wise to m×m
matrices such that the ith row of Φν,w(V ) is Φν,w(vi). A matrix V such that Φν,w(V )
is in weak Popov form is said to be in Φν,w-weighted weak Popov form.

Note that Φν,w(V) is a free F[xν ]-module of dimension m, though with elements in
F[x]m, and that any basis of Φν,w(V) is by Φ−1

ν,w sent back to a basis of V. Also note
that if ν = 1, then simply Φν,w(v) = v · diag(xw1 , . . . , xwm).

Proposition 2.12. If V is a basis of V in Φν,w-weighted weak Popov form for some
weighing ν,w, then V is a Gröbner basis with respect to �ν,w.

Proof. Note first for any v ∈ F[x]m, that LP(Φν,w(v)) = LP�ν,w (v). Thus, since
Φν,w(V ) is in weak Popov form, LT�ν,w (vi) 6= LT�ν,w (vj) for i 6= j. This means
that all S-vectors between the rows of V are zero, and so they form a Gröbner basis
with respect to �ν,w.

Example 2.13. Consider the matrices from Example 2.3 and the weighing (ν,w) =
(2, (0, 3, 4)) from Example 2.10. Then

Φν,w(A(1)) =

x8 + x2 x3 x6

x4 + 1 x7 x6

x6 x3 x6

 Φν,w(A(2)) =

 x2 x5 + x3 x8 + x6

x4 + 1 x7 x6

x6 x3 x6


Notice that Φν,w(A(1)) is in weak Popov form while Φν,w(A(2)) is not. We have
det(Φν,w(A(1))) = det(Φν,w(A(2))) = x21 + x19 + x17 + x11. As we would expect,
∆(Φν,w(A(1))) = 0, but also ∆(Φν,w(A(2))) = 0 even though it is not in weak Popov
form. ♠

Remark. A benefit of this modelling is that it is now very easy to show that the
algorithms presented later in this chapter for computing bases in weak Popov form
can be used for computing Gröbner bases with respect to �ν,w: start with any basis
V of V, compute Φν,w(V ) and use this as input to one of the algorithms to compute
a matrix in weak Popov form. If this matrix turns out to be in Φν,w(F[x]m×m)
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then it is a basis (over F[xν ]) of Φν,w(V), so applying Φ−1
ν,w on it we get the sought

Gröbner basis. We will show in Proposition 2.26 on page 21 that this last condition
is always fulfilled.

The downside is that Φν,w(V ) will contain polynomials of higher degree than V ,
which means that the complexity bounds for the algorithms will be wider than if
running them on V directly. In some cases, the complexity analysis can be improved
for modules which are images of Φν,w, however, and the penalty be almost removed;
this is the case for several of the algorithms in this chapter. It is not clear if other
modellings would have lower penalties for their algorithms. ♦

Having a Gröbner basis in hand, the module division algorithm immediately then
gives a host of useful properties. The module division algorithm is almost completely
equivalent to the multivariate division algorithm, a critical component of Gröbner
basis theory for ideals of multivariate polynomials. Given a Gröbner basis of V then
for a given vector u ∈ V, the module division algorithm finds the F[x]-linear combi-
nation of the basis which constructs u. Roughly speaking, it does so by reducing u
by subtracting an appropriate multiple of vi, where vi is a vector in the Gröbner
basis having LP�ν,w (vi) = LP�ν,w (u), and then recursively reduces the resulting
vector until this is zero. For details, consult [CLO98]. By the correctness of this
algorithm, it is easy to show that:

Proposition 2.14. If V is a basis of some V in Φν,w-weighted weak Popov form
for some weighing ν,w, then for any u ∈ V there exists unique p1, . . . , pm ∈ F[x],
which can be found by the division algorithm on u by v1, . . . ,vm with respect to
LP�ν,w , such that u = p1v1 + . . .+ pmvm with also

deg pi ≤ deg uh − deg vi,hi + ν−1(wh − whi) if hi < h

deg pi = deg uh − deg vi,hi if hi = h

deg pi < deg uh − deg vi,hi + ν−1(wh − whi) if hi > h

where h = LP�ν,w (u) and hi = LP�ν,w (vi) for each i.

Proof. The division algorithm on u would commence by reducing u to some u′ �ν,w
u by u′ = u − p′ivi for some p′i ∈ F[x], where i is the unique index such that
hi = h. Therefore, u and p′ivi must order equal according to �ν,w, which means
ν deg uh + wh = ν(deg p′i + deg vi,h) + wh and thus deg p′i = deg uh − deg vi,h.

In all following iterations of the division algorithm the vector to reduce will order
less than u according to �ν,w; thus whenever vi is used, it must be subtracted with
a coefficient of degree at less than deg p′i. The pi of the proposition will be the sum
of all these coefficients, and thus have degree deg p′i.

For any other indexes i, we proceed similarly, though the first reduction using vi
with hi 6= h must be on some u′′ �ν,w u. Thus if p′′i vi is deducted from u′′, for some
p′′i ∈ F[x], we must have p′′i vi �ν,w u. Thus ν(deg p′′i +deg vi,hi)+whi ≤ ν deg uh+wh
if hi < h, while ≤ is replaced by < otherwise. This holds each iteration that vi is
used.
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Corollary 2.15. In the context of Proposition 2.14, any u ∈ V has deg uhi ≥
deg vi,hi where i is chosen such that hi = LP�ν,w (u).

Example 2.16. Consider the vector u = (x5 + x, x2 + x+ 1, x3 + x2 + x). Since
A(2) from Example 2.3 on page 13 is in weak Popov form, its rows form a Gröbner
basis of its row space with respect to �1,0. Running the division algorithm on u, we
first find that since LP(u) = 1 = LP(a(2)

3 ), we should deduct x2a
(2)
3 from u to get

remainder ù = (x, x + 1, x2 + x) = a
(2)
1 ; thus u = a

(2)
1 + x2a

(2)
3 and is in the

row space of A(2). Proposition 2.14 had predicted deg p1 ≤ 3,deg p2 ≤ 3,deg p3 = 2,
which are all satisfied.

Consider now the weighing (ν,w) = (2, (0, 3, 4)) of Example 2.10; then Φν,w(u) =
(x10 +x2, x7 +x5 +x3, x10 +x8 +x6). Since Φν,w(A(1)) is in weak Popov form, the
rows of A(1) form a Gröbner basis of its row space with respect to �ν,w. Performing
the �ν,w-weighted division algorithm on u using the rows of A(1), or equivalently, per-
forming the unweighted division algorithm on Φν,w(u) using the rows of Φν,w(A(1))
and then dividing the resulting x-powers by ν, we find that u = a

(1)
1 +(x2 +x)a(1)

3 .♠

Remark. The Gröbner bases of Proposition 2.12 are actually unnormalisedminimal
Gröbner bases (see e.g. [Lau03, p. 212] for minimal Gröbner bases of ideals), since
they have a minimal number of elements. They are however not reduced (see same
reference); these latter are canonical for any free module. Similar to the weak Popov
form ↔ Gröbner basis relation, reduced Gröbner bases with respect to �ν,w are
unsorted variants of the aforementioned Popov form [Pop70,MS03]. ♦

For arguing about running time, we can relate the max-degree and orthogonality
defect of bases of Φν,w(V) to those of V:

Lemma 2.17. For any basis V and any weighing ν,w

maxdeg (Φν,w(V )) ≤ ν maxdeg (V ) + wmax

∆(Φν,w(V )) ≤ ν∆(V ) +mwmax − w̄

where wmax = max{wi} and w̄ =
∑m
i=1 wi.

Proof. Note first that for any v ∈ V, deg(Φν,w(v)) ≤ ν deg v + wmax, giving the
max-degree bound. It also bounds deg(Φν,w(V )). Note then that det(Φν,w(V )) =
xw̄ det(V )|x=xν , since it is a sum of terms of the form

∏m
i=1 x

wφ(i)vi,φ(i)(xν), where
φ is a permutation of 1, . . . ,m.

Example 2.18. Consider the matrices of examples Example 2.3 on page 13 and
Example 2.10 with (ν,w) = (2, (0, 3, 4)). Then

maxdeg (Φν,w(A(1))) = 8 ≤ 2maxdeg (A(1)) + 4 = 12
maxdeg (Φν,w(A(2))) = 8 ≤ 2maxdeg (A(2)) + 4 = 10

∆(Φν,w(A(1))) = 0 ≤ 2∆(A(1)) + 3 · 4− 7 = 6
∆(Φν,w(A(2))) = 0 ≤ 2∆(A(2)) + 3 · 4− 7 = 5

♠
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2.2 Mulders–Storjohann

We will now present an elegant algorithm for computing a basis in weak Popov
form of some free module V ⊂ F[x]m of rank m, given any square basis of V.
The algorithm is due to Mulders and Storjohann [MS03], and was at the time of
its publication the fastest known. We will in following sections discuss two other
algorithms for solving the same problem, both of which are faster in the generic
case for some parameters: the Alekhnovich algorithm, which can be seen as a D&C-
variant of the Mulders–Storjohann; as well as the one by Giorgi, Jeannerod and
Villard (GJV) which is inherently different. Furthermore, in Section 2.5.2, we will
specialise Mulders–Storjohann for certain types of initial bases. The reason for this
plethora is that we will not (only) be handling generic cases, and that whichever
algorithm is fastest depends on the case.

Both Mulders and Storjohann, Alekhnovich and the GJV were originally given for
non-square matrices. However, since we will only be applying them on square, full-
rank matrices, and since the complexity estimates for the first two in this case can
be improved, we will only present them as such.

Definition 2.19. Applying a row reduction on a full-rank matrix over F[x] means
to find two different rows vi,vj , deg vi ≤ deg vj such that LP(vi) = LP(vj), and
then replacing vj with vj − αxθvi where α ∈ F and θ ∈ N0 are chosen such that
the leading term of the polynomial LT(vj) is cancelled.

Definition 2.20. The value function ψ : F[x]m → N0 is ψ(v) = m deg v + LP(v).

Lemma 2.21. If we replace vj with v′j in a row reduction, then ψ(v′j) < ψ(vj).

Proof. We can’t have deg v′j > deg vj since all terms of both vj and αxθvi have
degree at most deg vj . If deg v′j < deg vj we are done since LP(v′j) < m, so assume
deg v′j = deg vj . Let h = LP(vj) = LP(vi). By the definition of leading position, all
terms in both vj and αxθvi to the right of h must have degree less than deg vj , and
so also all terms in v′j to the right of h satisfies this. The row reduction ensures that
deg v′j,h < deg vj,h, so it must then be the case that LP(v′j) < h.

Algorithm 1 Mulders–Storjohann
Input: A basis V of some free F[x] module V ⊆ F[x]m×m.
Output: A basis of V in weak Popov form.

1 Apply row reductions on the rows of V until no longer possible.
2 return V.

Theorem 2.22. Algorithm 1 is correct. It performs fewer than m(∆(V ) +m) row
reductions and has asymptotic complexity O(m2∆(V )maxdeg V ).

Proof. If Algorithm 1 terminates, the output matrix must be a basis of V since it is
reached by a finite number of row-operations on a basis of V. Since we can apply a
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row reduction on a matrix if and only if it is not in weak Popov form, the algorithm
must bring V to weak Popov form.

Termination follows directly from Lemma 2.21 since the value of a row decreases
each time a row reduction is performed. To be more precise, we furthermore see that
the maximal number of row reductions performed on V before reaching a matrix U
in weak Popov form is at most

∑m
i=1 ψ(vi)− ψ(ui). Expanding this, we get

m∑
i=1

ψ(vi)− ψ(ui) =
m∑
i=1

(
m(deg vi − degui) + LP(vi)− LP(ui)

)
= m(deg V − degU) +

m∑
i=1

LP(vi)−
(
m

2

)
< m(∆(V ) +m)

where we use degU = deg detU = deg detV and that the LP(ui) are all different.

For the asymptotic complexity, note that during the algorithm, no polynomial in
the matrix will have larger degree than maxdeg V . The estimate is reached simply
by remarking that one row reduction consists of m times scaling and adding two
such polynomials.

Example 2.23. Consider the matrices of Example 2.3 on page 13; since A(1) is not
in weak Popov form, we can use it as input to the Mulders–Storjohann algorithm.
Initially, there is only one possible row reduction, namely reducing with xa(1)

3 on
a

(1)
1 . The result is exactly A(2), so since this is in weak Popov form, the algorithm

terminates after only one iteration. This also shows that A(1) and A(2) have the
same row space as, previously claimed. ♠

If we are seeking a Gröbner basis with respect to �ν,w for some weighing ν,w, the
following theorem shows that we can simply run Mulders–Storjohann on Φν,w(V )
for some basis V of V; this is trivial for ν = 1, but if not, we have to verify that
we do not leave the F[xν ] module. Since Φν,w(V ) contains larger polynomials than
V , one could fret that the running time would suffer; fortunately the theorem also
shows that this is not the case.

Theorem 2.24. Let ν,w be some weighing and U a basis of V. Algorithm 1 on
input V = Φν,w(U) returns a basis (over F[xν ]) of Φν,w(V) in weak Popov form.
Let δ = ν−1∆(Φν,w(U)). The algorithm performs at most m(δ+m) row reductions.
It has complexity O

(
m2(δ +m)ν−1maxdeg (Φν,w(U))

)
.

Proof. Since the row reductions are performed over F[x], we first need to argue that
we do not leave the F[xν ] module for V to continue to be a basis of Φν,w(V) after
each row reduction: however, to begin with V = Φν,w(U) is a basis of Φν,w(V), and
since any ũ, ṽ ∈ Φν,w(V) have deg ũi ≡ deg ṽi mod ν for all i, the xθ scalar in the
first row reduction is a power of xν ; thus, it is indeed an F[xν ] row reduction, and we
still have an F[xν ] basis of Φν,w(V). By induction, this will be the case throughout.
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To bound the number of row reductions, observe that for any v ∈ V, if we let
h = LP�ν,w (v) we have

ψ(Φν,w(v)) = m(ν deg vh + wh) + h

≡ mwh + h mod mν

That is, on any given interval of size mν, ψ(Φν,w(v)) can attain at most m of
the values, depending on the value of LP�ν,w (v). Continuing as in the proof of
Theorem 2.22, we get the upper bound on the number of row reductions, which can
then be simplified using Lemma 2.17.

Each position of some Φν,w(v) ∈ Φν,w(V) is a sparse polynomial with only every
ν coefficient non-zero. As before, any monomial in the matrix during the run of
the algorithm has at most degree maxdeg (Φν,w(U)). This gives the complexity
O(mν−1maxdeg (Φν,w(U))) for performing one row reduction.

Example 2.25. Consider the weighted matrices of Example 2.13 on page 16; since
Φν,w(A(2)) is not in weak Popov form, we can use it as input to the Mulders–
Storjohann algorithm. Again, we have only one possible row reduction, reducing
with x2Φν,w(a(2)

3 ) on Φν,w(a(2)
1 ). The result is exactly Φν,w(A(1)) which is in weak

Popov form, whence the algorithm terminates. Notice that the exponent in our row
reduction was a power of ν = 2, so it was indeed an F[xν ]-combination as expected.♠

Now we are in a position to prove that any algorithm for bringing matrices to weak
Popov form can be used to find a Gröbner basis with respect to �ν,w of V using Φν,w.
Aside from its possible theoretical interest, it lets us to know that algorithms in
the following chapters, in particular the GJV of Section 2.4, work correctly together
with Φν,w without having to investigate in detail the computations.

Proposition 2.26. Let V be a basis of V. For a given weighing ν,w, let Ṽ be the
F[x]-module spanned by the rows of Φν,w(V ) (i.e. the F[x]-closure of Φν,w(V)). If
some Ṽ in weak Popov form is a basis of Ṽ, then Ṽ ∈ Φν,w(F[x]m×m) and is a
Gröbner basis of Φν,w(V) (over F[xν ]).

Proof. Let Ṽ◦ be the matrix in weak Popov form returned by Algorithm 1 on input
Φν,w(V ). By Theorem 2.24, this is a basis of Φν,w(V) (over F[xν ]) and hence also
a basis of Ṽ (over F[x]). We will prove the statement by showing how Ṽ◦ can be
transformed into Ṽ by a series of F[xν ] row operations.

The Popov form is a stronger variant of the weak Popov form, which is canonical
for a given free F[x]-module [Pop70]. Mulders and Storjohann in [MS03] gave an
algorithm for computing a basis in Popov form, given one in weak Popov form, and
this algorithm simply performs a series of row operations on the initial basis (called
“simple transformations of the second kind” in the article). These row operations
are much like our row reductions in the sense that they use one row to cancel the
leading term of some position of another row; thus by the same argument as in the
proof of Theorem 2.22, these are in fact F[xν ] row operations.
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Since Ṽ and Ṽ◦ are both bases of Ṽ, they must transform to the same Popov form
by this algorithm. Therefore, Ṽ◦ can first be transformed by F[xν ] row operations
into Popov form, and then transformed into Ṽ by retracing the F[xν ] row operations
needed for getting Ṽ into Popov form.

2.3 The Alekhnovich algorithm

Mulders–Storjohann’s algorithm admits a Divide & Conquer version which is due to
Alekhnovich [Ale05]. However, he seemed not to be aware of the work of Mulders and
Storjohann, and that his algorithm is indeed a variant of theirs. A formal description
of the algorithm as well as all proofs are in [Ale05]—as well as the more general
analysis in [Bra10]—so we will here only give an overview of the algorithm and its
connection to Mulders–Storjohann, as well as a discussion on its complexity.

Consider a run of Mulders–Storjohann on input V , a basis of V. The Alekhnovich
algorithm works by structuring the same row reductions performed by Mulders–
Storjohann in a tree-like fashion; more precisely it hinges on the following series of
observations, all of which are proved in [Ale05]:

1. Imagine the row reductions bundled such that each bundle reduces maxdeg Ṽ
by 1, where Ṽ is the result of applying all earlier row reductions to V .

2. To calculate the row reductions in one such bundle on Ṽ , one needs for each
row ṽi of Ṽ to know only the monomials in ṽi having degree deg ṽi.

3. Therefore, to calculate a series of t such bundles, one needs to know only
monomials of degree greater than deg ṽi − t. Call the matrix containing only
these a t-projection of Ṽ .

4. Any series of row reductions can be represented as an invertible matrix
A ∈ F[x]m×m where the product AṼ is then the result of applying those row
reductions to Ṽ .

5. Thus, we can structure the bundles in a binary tree, where to calculate the
row reduction matrix for some node, representing say t bundles, given the
matrix Ṽ , one first recursively calculates the left half of the bundles on a t/2-
projection of Ṽ to get a row reduction matrix A1. Then recursively calculate
the right half of the bundles on a t/2-projection of A1Ṽ to get A2, and the
total row reduction matrix becomes A2A1.

We have exactly the same choice of row reductions as in Mulders–Storjohann, but
the computations are now done on matrices where each cell contains only one
monomial (since, in the leaves of the tree, we work on 1-projections), speeding up
those calculations by a factor maxdeg (V ). Collecting the row reductions is then
done using matrix multiplications.

That the Alekhnovich algorithm can bring Φν,w(V ) to weak Popov form follows
immediately from its general correctness, and thus from Proposition 2.26 it produces
a basis of Φν,w(V) over F[xν ]. However, just as for the case of Mulders–Storjohann,
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to better estimate its running time we need to more carefully consider the effects
of weights. This is not done in [Ale05], but it was done by Brander [Bra10]. Along
with observations similar to those in Section 2.2, for our case we get:

Theorem 2.27. Let ν,w be some weighing and U a basis of V. The Alekhnovich
algorithm on input V = Φν,w(U) returns A ∈ F[xν ]m×m such that AV is a basis
(over F[xν ]) of Φν,w(V) in weak Popov form.

Let δ = ν−1∆(Φν,w(U)) and assume that m ∈ O(δ); then the algorithm has com-
plexity O

(
M(m)P(δ) log(δ)

)
.

Proof. By [Bra10, Proposition 3.13, Theorem 3.14], computing A has complexity
O(m2(t+m)) for performing row reductions, added withO(m3P(ν−1t) log(t)) for ma-
trix multiplications during the algorithm, where t is deg(Φν,w(U))− deg(Φν,w(Ũ));
for the result to be in weak Popov form, we set t = ∆(Φν,w(U)) = νδ. However,
Brander used in both estimates that the number of row reductions was bounded
by O(m(νδ + m)); we showed in Theorem 2.24 that it was only m(δ + m), so
going carefully through the proof of Brander, we see that we can actually com-
pute the row reductions in only O(m2(δ + m)) and the matrix multiplications in
O
(
M(m)P(δ) log(m(δ +m))

)
.

What we are interested in is not A but AV , however. In the generic case, this prod-
uct computation turns out to be swallowed by the running time of the Alekhnovich
algorithm, but in the case where δ is less than ν−1maxdeg (V ), then the Alekhnovich
algorithm will only ever consider a νδ-projection of V in order to calculate A. Obvi-
ously, to calculate AV , one needs all the terms, but for many cases we actually just
need a specific row, and this can give a speedup. The following theorem summarise
the complexity in the various cases:

Corollary 2.28. In the context of Theorem 2.27, and assuming that m ∈ O(δ), let
γ = ν−1maxdeg V . Then the Alekhnovich algorithm can find a basis of Φν,w(V) in
weak Popov form in complexity O

(
M(m)(P(δ) log(δ) + P(γ))

)
.

Alternatively, assuming only m ∈ O(νδ), then for any i ∈ 1, . . . ,m, we can find the
row with leading position i in complexity O

(
M(m)P(δ) log(δ) +m2P(γ)

)
.

Proof. We first compute A in O
(
M(m)P(δ) log(δ)

)
. In the corollary’s first case, we

then compute the product AV . By [Bra10, Lemma 3.12], maxdegA ≤ 2νδ. Note
that both A and V contain only polynomials which are sparse with only every ν
coefficient non-zero, and two such polynomials of some degree νδ can be multiplied
together in P(δ). Therefore, this final matrix product will have complexity at most
O
(
M(m)P(max{δ, ν−1maxdeg V })

)
.

For the second case, [Ale05, Lemma 2.7] states that the Alekhnovich algorithm
would return the same matrix A for V as for Ṽ , where Ṽ is a νδ-projection of V .
Thus, both AṼ and AV are in weak Popov form, and the leading position of each
row in AṼ is also the leading position of the corresponding row of AV . Let h be
the row in AV with leading position i. We can compute the hth row of AV by first
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computing the product AṼ ; then finding the value of h by inspecting AṼ ; and then
computing only the hth row of AV .

Computing AṼ is performed in O
(
M(m)P(δ)

)
by arguments similar to before, and

j is found by simple inspection. Computing the jth row of AV can be done in
O
(
m2P(max{δ, ν−1maxdeg V })

)
by the straightforward algorithm.

2.4 The GJV algorithm

Giorgi, Jeannerod, and Villard [GJV03] gave a quite different algorithm for bringing
matrices to weak Popov form. This algorithm is the fastest known for a generic
matrix V, with complexity O(M(m)P(maxdeg V ) log(m maxdeg V )O(1)). It is a Las
Vegas certified algorithm, meaning that it is randomised but always returns a correct
result in the specified time.

Later in the thesis, we will use this algorithm simply as a black-box solver for finding
bases in weak Popov form, and so we will not formally present and prove it; we will
here only give a brief introduction to the approach taken by the algorithm.

The main focus in [GJV03] is actually to solve the following generalisation of
the Padé approximation problem (see also Section 2.5) and then reduce several
polynomial matrix problems—including module minimisation—to that:

Problem 2.29 (Minimal d-approximation basis). Given V ∈ F[x]m×m′ and d ∈ Z+,
find a matrix M ∈ F[x]m×m in weak Popov form such that MV ≡ 0 mod xd, the
right-hand side being the m×m′ zero-matrix.

They give an algorithm with complexity O
(
M(m)P(d) log(md)O(1)) for solving this

problem: essentially, they show how to build a d′-approximation basis from a (d′−1)-
approximation basis as well as noting that the identity matrix is a 0-approximation
basis. Each iteration operates on F[x]m×m matrices of max-degree less than d′, and
a recurrence relation allows the d iterations to be structured in a Divide & Conquer
binary tree and combined using matrix multiplication; this yields the quasi-linear
dependence on d.

For reducing module minimisation to the above problem, they do the following:
first, one finds U ∈ F[x]m×m such that H = U>(V >)−1 is a proper and irreducible
matrix fraction, both of the keywords meaning something similar to what they do for
polynomial fractions. Any other proper and irreducible matrix fraction Ũ>(Ṽ >)−1

such that H = Ũ>(Ṽ >)−1 must have V be unimodular equivalent to Ṽ . We can
also loosen the equality requirement for any d to:(

Ṽ Ũ
)(H>
−I

)
≡ 0 mod xd (2.1)

We can represent H as a matrix in FJxKm×m, i.e. with entries being power series.
For any d, we can truncate this representation to xd in the above equation, making
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that equation one purely over F[x]-matrices. The two following observations are
generalisations of observations from approximating power series by polynomial
fractions: 1) If d is large enough compared to maxdeg V , then the only solutions
Ũ , Ṽ are those that also satisfy the above with unconditional equality; and 2) a
minimal solution to this congruence, in a certain precise sense, would imply that Ṽ
is in weak Popov form.

Now any m rows of a minimal d-appromixation basis of (H> − I)> will satisfy
(2.1). The last piece of the puzzle is then to show that the m minimal-degree rows of
such a basis with d chosen big enough will be a minimal solution; and thus from the
first n columns of those rows we get a matrix in weak Popov form and unimodular
equivalent to V .

In this light, the GJV algorithm resembles a generalised version of a Padé approxi-
mation method for polynomials, and in particular the Berlekamp–Massey algorithm.
The final result is:

Theorem 2.30. Given a basis V of V, the GJV Algorithm can compute a basis of
V in weak Popov form in complexity O

(
M(m)P(maxdeg V ) log(m maxdeg V )O(1)).

Remark. As always, the above complexity is in operations over our ground field
F. There is a problem with the Las Vegas initialisation of the algorithm, however,
which leads to one needing to perform all computations in a small extension field, as
pointed out by Bernstein [Ber11a, p. 4]1. This adds another factor log(deg detV ) ⊂
log(m maxdeg V ), which is swallowed by the big-O exponent. ♦

Remark. Since in general, we have ∆(V ) ∈ O(m maxdeg V ), the GJV algorithm is
asymptotically faster than the Alekhnovich by a factor O(m/ log(m maxdeg V )O(1)),
which is a good trade-off when m is not very small relative to maxdeg V .

However, for a random matrix V , experiments I have conducted with Codinglib
[Nie13a] indicate that the row reduction matrices computed in the Alekhnovich
algorithm have max-degree orders of magnitude in m from the upper bound used in
its complexity estimates, and multiplication of these is what constitutes the most
computational expensive part of that algorithm. Furthermore, both the GJV and
the Alekhnovich algorithms rely on fast multiplication techniques which notoriously
contribute a large constant factor hidden by the big-O notation; however, the GJV
relies on it in two levels: to structure the iterations as well as within each iteration.

Coupled with the remark on extension fields, one could therefore imagine that
Mulders–Storjohann is fastest on small problems; Alekhnovich fastest on larger
or random problems; while the GJV is best on “nasty” and very large problems.
However, without a more precise analysis and efficient implementations, this is
nothing more than speculation. ♦

1Bernstein’s note on the GJV algorithm is immediately followed by a complexity comparison
between the GJV and the Alekhnovich algorithm; in this comparison Bernstein seem to have
misunderstood the complexity of the latter, as he mixes up deg V with maxdeg V .
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An interesting question is then to ask whether we can improve the above complexity
estimate of the GJV when the input is of the form Φν,w(U). This is at least not
completely straightforward, and I have not been able to find such an improvement.
It is intriguing therefore, that the above algorithm is for parameters of our interest
faster than the Alekhnovich for generic matrices and ν = 1, but that whenever
deg V ∈ Ω(ν∆(V )), this is not necessarily the case. In later chapters we will see
examples of both.

2.5 2D key equations

One of the classical decoding methods for Reed–Solomon codes, due to Berlekamp
[Ber68], is based on solving the so-called key equation:

Λ(x)S(x) ≡ Ω(x) mod xn−k

deg Λ > deg Ω (2.2)

where S(x), n, k are known while Λ,Ω are sought such that Λ has minimal degree.
We will see much more of this equation later, both in Chapter 4 and Chapter 5, along
with a proper description and proof. We will also see a variety of generalisations of
it for different decoding methods.

In this section we will therefore define a very broad generalisation of the above
and explain how any instance from it can be solved by bringing an appropriate
matrix to weak Popov form. Naturally, this job is doable with any of the three
algorithms described in preceding sections, but we will also give a new variant of
the Mulders–Storjohann algorithm which is faster for most parameter choices but
applicable for only this family of modules.

For our generalisation, we have a set of “approximation” criteria such as the above
congruence, but the filtering on degree requirements will come in two types.

Problem 2.31 (2D key equations, Type 1 and 2). Given

• Size parameters ρ, σ ∈ Z+

• Moduli G1, . . . , Gσ ∈ F[x], non-zero.
• Polynomials Si,j ∈ F[x] with degSi,j < degGj for i = 1, . . . , ρ and j = 1, . . . , σ
• Weights ν ∈ Z+, η = (η1, . . . , ηρ) ∈ Nρ0 as well as w = (w1, . . . , wσ) ∈ Nσ0
• If the 2D key equation is of Type 1, then also some N ∈ N.

Find a non-zero Λ = (Λ1, . . . ,Λρ) ∈ F[x]ρ such that there exist polynomials
Ω1, . . . ,Ωσ satisfying

ρ∑
i=1

ΛiSi,j ≡ Ωj mod Gj j = 1, . . . , σ
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For Type 1, they should also satisfy

ν deg Λi + ηi < N, i = 1, . . . , ρ
ν deg Ωj + wj < N, j = 1, . . . , σ

For Type 2, they should instead satisfy

max
i
{ν deg Λi + ηi} > max

j
{ν deg Ωj + wj}

If furthermore maxi{ν deg Λi + ηi} is minimal among all Λ satisfying the above, for
either Type 1 or Type 2, then this is a minimal solution.

Example 2.32. Consider F2[x] as our polynomial ring. With ρ = 2 and σ = 1,
then

S1(x) = x6 + x5 + x2 + x S2(x) = x6 + x2 + x G1(x) = x7 + x6 + x5 + x2

gives rise to a family of 2D key equations of either type and of various weights,
where we are searching for Λ1(x),Λ2(x) and Ω1(x) such that

Λ1(x)S1(x) + Λ2(x)S2(x) ≡ Ω1(x) mod G1(x)

We could e.g. seek the one where (Λ1,Λ2) has minimal degree (i.e. the greatest of the
two polynomials’ degrees is minimal) while being greater than deg Ω1. That would
correspond to Type 2 and the weights ν = 1 and η1 = η2 = w1 = 0. ♠

We will call both the vectors (Λ1, . . . ,Λρ) and the complete (Λ1, . . . ,Λρ,Ω1, . . . ,Ωσ)
solutions to the 2D key equation if they satisfy the requirements. Since all the
requirements in Problem 2.31 for the indeterminates are F-linear, all solutions form
an F-linear space; in a sense, within the degree limitations, it is even F[x]-linear.

Remark. It would be an equally powerful definition to omit the Ωj and always have
the right-hand side 0. Ignoring the filtering condition for now, a 2D key equation
could still be described by this, since if we define for i = ρ + 1, . . . , ρ + σ that
Si,j = −1 for j = i+ ρ and Si,j = 0 otherwise, then

ρ∑
i=1

ΛiSi,j +
ρ+σ∑
i=ρ+1

Ωi−ρSi,j ≡ 0 mod Gj

so (Λ1, . . . ,Λρ,Ω1, . . . ,Ωσ) is a solution to a 2D key equation with ρ+ σ left-hand
side indeterminates and all right-hand side indeterminates forced zero by wi set
sufficiently large.

A problem definition with all the right-hand side always zero would closely resemble
a weighted, twisted (by the Gj) variant of minimal d-approximant. While this is
more elegant than our definition in some sense, our module interpretation more
directly fits our definition (by a factor 2 in module dimension). Furthermore, for the



28 Module minimisation

Name Specialisations References
Simultaneous Padé ρ = 1, Gj = xdj , fixed N [BGM96,BL92,BL09]
Rational reconstruction ρ = 1, Gj = G, wj = w [OS06]
Hermite Padé σ = 1, G1 = xd, fixed N [BGM96,BL92]
Matrix Padéa Gj = xd, fixed N [BL92,BL94,BGM96]
Extended key equation σ = 1, G1 = xd [RR00]
Generalised key equations Gj = xdj [ZGA11]
Classical key equation ρ = σ = 1, G1 = xd, η1 = w1 = 0 [Ber68,Mas69]
Goppa key equation ρ = σ = 1, η1 = w1 = 0 [SKHN75]
Gao key equation ρ = σ = 1 [Gao03]
Power key equations or
Multi-sequence LFSR ρ = 1, Gj = xdj [FT91,SS06,Wang3]

Minimal d-approximation Gj = xd, wj = d [BL92,BL94,GJV03]

Table 2.1: Several types of equations and approximations discussed in the literature which
2D key equations generalise. The first group is of Type 1 and the second of Type 2. Setting
an indexed variable to a non-indexed one, e.g. Gj = G, means that all of the variables
must have the same value. By “fixed N” we mean that ηi, wj and N are assigned such
that a solution is always guaranteed to exist by linear algebraic arguments. In all of the
above ν = 1. The references are not necessarily exhaustive lists on articles concerning each
type.

aIn [BL92], this is called “Vector Hermite Padé”. For slightly less restricted ηi, it is called “Power
Hermite Padé” in [BL92,BL94]

applications in coding theory given in this thesis, we will always have a non-zero
right-hand side as ours. ♦

Problem 2.31 is not only a generalisation of the key equation (2.2), but of a range
of other types of equations and Padé approximation variants. Table 2.1 gives an
overview of some of these as well as how their form is specialised from the 2D key
equations, but see also Section 2.7

Remark. As can be seen in Table 2.1, we can find a minimal d-approximation by
solving a 2D key equation; in fact, as we will see in Section 2.5.1, we can find an
entire minimal d-approximation basis. Not surprisingly, we will be solving such 2D
key equations by finding a basis in weak Popov form of a certain module.

We described in Section 2.4 how the GJV algorithm works by finding a minimal
d-approximation basis of a certain module, and how this can be used to find bases
in weak Popov form. Thus, we could, for instance, solve a minimal d-approximation
problem by solving a 2D key equation by performing module minimisation, by
finding a minimal d-approximation basis. The modules that are manipulated double
in dimension for each indirection in this loop, though, so apart from proving a
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certain computational equivalence between module minimisation and minimal d-
approximation (under the given transformations), this is mostly a curiosity. ♦

Example 2.33. It is perhaps not immediately clear that ν > 1 is ever useful, and
indeed all the uses of 2D key equations in this theses apart from Section 4.4 employ
ν = 1. Indeed, for a 2D key equation of Type 1, it is never necessary to use ν > 1:
with a 2D key equation of Type 1 and ν > 1, it is not too hard to show that one
can always find new weights such that choosing these with ν = 1 allows exactly the
same set of solutions. It is therefore somewhat superfluous to allow ν > 1 in the
definition for this case.

However, the same does not hold for Type 2: the following demonstrates by a con-
trived example that it can be useful to find solutions to the congruence satisfying quite
specific degree constraints, while disallowing others. Let us focus only on the degrees
of the Λi and Ωj, and let σ = ρ = 2. Assume therefore that s = (Λ1,Λ2,Ω1,Ω2)
satisfies the congruence. Now we wish to recognise it as a solution if also

s E (1, 1, 1, 1) or s E (0, 1, 0, 1)

but we do not wish to recognise it as a solution if it instead satisfied

s E (0, 0, 0, 1) or s E (0, 1, 1, 0)

Note that if s E (1, 1, 1, 1) is recognised as a solution, that implies for instance that
also s E (2, 2, 2, 2) is recognised as a solution, due to the way the weights filters
solutions in Type 2. Now, choosing ν = 4, one can easily verify that the above is
fulfilled by choosing (η1, η2, w1, w2) = (3, 1, 2, 0). We will show that with ν = 1, it
is not possible to achieve the same: in this case, since s is a solution if and only if
max{deg Λi + ηi} > max{deg Ωj +wj}, then the restrictions imply that the weights
must satisfy

max{w1, w2} < max{η1, η2} ≤ max{w1, w2 + 1}
max{w1, w2 + 1} < max{η1, η2 + 1} ≤ max{w1 + 1, w2}

But that means max{w1, w2} < max{w1, w2 + 1} < max{w1 + 1, w2}. This is
impossible to achieve since w1, w2 are integers.

In Section 4.4 we use ν > 1 and actually demonstrate that it is quite necessary for
optimal decoding performance, see the remark on page 121. ♠

2.5.1 Module perspective

Consider a given 2D key equation problem. We will now give a free F[x] module
which has the property that any basis in weak Popov form directly reveals a minimal
solution to the problem; we even get something like a Gröbner basis for the space
of all solutions.



30 Module minimisation

Consider M ∈ F[x](ρ+σ)×(ρ+σ) such that

M =
(
I S

0 G

)
=



1 0 . . . 0 S1,1 S1,2 . . . S1,σ

0 1
... S2,1 S2,2 S2,σ

...
. . .

...
. . .

...

0 . . . 1 Sρ,1 Sρ,2 . . . Sρ,σ
0 0 . . . 0 G1 0 . . . 0

0 0
... 0 G2

...
...

. . .
...

. . .

0 . . . 0 0 . . . Gσ


(2.3)

where I is the ρ × ρ identity matrix, S ∈ F[x]ρ×σ has elements Si,j , and G =
diag(G1, . . . , Gσ). LetM be the F[x] module spanned by the rows of M .

Lemma 2.34. A vector (λ1, . . . , λρ, ω1, . . . , ωσ) is inM if and only if
ρ∑
i=1

λiSi,j ≡ ωj mod Gj j = 1, . . . , σ (2.4)

Proof. Equation (2.4) is easily seen to be satisfied for each row of M , so by F[x]-
linearity, it is satisfied for every vector in M. Contrarily, for any vector v =
(λ1, . . . , λρ, ω1, . . . , ωσ) satisfying (2.4) there must exist p1, . . . , pσ ∈ F[x] such that∑ρ

i=1 λjSi,j+piGi = ωi wherefore v = λ1m1+. . .+λρmρ+p1mρ+1+. . .+pσmρ+σ,
and so v ∈M.

Denote by w̄ the vector of all the weights (η1, . . . , ηρ, w1, . . . , wσ) and by w̄i the
elements of this vector.

Theorem 2.35. Let V be a basis ofM in Φν,w̄-weighted weak Popov form with the
rows ordered such that LP�ν,w (vi) = i. Then for any non-zero u ∈ M there exists
unique p1, . . . , pρ+σ ∈ F[x], which can be found by the division algorithm on u by
v1, . . . ,vρ+σ with respect to LP�ν,w̄ , such that u =

∑ρ+σ
i=1 pivi.

1. u is a solution to the 2D key equation of Type 1 if and only if for all i then

deg pi < ν−1(N − w̄i)− deg(vi,i) (2.5)

2. u is a solution to the 2D key equation of Type 2 if and only if for i > ρ then

deg pi < max
j≤ρ
{deg pj + deg vj,j + ν−1w̄j} − ν−1w̄i − deg vi,i (2.6)

Proof. Obviously pi exist such that they linearly combine with the vi into u, since the
vi form a basis ofM. For the degree constraints, recall that by Proposition 2.12 on
page 16, the vi form a Gröbner basis under the ordering �ν,w̄. From Lemma 2.34
we know that all rows of V must satisfy (2.4). Note also that for any u, then
ν deg ui + w̄i = deg(xw̄iui(xν)) which means the maximal of all of these equals
deg(Φν,w̄(u)).
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Consider first Type 1. By the above u is a solution if and only if deg(Φν,w̄(u)) < N .
But deg(Φν,w̄(pivi)) < N ⇐⇒ pi < ν−1(N − w̄i)− deg(vi,i), so u is a solution if
and only if it satisfies the requirement (2.5).

Consider now Type 2 and let h = LP�ν,w̄ (u). By the above, u is a solution if and
only if h ≤ ρ in which case deg uh = maxj≤ρ{deg pj + deg vj,j + ν−1w̄j} − ν−1w̄h.
By Proposition 2.14 on page 17, we have for i > ρ that deg pi < deg uh − deg vi,i +
ν−1(w̄h − w̄i), and the theorem follows.

The theorem therefore gives, for both 2D key equations of Type 1 or 2, a way to
enumerate the space of all solutions; in this sense, the rows of V constitute a “basis”
of the solutions, though obviously not in the usual sense of basis since the F[x]-linear
combinations are degree-wise restricted. Due to the rows of V being a Gröbner basis
of the entire spaceM, the division algorithm also gives us an easy way to find for
any given solution its F[x]-linear construction from the rows of V .

Corollary 2.36. If V is a basis ofM in Φν,w̄-weighted weak Popov form, then

1. the row v of V which is minimal according to �ν,w̄ is a minimal solution to
the 2D key equation of Type 1 if any solutions exists.

2. the row v of V which is minimal according to �ν,w̄ while LP�ν,w̄ (v) ≤ ρ is
a minimal solution to the 2D key equation of Type 2.

Proof. Since the rows of V constitute a Gröbner basis ofM with respect to �ν,w̄,
any element u = p1v1 + . . . + pρ+σvρ+σ orders equal according to �ν,w̄ as the
greatest of the pivi, i.e. no leading term cancellation occurs in the sum of the pivi.
The corollary then follows directly from Theorem 2.35.

Example 2.37. Continue Example 2.32 on page 27. The corresponding matrix
would be

M =

1 0 S1
0 1 S2
0 0 G1

 =

1 0 x6 + x5 + x2 + x

0 1 x6 + x2 + x

0 0 x7 + x6 + x5 + x2


For the considered weights, we are to module minimise Φ1,0(M) = M . Running
any of the algorithms discussed in the preceding sections, we might end up with a
variety of different matrices, since the weak Popov form is non-canonical. One of
these possible matrices is A(2) of Example 2.3 on page 13. Using Corollary 2.36 we
can read off A(2) that a(2)

2 = (x2 + 1, x2, x) = (Λ1,Λ2,Ω1) is a minimal solution to
the 2D key equation. The reader can verify that indeed Λ1S1 + Λ2S2 ≡ Ω1 mod G1.
From Theorem 2.35 we can also realise that there are no other minimal solutions:
(2.6) disallows a contribution from a

(2)
1 since it has degree 2, and a(2)

3 is immediately
out since it has degree 3. This also implies that a(2)

2 must be a row in any weak
Popov basis of the row space of A(2).

Not surprisingly, we can also go from a weighing ν,w to the weights of a 2D key
equation. Having the same polynomials as above and using the weighing (ν,w) =



32 Module minimisation

(2, (0, 3, 4)) of Example 2.10 on page 15 would correspond to seeking Λ1,Λ2,Ω1 sat-
isfying the congruence as well as max{2 deg Λ1, 2 deg Λ2 + 3} > 2 deg Ω1 + 4. If
this was of interest, one would module minimise Φν,w(M) and could possibly end
up with Φν,w(A(1)), listed in Example 2.13 on page 16. From here, we read off that

Φ−1
ν,w(Φν,w(a(1)

2 )) = Φ−1
ν,w

(
(x4 + 1, x7, x6)

)
= (x2 + 1, x2, x)

is a minimal solution to also this 2D key equation. However, this time it is not
unique, since adding a(1)

3 gives another minimal solution (x3 +x2 + 1, x2 + 1, 0).♠

In order to argue about the running time of applying the module minimisation
algorithms from preceding sections, we need a bound on the orthogonality defect
of M . The generic bound for any square matrix would only give ∆(Φν,w̄(M)) ≤
m maxdeg (Φν,w̄(M)), but the special form of M means its orthogonality defect is
much lower: (below, recall that pos(x) = x for x > 0 and pos(x) = 0 for x ≤ 0)

Lemma 2.38.

maxdeg (Φν,w̄(M)) = max{η1, . . . , ηρ, ν degG1 + w1, . . . , νGσ + wσ}

deg det(Φν,w̄(M)) =
ρ∑
i=1

ηi +
σ∑
j=1

(
ν degGj + wj

)
∆(Φν,w̄(M)) =

ρ∑
i=1

pos(max
j
{ν degSi,j + wj} − ηi)

≤ ρ(maxdeg (Φν,w̄(M))− 1)−
∑ρ
i=1 ηi

Proof. Due to the structure of M , we have

deg(Φν,w̄(M)) =
ρ∑
i=1

max{ηi, ν degSi,1+w1, . . . , ν degSi,σ+wσ}+
σ∑
j=1

(
ν degGj+wj

)
Since Φν,w̄(M) is a diagonal matrix, its determinant is the product of its diagonal
entries and so

deg det(Φν,w̄(M)) =
ρ∑
i=1

ηi +
σ∑
j=1

(
ν degGj + wj

)
The orthogonality defect is the difference between these.

The statement on the max-degree follows directly from the structure on M , and
remembering degSi,j < degGj for all j.

Using two quite different techniques, we can upper bound the degree of a minimal
solution to a 2D key equation depending on its type. The case of Type 2 turns out
to be much more complicated and not even completely determinable; unfortunately,
this makes the following few pages highly technical. We introduce a simple operator,
which we will use repeatedly throughout the thesis: pos(·) : R 7→ R where pos(x) = x

if x > 0 and pos(x) = 0 for x ≤ 0. Then:
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Proposition 2.39. Consider a given 2D key equation with a minimal solution s.
If the considered equation is of Type 1 then s satisfies

deg(Φν,w̄(s)) ≤ deg det(Φν,w̄(M))/(ρ+ σ)

If it is of Type 2 then deg(Φν,w̄(s)) ≤ d, where d is the least integer satisfying

σ∑
j=1

pos(degGj − dν−1(d− wj)e) ≤
ρ∑
i=1
bν−1(d− ηi)c+ (ρ− 1),

except in the case rankU ′ = rankU , where U is a certain matrix over F pertaining
to the 2D Key Equation and d, and U ′ is U with a certain column removed, both
defined in the proof.

Proof. For Type 1, we know that if Φν,w̄(V ) is a basis of Φν,w̄(M) in weak Popov
form, then deg Φν,w̄(V ) = deg det Φν,w̄(V ) from which it follows that the row Φν,w̄(s)
with minimal degree must have deg Φν,w̄(s) ≤ 1

ρ+σ deg det Φν,w̄(V ).

For Type 2, since solutions must satisfy LP�ν,w̄ (s) ≤ ρ, we proceed differently and
instead go back to the 2D key equation definition. Let v = (Λ1, . . . ,Λρ,Ω1, . . . ,Ωσ)
be a vector which is a solution to the 2D key equation and let d = deg(Φν,w̄(v)); we
are trying to upper bound d so that we are sure such a v exists; then since s �ν,w̄ v
we have deg(Φν,w̄(s)) ≤ d. Now, deg Λi ≤ ν−1(d − ηi) and deg Ωj < ν−1(d − wj),
but remember that at least one of the Λi must satisfy the above with equality for
v to satisfy the leading position restriction.

For each j, we have
∑ρ
i=1 ΛiSi,j ≡ Ωj mod Gj which is equivalent to there existing

qj ∈ F[x] such that
∑ρ
i=1 ΛiSi,j − qjGj = Ωj . We can therefore change focus and

say instead that we are searching Λi and qj such that deg(
∑ρ
i=1 ΛiSi,j − qjGj) <

ν−1(d−wj) for each j. Having the left-hand side have low degree is the same as the
coefficients for xdν−1(d−wj)e, . . . , xdeg qj+degGj should all be zero. That requirement
is a system of linear equations in the coefficients of the Λi and qj , so there is a
non-zero solution as long as there are more variables than equations.

Now, the number of equations is

σ∑
j=1

(
deg qj + degGj − dν−1(d− wj)e+ 1

)
The number of variables is the number of free coefficients at our disposal. Let h be
such that deg Λh = ν−1(d − ηi). We need to ensure that truly deg(Φν,w̄(v)) = d,
which we can do if we can fix Λh to have leading coefficient 1. This might not
always be possible, depending on the linear system of equations; assume first that
it is possible. For the remaining free coefficients, we need to consider for each j

whether degGj < dν−1(d − wj)e: in this case, then the first few coefficients of
qj(x) has no influence on solving our system, since they affect only lower-terms of
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∑ρ
i=1 ΛiSi,j − qjGj . Thus, the number of free variables affecting the system is:

ρ∑
i=1
i6=h

bν−1(d−ηi)+1c+ν−1(d−ηh)+
σ∑
j=1

(deg qj+1)−
σ∑
j=1

pos(dν−1(d− wj)e − degGj)

Since we have already secured a non-zero solution, we need only that this number
of coefficients is at least the number of equations; that means we have a solution
within our degree bounds whenever

σ∑
j=1

pos(degGj − dν−1(d− wj)e) ≤
ρ∑
i=1
bν−1(d− ηi)c+ (ρ− 1)

Now we turn to consider when it is possible to choose Λh to have leading coefficient
1. In a homogeneous system of linear equations with more variables than unknowns,
one can fix some variable x to a non-zero value if and only if rankU ′ = rankU − 1,
where U is the system matrix and U ′ is U where the column corresponding to x
is removed: for assume that x cannot be fixed to a non-zero value, so x = 0 in all
solutions. But that means that the solutions to the system of U ′ are in bijection
to those of U ; so they have the same solution dimension, implying the statement
on the ranks. If we let U be the system matrix corresponding to the system in
the coefficients of the Λi and qj for the above value of d, and let x be the variable
corresponding to the leading coefficient of Λh, then this condition becomes the
exception of the proposition.

For Type 2, then especially the rounding operators make the implicit description
difficult to handle analytically. For the important case ν = 1, in an effort to make
it slightly more explicit, we give the following corollary:

Corollary 2.40. Consider a 2D key equation of Type 2 with ν = 1. Define ζj =
degGj+wj for j = 1, . . . , σ and ζσ+1 = −∞, and assume that ζ1 ≥ ζ2 ≥ . . . ≥ ζσ+1.
Define for j = 1, . . . , σ:

dj = (ρ+ j)−1( ρ∑
i=1

ηi +
j∑

h=1
(ν degGh + wh)− ρ+ 1

)
Let σ̂ be the greatest index such that ζσ̂+1 ≤ ddσ̂e < ζσ̂. Then d of Proposition 2.39
has d = ddσ̂e. Furthermore, if dσ̂ is not an integer and under the same assumption
on U,U ′ as in Proposition 2.39, then there exists at least two minimal solutions
which differ by more than an F-scaling.

Proof. We will show that dσ̂ of the corollary equals d of Proposition 2.39. For ν = 1
then d is the least integer satisfying

σ∑
j=1

pos(degGj − (d− wj)) ≤
ρ∑
i=1

(d− ηi) + (ρ− 1) (2.7)
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Note that if the above inequality is sharp, then there must be more than one degree
of freedom in the solution space. By the assumption on ordering of the degGj +wj ,
then there is a maximal h such that degGj − (d−wj) ≥ 0, i.e. ζh+1 < d ≤ ζh. The
terms for j > h in the sum on the left-hand side of (2.7) are then all zero so it
reorders to:

d ≥ (ρ+ h)−1( ρ∑
i=1

ηi +
h∑
j=1

(degGj + wj)− (ρ− 1)
)

(2.8)

The right-hand side is exactly dh. So d must equal the least integer greater than
the above right-hand side, so d = ddhe. Now, this d must exist, by Proposition 2.39,
and it satisfies that ζh+1 < d ≤ ζh, by the definition of h; this shows that the σ̂ of
the corollary is well-defined since at least h is a choice satisfying the restrictions.
Conversely, any other valid choice of σ̂ implies that dσ̂ satisfies (2.7), and so it
follows from the minimality of d and the decreasing order of ζj that h = σ̂.

For the remark on multiple independent solutions, realise that if d is not an integer,
then (2.8) must be a sharp inequality and therefore also (2.7); that implies more
than one degree of freedom in the linear system of equations which determine the
unknowns for the Λi and qj for j = 1, . . . , σ̂.

Remark. The un-pretty exception for the Type 2 case, for which Proposition 2.39
does not hold, looks alien but unfortunately can not be avoided: it is simply the case
that for certain degenerate 2D key equations, the smallest solution is surprisingly
large. The linear algebraic description should give the impression that for a “random”
2D key equation, this happens quite rarely, though.

As an example, consider a classical key equation, i.e. σ = ρ = 1, with S1(x) =
xn−1 − 1 and G1(x) = xn for some integer n > 1, and trivial weights ν = 1 and
η1 = w1 = 0. The matrix to minimise isM =

( 1 S1
0 G1

)
. Applying Mulders–Storjohann,

then after only two row operations we get the result
(
xn−1+1 −1
−x x

)
. I.e. the smallest

solution to the key equation has the worst imaginable degree, namely n− 1, while
by Corollary 2.40, we would expect a solution of degree dn/2e. ♦

Remark. The upper bounds are actually quite similar for both types of 2D key
equations in the case ν = 1, since dj is actually the determinant of the sub-matrix
of Φν,w(M) consisting of the first ρ+ j rows and columns.

Some of the complications for Type 2 stem from the fact that if some of the σ
congruences have low enough degree, measured in degGj+wj , compared to the other
congruences, they will not add complexity to the solution of the 2D key equation;
in the sense that the worst-case solution size will not increase. Any solution to only
the high-degree key equations will directly extend into one over the low-degree ones.

In Power decoding in Chapter 4, we will see how this is expressed as an upper bound
on the “powering” that it makes sense to include in the 2D key equation one wants
to solve for decoding: a sought polynomial is a solution to a certain congruence for
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any power, and adding powers will exclude other “false” solutions—but only to a
certain extend. ♦

Example 2.41. Using (ν,w) = (1,0) in Example 2.37, then necessarily σ̂ = σ = 1.
Now, det(Φν,w(M)) = m3,3 = x7 + x6 + x5 + x2. Indeed, we saw the degree of the
minimal solution was 2 ≤ 3−1 · (7 + 1).

With (ν,w) = (2, (0, 3, 4)), then deg det(Φν,w(M)) = 21, and we saw that the degree
of the Φν,w-image of the minimal solution was 7 ≤ 3−1 · (21 + 1). ♠

Remark. For σ = ρ = ν = 1 then Mulders–Storjohann applied to Φν,w̄(M) is
exactly the same as running the Extended Euclidean algorithm on G1(x) and S1(x)
and halting execution on the first iteration i where deg vi + ηi < deg si +wi, where
si(x) is the remainder and vi(x) the coefficient to S1(x) calculated in the ith iteration
of the Euclidean algorithm. ♦

2.5.2 The Demand–Driven algorithm

We will show how Mulders–Storjohann admits a speedup when solving 2D key
equations, by the following observation: it is essentially sufficient to keep track of
only the first ρ columns of V during the algorithm, and one can then calculate
the other entries when the need arise. The result is Algorithm 2, and we will in
this section prove its correctness and computational complexity. This algorithm,
which we call the Demand–Driven algorithm (D–D), turns out to be faster than
Mulders–Storjohann in some cases where ρ is low compared to σ.

For the case ρ = 1, the algorithm degenerates into a simpler version: Algorithm 3.
The result bears a striking resemblance to the Berlekamp–Massey generalisation
for synthesising Multi-sequence Linear-Feedback Shift Registers [SS06], though the
manner in which these algorithms are obtained is very different.

Recall the value function ψ of Definition 2.20 on page 19. Overload ψ to N0 ×
{1, . . . , ρ + σ} → N0 by ψ(θ, h) = (σ + ρ)θ + h, i.e. for any non-zero v ∈ F[x]ρ+σ,
ψ(v) = ψ(deg v, LP(v)). We will use a helper function previous(θ, h) which gives
the degree and leading position a vector in Φν,w̄(M) should have for attaining the
greatest possible ψ-value less than ψ(θ, h):

previous(θ, h) = arg max
θ′,h′
{ψ(θ′, h′) | ψ(θ′, h′) < ψ(θ, h) ∧ θ′ ≡ w̄h′ mod ν}

Note that if ν = 1, then we simply have:

previous(θ, h) =
{

(θ, h− 1) if h > 1
(θ − 1, ρ+ σ) if h = 1

We will prove the correctness of the algorithm by showing that the computations
correspond to a possible run of a slight variant of Mulders–Storjohann; first we need
a technical lemma:
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Algorithm 2 Demand-Driven algorithm for 2D key equations

Input: Φν,w̄(M) =
(

diag
(
xη1 , . . . , xηρ

)
S̃

0 diag
(
G̃1, . . . , G̃σ

)).
Let m̃i be the rows of this matrix.

Output: The first ρ columns of a basis ofM in Φν,w̄-weighted weak Popov form.
1 Λ = first ρ columns of Φν,w̄(M)
2
(
θi, αi

)
=
(

deg(m̃i), LC(LT(m̃i))
)
for i = 1, . . . , ρ+ σ

3 W =
{

(i, LP(m̃i)) | 1 ≤ i ≤ ρ ∧ LP(m̃i) 6= i
}

4 while W 6= ∅ do
5 (i, h) = pop(W )
6 if θi < θh then swap (i,λi, αi, θi) and (h,λh, αh, θh)
7 λi = λi − αi

αh
xθi−θhλh

8 repeat
9 (θi, h) = previous(θi, h)

10 αi = coefficient to xθi in
{
λi,h if h ≤ ρ∑ρ
j=1 λi,jS̃j,h mod G̃h otherwise

11 until αi 6= 0
12 if i 6= h then
13 if (h, j) ∈W for some j then
14 swap (i,λi, αi, θi) and (h,λh, αh, θh)
15 replace (h, j) with (i, j) in W .
16 else
17 push(W, (i, h))
18 return Φ−1

ν,η(Λ)

Lemma 2.42. Consider Algorithm 1 with input Φν,w̄(M), and let G̃1, . . . , G̃σ be as
in Algorithm 2. Consider now a variant of the algorithm where we, when replacing
some vj with v′j in a row reduction, instead replace it with

v′′j = (v′j,1, . . . , v′j,ρ, v′j,ρ+1 mod G̃1, . . . , v
′
j,ρ+σ mod G̃σ)

This does not change correctness of the algorithm or the upper bound on the number
of row reductions performed.

Proof. Correctness follows if we can show that each of the σ modulo reductions could
have been achieved by a series of F[xν ] row operations on the current matrix V after
the row reduction producing v′, since then V would remain a basis of Φν,w̄(M).

Consider the modulo reduction on the (h+ ρ)th position. This could be achieved by
adding a multiple of the vector gh = (0, . . . , 0, G̃h, 0, . . . , 0), with position h+ρ non-
zero, to v′. That this multiple is in F[xν ] follows from the fact that any u ∈ Φν,w̄(M)
has deg uρ+h ≡ wh mod ν. Since gh is a row in Φν,w(M), then as long as this has
not yet been row reduced, the (ρ+ h)th position reduction is allowed. Notice that
if ψ(v′) < ψ(gh) then the reduction using gh is void.
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Algorithm 3 Simplified Demand–Driven algorithm for 2D key equations with ρ = 1
Input: S̃j ← xwjS1,j(xν), G̃j ← xwjGj(xν) for j = 1, . . . , σ
Output: The first column of a basis ofM in Φν,w̄-weighted weak Popov form.

1 (θ, h)← (deg, LP) of (xη1 , S̃1, . . . , S̃σ)
2 if h = 1 then return (1, 0, . . . , 0)
3 (λ1, . . . , λσ+1)← (xη1 , 0, . . . , 0)
4 αjx

θj ← the leading monomial of G̃j−1 for j = 2, . . . , σ + 1
5 while deg λ1 ≤ θ do
6 α← coefficient to xθ in (λ1S̃h−1 mod G̃h−1)
7 if α 6= 0 then
8 if θ < θh then swap (λ1, α, θ) and (λh, αh, θh)
9 λ1 ← λ1 − α

αh
xθ−θhλh

10 (θ, h)← previous(θ, h)
11 if h = 1 then (θ, h)← previous(θ, h)
12 return

(
x−η1λ1, . . . , x

−η1λσ+1
)
|x=x1/ν

Introduce now a loop invariant involving Jh = {gh}, a subset of the current rows in
V having two properties: that gh can be constructed as an F[xν ]-linear combination
of the rows in Jh; and that each v ∈ Jh has ψ(v) ≤ ψ(gh). After row reductions on
rows not in Jh, the (ρ + h)th modulo reduction is therefore allowed, since gh can
be constructed by the rows in Jh. On the other hand, after a row reduction on a
row v ∈ Jh by some vk resulting in v′, the hth modulo reduction has no effect since
ψ(v′) < ψ(v) ≤ ψ(gh). Afterwards, Jh is updated as Jh = Jh \ {v} ∪ {v′,vk} and
the loop invariant is kept since ψ(vk) ≤ ψ(v).

Since ψ(v′′j ) ≤ ψ(v′j) the proof of Theorem 2.22 shows that the number of row
reductions performed is not greater than in Algorithm 1.

We will say for a matrix U that there is a “collision on (i, j)” if i 6= j, LP(ui) = LP(uj),
i.e. one could perform a row reduction involving uj and ui; we will also say that
these rows are “involved in a collision”. Now the proof of correctness of the algorithm.
The proof is technical but basically just establishes thatW is a “worklist” containing
indices of rows involved in a collision, which means we should at some point row
reduce it. All indices i not thusly in W have been “parked” such that LP(vi) = i,
and they will only be used further in the algorithm if there is a row named in W
with leading position i.

Theorem 2.43. Algorithm 2 is correct.

Proof. Let V be the matrix continually changing in the variant of Algorithm 1
described in Lemma 2.42. For notational convenience, and simplicity in the descrip-
tion of Algorithm 2, we will consider a further variant of Algorithm 1 where we
sometimes swap two rows, to be described momentarily.

Let us write (i, ?) /∈ W to mean ¬∃j . (i, j) ∈ W , and similarly for (?, i) /∈ W . We
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will then demonstrate that each iteration of Algorithm 2 corresponds to one row
reduction on V , and that the following loop invariants hold:

1. Λ is the first ρ columns of V ;
2. αixθi is the leading monomial of LT(vi);
3. If there is a collision (i, j) then ∃k . (i, k) ∈W ∨ (j, k) ∈W ;
4. If (i, h) ∈W then i 6= h and LP(vi) = LP(vh) = h;
5. For any i, there is at most one pair in W with first position i.
6. If (i, ?) /∈W then LP(vi) = i;

The invariants are clearly true after initialisation; assume now they are true on
entry of the iteration, and we will show they are true on exit. Once Algorithm 2
terminates, by Invariant 3 then there are no collisions, so V is in weak Popov form,
so by Invariant 1 the result is correct.

If W 6= ∅, then by Invariant 4 there is a collision (i, h), and the considered variant
of Algorithm 1 could have chosen to perform a row reduction on this. Note that
Invariant 4 also implies that (?, i) /∈ W and (h, ?) /∈ W , and that Invariant 5 then
implies that no other element in W contains i.

Now we possibly perform a swap of rows of V such that the row to be reduced is
vi, i.e. if deg vi < deg vj we swap, which is exactly when θi < θj in Line 6. We note
that the Invariants 1 and 2 are maintained since everything involved is swapped.
The remaining invariants never distinguish the two swapped rows, which means all
non-violations and violations are kept intact. Thus for the remainder of the proof,
we can assume that no swap was performed since this will be indistinguishable from
the other case.

In Line 7 we perform the actual row reduction, and Invariant 1 is seen to be main-
tained, due to Invariant 2. The ensuing loop is for maintaining Invariant 2: it will go
through possible degrees and leading positions of the updated row vi in descending
order of ψ until it finds one with non-zero coefficient. Note that ψ(v′i) < ψ(vi), so
the loop initiates correctly, and that previous will skip those degree–leading position
combinations which are guaranteed to have coefficient zero from the sparsity of
polynomials in vectors inM. The calculation in Line 10 is also exactly correct for
Lemma 2.42’s variant of Algorithm 1.

Refer to V ′ as V after this row operation, and refer to h′ as the updated value of h.
The last thing is then to maintain Invariants 3–6. Note that all possible violations
must involve i since only for i we have v′i 6= vi. We distinguish the three cases of
the if-statements:

• i = h′: Then v′i cannot be involved in any collision: for if there was a j 6= i such
that (j, i) is a collision in V ′, then LP(vj) = LP(v′j) = LP(v′i) = i which means
that (j, i) /∈ W due to Invariant 4 holding on entry of the iteration (at which
time LP(vi) 6= i); but then (j, ?) /∈ W which means LP(vj) = j by Invariant 6.
Thus, we must have j = h′ = i but this was false by assumption. Since then v′i
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is involved in no collisions, the remaining invariants are seen to hold since: all
possible violations to them were regarding i; since i is no longer in any pair of
W ; and since LP(v′i) = i.

• i 6= h′ and ∃j . (h′, j) ∈W : That means (?, h′) 6= W by Invariant 4 at iteration
entry, and since (?, i) /∈ W , we do not create violations to the invariants by
swapping v′i and v′h′ when also replacing (h′, j) with (i, j) in W . After this swap,
we have LP(v′h′) = h′. There now can’t be any collision involving v′h′ : for if there
was one (h′, k), then (k, ?) /∈W since (?, h′) at iteration entry, and this means by
Invariant 6 at iteration entry that k = LP(vk) = LP(v′k) = LP(v′h′) = h, which is
false by assumption. Summarily, since we then have removed the only element in
W involving h′ and since LP(v′h′) = h′, the invariants are again maintained.

• i 6= h′ and (h′, ?) /∈W : By Invariant 6, we have LP(vh′) = h′ and so (i, h′) is a
collision, meaning the invariants are maintained by adding (i, h′) to W .

And now the complexity of the algorithm.

Proposition 2.44. Algorithm 2 has asymptotic complexity

O
(
ρ(ρ+σ)(ρ+σ+ν−1∆(Φν,w̄(M)))P̃

)
⊂ O

(
ρ(ρ+σ)(ρ maxdeg (Φν,w̄(M))+σ)P̃

)
where P̃ = O(ν−1maxdeg (Φν,w̄(M))) if all Gj are powers of x, and where P̃ =
O(P(ν−1maxdeg (Φν,w̄(M)))) otherwise.

Proof. Let P = ρP̃ be an upper bound on the cost of executing Line 10, and we
will afterwards show the proposition’s claims on P̃ . First, since each iteration of
Algorithm 2 is exactly a row reduction in Lemma 2.42’s variant of Algorithm 1, the
number of iterations is most (ρ+ σ)(ν−1∆(Φν,w̄(M)) + ρ+ σ) by Theorem 2.22 on
page 19. Apart from the repeat-loop, only Line 7 is not O(1), and this has complexity
at most O(ρ maxdeg (Φν,w̄(M))) ⊂ P .

Each iteration through the repeat loop costs at most P . Each iteration will de-
crease the upper bound on ψ(v′i), so by arguments exactly like those of the proof
of Theorem 2.22, the total number of times through the repeat loop is then also
m(ν−1∆(Φν,w̄(M)) + m). The relaxation is obtained by applying Lemma 2.38 on
page 32.

Now for P . maxdeg (Φν,w̄(M)) is an upper bound on the degrees of all in-going
polynomials, and so trivially P = O

(
ρP(ν−1maxdeg (Φν,w̄(M)))

)
, remembering

again that the polynomials are sparse by a factor ν. Note, however, that if G̃h is a
power of x, the sought αi is simply a coefficient in a sum of polynomial products;
for this we need not perform the full multiplications, but can perform a convolution
for each product for just this one coefficient, and so the computation can be done
in the slightly improved P = O(ρν−1maxdeg (Φν,w̄(M))).

For the case ρ = 1, the worklist W becomes trivially simple so the algorithm
degenerates. Since this is an interesting special case (see e.g. Table 2.1), and the
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resulting algorithm is arguably much simpler, we have given it as Algorithm 3. The
algorithm has exactly the same asymptotic complexity (for ρ = 1) as Algorithm 2.

Theorem 2.45. Algorithm 3 is correct.

Proof. We will prove the algorithm using the correctness of Algorithm 2, so we
reuse the variable names from there. By the structure of Φν,w̄(M), there is initially
either 0 or 1 collisions depending on the leading position of m̃0. The former case is
handled by the fail-fast Line 2. In the other case, W will be initially {(1, LP(m̃1))},
and each iteration of Algorithm 2, we will either have no more collisions or exactly
one, still having row 1 as first position. Thus, we can dispense withW , and h simply
contains the second element of this one pair in W .

Since we then always examine the same row, the repeat-loop of Algorithm 2 can
be merged with the main loop, which means that the “search” for the new leading
position and degree becomes a guard around the lines actually performing the row
reduction. The algorithm is finished as soon as W is not re-filled with (1, LP(m̃1))
which happens exactly when LP(m̃1) = 1, i.e. deg λ1 > θ, when θ is always updated
with previous and skips leading positions of 1.

Remark. For σ = ρ = 1 and G1(x) = xd, a 2D key equation is simply a classical key
equation such as (2.2). Here Algorithm 3 degenerates to exactly the computations
of the Berlekamp–Massey algorithm [Ber68,Mas69]. Compare this with the remark
on page 36 on the Mulders–Storjohann algorithm being a generalisation of the
Extended Euclidean algorithm. ♦

2.6 Summary of complexities

Tables 2.2–2.4 provide an overview of the long list of methods given in this chapter
and their convoluted complexity expressions. We will refer back to these repeatedly
in the remainder of the thesis. We have provided the complexity estimates in their
specific, unrelaxed form, in particular using both the orthogonality defect and max-
degree; this slightly obscures an overview of the relative speed of the methods, but is
necessary since the parameters we will encounter in applications turn out to have a
variety of relative sizes. In each table, we have reused the parameter names from the
sections pertaining to this case, but we have also introduced short-hands described
in the captions.

2.7 Related work

The type of module minimisation we are considering here could be accomplished
by Buchberger’s algorithm, which can compute a Gröbner basis for any module
with regards to any monomial ordering; however, without further arguments, the
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Complexity for obtaining a basis of Φν,w(V) in weak Popov form
Algorithm Complexity Page Assumptions
Mulders–Storjohann m2(δ +m)γ 20
Alekhnovich M(m)(P(δ) log(δ) + P(γ)) 23 m ∈ O(δ)
GJV M(m)P(νγ) log(mνγ)O(1) 25

Table 2.2: We have let γ = ν−1maxdeg (Φν,w(V )) and δ = ν−1∆(Φν,w(V )) ≤ mγ;

Complexity for computing one row in a basis of Φν,w(V) in weak Popov form
Algorithm Complexity Page Assumptions
Mulders–Storjohann m2(δ +m)γ 19
Alekhnovich M(m)P(δ) log(δ) +m2P(γ) 23 m ∈ O(νδ)
GJV M(m)P(νγ) log(mνγ)O(1) 25

Table 2.3: We have let γ = ν−1maxdeg (Φν,w(V )) and δ = ν−1∆(Φν,w(V )) ≤ mγ;

Complexity for finding a solution to a 2D key equation
Algorithm Complexity Page Assumptions
Mulders–Storjohann (ρ+ σ)2(δ + ρ+ σ)γ 19
Alekhnovich M(ρ+ σ)P(δ) log(δ) + (ρ+ σ)2P(γ) 23 ρ, σ ∈ O(νδ)
GJV M(ρ+ σ)P(νγ) log

(
(ρ+ σ)νγ

)O(1) 25
Demand–Driven ρ(ρ+ σ)(δ + ρ+ σ)P̃ 40

Table 2.4: We have let γ = ν−1maxdeg (Φν,w̄(M)) = ν−1 max{η1, . . . , ηρ, ν degG1 +
w1, . . . , ν degGσ + wσ} and δ = ν−1∆(Φν,w̄(M)) < ργ. Recall that P̃ = O(P(γ)) in
general, while if all Gj are powers of x, then P̃ = O(γ).
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running time of Buchberger’s algorithm is doubly-exponential in the max-degree of
the initial basis!

The earliest result on module minimisation specifically for F[x] that I have found
is Lenstra [Len85], where a minimisation algorithm is developed with the aim of
factoring multivariate polynomials. The algorithm runs in O

(
m3(δ+ 1)γ

)
using the

notation of Table 2.2 on page 42, and so is strictly slower than Mulders–Storjohann,
though. Lenstra introduced the orthogonality defect for complexity analysis, and
it is here I found the inspiration for also describing the complexity of the Mulders–
Storjohann and Alekhnovich algorithms similarly; it was a stroke of fortune that
this formulation turned out to have applications in various modules cropping up in
decoding algorithms.

Currently, the GJV is the fastest known algorithm for computing bases in weak
Popov form, for general initial bases and measured in their max-degree. It would
seem that asymptotically, this result can only be marginally improved since it is
essentially the complexity of multiplying together matrices of size as the initial basis;
further details are in the introduction of [GJV03]. The GJV is a D&C adaption of a
previous algorithm by Beckermann and Labahn [BL92]. As remarked in Section 2.5,
module minimisation and approximation (as d-approximants or Padé) are obviously
computationally intimately connected.

As demonstrated in Table 2.1, the 2D key equation generalises a list of previously
studied approximants and “key equations”. One of the original aims with the design
of 2D key equations was to encompass elegantly a wide range of applications in
coding theory, as we will demonstrate in the remainder of the thesis. It was a
consequence of the underlying mathematics that the types of Padé approximations
were captured as well. Indeed, one sees from Table 2.1 that apart from the “Type”,
each Padé approximation is nearly also a certain type of key equation.

The idea of using module minimisation, or lattice reduction methods, to solve Padé
type approximations is not new. For instance, Lenstra, Lenstra and Lovász in their
famous paper on basis reduction over Z describe how to solve Diophantine approx-
imation problems using their algorithm, and using an initial basis essentially like
that of (2.3) on page 30 for ρ = 1. Another example is the rational reconstruction
problem (over F[x]) in [OS06] which is solved by a Simultaneous Padé approximation
using module minimisation.

Massey [Mas69] described the classical key equation for Reed-Solomon codes [Ber68]
as a Linear Feedback-Shift Register (LFSR), and solved these using the (thereof
named) Berlekamp–Massey algorithm. It has also long been known that this key
equation is a Padé approximation, as mentioned in e.g. [Fit95]. I thus find it slightly
surprising that I have found no mention of the near-equivalence between the classical
notion of Simultaneous Padé approximation [BGM96] and Multi-sequence LFSR
[FT91], despite a tremendous amount of attention devoted to the latter, especially
since the inception of Power decoding, e.g. [SS06,Wang3, SS11,ZW11].
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Sugiyama et al. [SKHN75] gave a key equation for Goppa codes and solved this
using the extended Euclidean algorithm; since G(x) is not a power of x in this
case, the Berlekamp–Massey can’t immediately solve it. However, using the trick
of Patterson [Pat75], one can rewrite the key equation into one using xd; we will
see similar tricks in both Section 3.4 and Section 4.2. This naturally raised the
question of what relation there is between the Berlekamp–Massey algorithm and
the Euclidean algorithm when G(x) = xd. That has been expounded in several
publications, e.g. [Dor87, HJ00], but the most elegant connection was given by
Fitzpatrick [Fit95], who introduced the Gröbner basis view for these simple key
equations.

A Multi-sequence LFSR is a 2D key equation with ρ = 1 and Gj = xdj for some
dj , as well as trivial weights ν = 1, η1 = wj = 0. Feng and Tzeng solved these
using a generalisation of the Berlekamp–Massey algorithm [FT91], but there was a
subtle error when the dj were not all equal, pointed out and corrected by Schmidt
and Sidorenko [SS06,SS11]. I think it speaks of the inherent convolutedness of this
algorithm that it took 15 years to point out this flaw, and more than 5 full pages to
prove the amendment’s correctness [SS11]. The resulting algorithm has complexity
O(σd2

max) with dmax = max{dj}. It also admits a D&C speedup [SB11], yielding a
complexity of O(M(σ)dmax log(dmax)). These complexities are also achieved by the
Demand–Driven and Alekhnovich algorithm respectively for the corresponding 2D
key equation. In fact, I was seeking to achieve the former complexity when I looked
for the Demand–Driven speedup of the Demand–Driven algorithm.

Feng and Tzeng also solved Multi-sequence LFSRs using an algorithm generalising
the extended Euclidean algorithm [FT89]. As mentioned above, the original extended
Euclidean algorithm is essentially equivalent to the Berlekamp–Massey for the case
where one argument is a power of x. I think it is particularly intriguing then,
that Storjohann–Mulders obviously generalise the Euclidean algorithm, while the
Demand–Driven variant Algorithm 2 bears striking similarity to the corrected Feng–
Tzeng generalisation of the Berlekamp–Massey when ρ = 1 and the Gj are powers of
x. I am sure that Fitzpatrick’s arguments for the “equivalence” of the two algorithms
generalise, though I am not sure what the purpose of such an exercise would be.

Wang, Wang and Wang used F[x] lattices to solve Multi-sequence LFSRs [Wang3],
and in a number of ways the approach is quite similar to Mulders–Storjohann applied
to these special types of 2D key equations. They even give a variant which could
possibly be like the Demand–Driven algorithm. For technical reasons, which could
probably be overcome, the approach does not directly generalise to either general
Gj or general ρ; for doing this one would probably want to introduce the flexible
language of weak Popov form and Gröbner bases, and the result would most likely
be exactly Mulders–Storjohann.

The key equation has been generalised in another direction by Roth and Ruckenstein
[RR00] for finding interpolation polynomials in the Sudan algorithm (discussed in
detail in Section 3.4.1); these correspond to a 2D key equation of Type 1 with
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σ = 1 and G1 = xd as well as ν = 1. Once again, this is nearly equivalent to a
well-known class of approximations: Hermite Padé approximations, which are widely
studied [Her78, BGM96]. The algorithm of Roth and Ruckenstein is yet another
generalisation of the Berlekamp–Massey and has running time O(

∑
j(d−ηj)

∑
j(N−

ηj)) ⊂ O(ρ2Nd); here Mulders–Storjohann has the slowerO(ρ2d
∑
j(d−ηj)).2 When

viewed the right way, their algorithm is basically a special case of the Demand–Driven
algorithm, and the speedup is achieved by a clever choice and ordering of the row
reductions. This means that the polynomials in the first ρ columns will only ever
increase in degree, and in such a way that the number of row reductions necessary
is reduced by essentially a factor ρ. Furthermore, it means that for finding only
solutions one can forget about rows as soon as they contain a polynomial in the
first ρ positions with degree at least N , since they can never contribute to solutions;
thus all remaining row reduction can be counted cheaper. This analysis seem to
be completely possible to carry out in full for the Demand–Driven algorithm for
this special case, so it seems that it actually does run in the same complexity; it
would be even more interesting to examine more closely whether this observation
generalises to a larger class or even to all 2D key equations.

A further generalisation of the Roth–Ruckenstein approach to the Guruswami–Sudan
algorithm was given by Zeh, Gentner and Augot [ZGA11]; they get 2D key equa-
tions of Type 1 with Gj = xdj and ν = 1. Their algorithm is a specialisation of the
Fundamental Iterative Algorithm by Feng and Tzeng [FT91] and has running time
O(ρσ2d2

max) when one considers σ < ρ � dmax (as they do); under those assump-
tions both Mulders–Storjohann and the Demand–Driven algorithm has O(ρ3d2

max)
which is slightly worse. Again, one could suspect that observations like those de-
scribed above could improve the running time of the Demand–Driven algorithm. I
am not aware of a D&C variant of this or the Roth–Ruckenstein algorithm, and
under the considered assumptions, the GJV algorithm is faster than the above, hav-
ing O(M(ρ)P(dmax) log(dmax)O(1)). We will further discuss these cases specialised
to decoding Reed–Solomon codes in Section 3.4.

Module minimisation for finding the interpolation polynomial in Guruswami–Sudan
was introduced by Lee and O’Sullivan [LO08]. They developed their own algorithm
for this, inspired by Buchberger’s algorithm for general Gröbner basis computation,
and the result is essentially a reinvention of Mulders–Storjohann. They use Gröb-
ner bases for easing certain discussions, but in concluding remarks they attempt
to distance themselves from lattice reduction and in particular the Alekhnovich
algorithm; in light of this chapter, I find this remark misinformed.

Sakata generalised the original Berlekamp–Massey for multi-dimensional LFSRs.
The description uses Gröbner bases for the solution formulation, but I have not
in depth investigated the algorithm’s similarity to those presented in this chapter;
however, in Section 4.4 we will show how to “unfold” a 2-dimensional LFSR into a

2Actually, one can easily get O(ρ(
∑

j
d − ηj)2) if one properly counts the price for a row

reduction. In [RR00], they report a complexity specifically for their application and also employ
relations they have between ρ,N and the ηj .
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2D key equation, and thus solving it using the framework presented here.

Shortly before I finished this thesis, I was made aware of the work of O’Keeffe [O’K03],
who during his PhD under the advice of Fitzpatrick, described a Gröbner basis algo-
rithm for solving a multivariate generalisation of a 2D key equation; the algorithm is
non-D&C and seems to be slower than the Mulders–Storjohann, but I have not anal-
ysed this special case of the algorithm well enough to be certain. O’Keeffe described
various applications, such as solving the Roth–Ruckenstein equation for Sudan de-
coding (see below and in Section 3.4.1) and finding an interpolation polynomial
in Guruswami–Sudan, but precise complexity analyses are missing, and judging
from the general behaviour of his algorithm, it seems to be slower than the various
solutions we propose in Section 3.1. How exactly the algorithm of O’Keeffe relates
to Sakata’s is not described either.



Chapter 3

Guruswami–Sudan

The next three chapters will be concerned with decoding, primarily of GRS codes. We
will draw heavily on module minimisation and solving of 2D key equations described
in the preceding chapter. Our first decoding paradigm will be the Guruswami–Sudan
algorithm; this was also historically the first polynomial-time algorithm for decoding
GRS codes beyond half the minimum distance, described in [GS99] and building
upon the simpler Sudan’s algorithm from [Sud97].

We will begin in Section 3.1 by deriving the algorithm as well as the implicit condi-
tions on its parameters, followed by a detailed analysis for turning these conditions
into explicit formulas. The algorithm has two expensive steps: interpolation and
root-finding. The remainder of the chapter focus on the interpolation step, and
we only briefly discuss the root-finding step in Section 3.1. In Section 3.2 we de-
scribe a fast interpolation method building directly on module minimisation. We
exploit a structural property of this method in Section 3.3 to arrive at an interpola-
tion algorithm which also allows a variation of the list-decoding paradigm, namely
maximum-likelihood list decoding. In Section 3.4 we describe how one can alter-
natively perform the interpolation step by solving a certain 2D key equation. The
Guruswami–Sudan algorithm for Hermitian codes, a class of Algebraic Geometric
codes, is considered in Section 3.5, with a focus on how to perform the interpolation
step fast using a method analogous to that of Section 3.2.

In the remainder of the thesis, we will most of the time be considering a particular
[n, k, d] GRS code, with evaluation points α1, . . . , αn and column multipliers
β1, . . . , βn. We will let c ∈ C be some sent codeword coming from evaluating some
polynomial f , i.e. c = evα,β(f) = (β1f(α1), . . . , βnf(αn)), and r = (r1, . . . , rn) =
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c+e will be the received word with some error e on it. Define also r′ = (r′1, . . . , r′n) =
(r1/β1, . . . , rn/βn) as a useful shorthand. We let E = {i | ei 6= 0} be the error
positions. We will assume r /∈ C to discount trivial cases.

Contributions
• A new geometric proof of the decoding radius of the Guruswami–Sudan

algorithm. This reveals quite clearly certain asymptotic properties of the
parameter choices, for example Corollary 3.9.

• Good closed-form parameter choices of the Guruswami–Sudan algorithm, and
a more precise description of the asymptotic behaviour of possible parameter
choices. In particular, we show how the closed form of the list size is very
close to the improved Johnson bound by Cassuto and Bruck [CB04].

• More complete discussion of using module minimisation for interpolation than
previous work, and our work emulates several known interpolation methods
e.g. that of [LO08,BB10,CH10]; see also Section 3.6.

• The step-wise interpolation and multi-trial algorithm. It was developed to-
gether with Alexander Zeh and appeared in equivalent form in [NZ13], though
its complexity has been analysed here for use with any of the module min-
imisation algorithms of Chapter 2.

• Solving Q-finding 2D key equations of Zeh, Genter and Augot [ZGA11]
using module minimisation; this specialises to the key equations of Roth–
Ruckenstein. By module minimising with the Alekhnovich or GJV, we achieve
quasi-linear dependence on n, which has not been done for this approach be-
fore.

• Using module minimisation for the interpolation step for Guruswami–Sudan
decoding Hermitian codes has been suggested before [LO09,Bra10], but we
suggest an alternative weighing of the module, and by using the GJV this
results in a better complexity than any previous method. Our general analysis
of the performance of Mulders–Storjohann and Alekhnovich algorithms also
improves the complexity estimates for the two mentioned previous works.

3.1 The main theorem

Definition 3.1. Amultivariate polynomial P ∈ F[x1, . . . , xκ] has a zero (γ1, . . . , γκ) ∈
Fκ with multiplicity s if and only if P (x1 + γ1, . . . , xκ + γκ) can be written as a
linear combination of monomials, each having degree at least s.

Theorem 3.2 (Guruswami–Sudan for GRS codes [GS99,Sud97]). Let s, `, τ ∈ Z+
be given. If Q ∈ F[x, y] is a non-zero bivariate polynomial of y-degree at most `
satisfying

1. Q(x, y) has a zero at (αi, r′i) with multiplicity s for i = 1, . . . , n.
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2. deg1,k−1Q < s(n− τ).

and if |E| ≤ τ then (y − f) | Q.

Proof. Considering Q ∈ F[x][y], then the theorem merely states that f is a y-root
of Q. Now, Q(x, f) ∈ F [x] has degree at most s(n− τ) since deg f ≤ k − 1, and it
has an s-multiple root αi whenever f(αi) = r′i, i.e. i /∈ E . Thus, Q(x, f) has more
roots that its degree so it must be the zero polynomial.

The theorem states nothing on when such a Q exists, however. Since τ is the only
parameter one is interested in as an “end-user” of the above theorem, s and ` can be
considered parameters that one should choose carefully for ensuring the existence of
a Q for a given τ , while minimising computational effort in finding Q and performing
root-finding on it. Unsurprisingly, the computational effort increases with increasing
s and `, so if there is a choice for given n, k and τ , one prefers small values of s
and `. Due to its role, s is often called the multiplicity of the theorem or algorithm.
Similarly, ` is called the list size: since there can be at most degy Q = ` different
y-roots, ` is an upper bound on the number of codewords within distance τ of r,
see also Algorithm 4.

The main characterisation of when a Q exists is easy to obtain:

Definition 3.3. Let the GS satisfiability function E
[n,k]
GS (s, `, τ) be given by

E
[n,k]
GS (s, `, τ) = (`+ 1)s(n− τ)−

(
`+1

2
)
(k − 1)−

(
s+1

2
)
n

Proposition 3.4. In the context of Theorem 3.2, a Q exists if E[n,k]
GS (s, `, τ) > 0.

Proof. The first requirement on Q can be given as a list of linear, homogeneous
equations in the coefficients of Q, while the second simply states how many coeffi-
cients we have at our disposal. Whenever the latter is greater than the former, there
must be a non-zero solution.

By Definition 3.1, for each i stating that Q should have a zero (αi, r′i) with multi-
plicity s specifies a homogeneous equation on the coefficient of Q(αi + x, r′i + y) for
each monomial xjyh for j + h < s, i.e.

(
s+1

2
)
equations for each i.

Writing Q =
∑`
t=0Qt(x)yt the second requirement is degQt < s(n− τ)− t(k − 1),

so the number of coefficients at our disposal is

∑̀
t=0

(
s(n− τ)− t(k − 1)

)
= (`+ 1)s(n− τ)−

(
`+1

2
)
(k − 1)

Thus the degrees of freedom in the resulting linear system of equations specifying
the requirements on Q is exactly E[n,k]

GS (s, `, τ), whenever this is non-negative.

For a given code, and for given values of the parameters s and `, there is a maximal
τ such that E[n,k]

GS (s, `, τ) > 0; denote this value by τ(s, `). By insertion we see that
τ(1, 1) = bn−k2 c, i.e. roughly half the minimum distance.
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The following example code will be used throughout the thesis.

Example 3.5. Consider an [250, 70, 181] code over F251. We can minimum-distance
decode up to τ(1, 1) = 90. Now, for each τ = 91, . . . , 118 there exists s, ` such
that E[n,k]

GS (s, `, τ) > 0, meaning that the decoding radius of the Guruswami–Sudan
algorithm for this code is 118. With (s, `) = (1, 2) we can choose τ as high as 97,
while all higher values of τ requires greater s and `. For instance, τ = 105 requires
at least (s, `) = (2, 4) while τ = 118 requires (s, `) = (47, 89). ♠

Proposition 3.4 immediately gives a naïve way to find such a Q: solve the resulting
linear system of equations in the coefficients. With no further analysis, this can be
done in complexity O(M(s2n)) ⊂ O(s6n3) [Str69] (assuming E[n,k]

GS (s, `, τ) is close
to 0). As we will see repeatedly in this chapter, we can do much better.

Algorithm 4 Guruswami–Sudan list decoding of GRS codes
Input: The received word r = (r1, . . . , rn). Parameters τ, s, ` such that

E
[n,k]
GS (s, `, τ) > 0 for the given code.

Output: A list of all f ∈ F[x] with deg f < k such that evα,β(f) ∈ C and
dist(evα,β(f), r) ≤ τ .

1 Compute Q ∈ F[x, y] such that Q satisfies the requirements of Theorem 3.2.
2 Find all y − f dividing Q such that deg f < k.
3 Return all of these f which satisfy dist(evα,β(f), r) ≤ τ .

From Theorem 3.2 to a complete decoding algorithm is easy, and we have given such
a description as Algorithm 4. If choosing s = 1 in Theorem 3.2 and Algorithm 4,
then they are usually referred to simply as “Sudan’s theorem” and “Sudan decoding”
respectively, since that was first described in [Sud97]. In Chapter 4 we will see
an alternative decoding algorithm for GRS codes which has several relations with
Sudan decoding.

Both Line 1 and Line 2 are non-trivial to compute. We just gave a naïve solution to
the former, and we will give several faster alternatives in the remainder of the chapter.
For the latter, however, we will devote little time. It turns out that—asymptotically,
at least—this root-finding problem is easier than constructing Q, by several orders of
magnitude in computational complexity. Proposition 3.6 sums up the best, currently
known result.

Proposition 3.6. Given Q ∈ F[x][y] with degy Q = ` and degxQ = N , there exists
an algorithm for finding all y-roots of Q in complexity O(`2P(N) logN), assuming
that `, q ∈ O(N) where q is the cardinality of F.

Proof. (sketch) The root-finding method of Roth and Ruckenstein [RR00] (and
also nicely described in [Rot06, Section 9.7]) is a relatively fast and elegant way
of solving the problem. It has computational complexity O

(
K(`N log(`)2 + F (`))

)
,

where F (T ) is the cost of root-finding an F [x] polynomial of degree T , and one
seeks only y-roots of Q of degree at most K. We can choose e.g [vzGG03, Theorem
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14.14] to have F (T ) = O(TP(T ) log(qT )), and so get a decent complexity.

However, in the cases of our interest,K,N are of comparable size and greater than `,
so we would like something faster than quadratic in these two. Alekhnovich [Ale05]
described a D&C speedup to the Roth–Ruckenstein method to give it complexity
O(`O(1)P(N) log(N)). His analysis was a bit asymptotically loose, though, and can
easily be improved: in the context of his proof, set f(1, `) = F (`). The non-recursive
cost of f(t, `), i.e. the term `O(1)t, can be improved to `2P(t), as an upper bound
cost of the ` different calculations of the shifts Q(x, yi + xdi ŷ). Now the recursive
bound has the improved solution f(t, `) ∈ O(`2P(t) log t+ t`P(`) log(q`)). The total
cost is f(N, `) so assuming q ∈ O(N) we get the sought.

Remark. Note that the saving from knowing an upper bound on the degree of the
y-roots is lost in the D&C algorithm compared to the original Roth–Ruckenstein; it
is unclear whether better stopping criteria and better analysis could restore this.♦

Remark. The Roth–Ruckenstein algorithm, as well as the D&C speedup, actually
does more: it finds all p ∈ F[x] such that Q(x, p) ≡ 0 mod xm for any desired m.
By choosing m high enough, all actual roots will be in this list, but the list will also
contain certain “spurious roots” which are discarded. The spurious roots, however,
will be important in Chapter 5, where we see that some of these actually constitute
power series expansions of rational expressions p1

p2
∈ F(x) such that Q(x, p1

p2
) = 0.♦

3.1.1 Decoding radius

To determine the decoding radius of the Guruswami–Sudan algorithm, we need to
find for which τ we can select s, ` ∈ Z+ such that E[n,k]

GS (s, `, τ) > 0. We will actually
do this twice: first using a geometric argument, which focus on the asymptotics of `s ,
and second using a purely algebraic argument where we find good, closed expressions
for how to choose s and ` for any given τ at most the decoding radius. The former
is useful for philosophising on the nature of the parameters, and the latter is more
practical and important for complexity analysis. We will begin by pruning half the
search space:

Lemma 3.7. For s, `, τ with E[n,k]
GS (s, `, τ) > 0 and d/2 < τ ≤ d, then s ≤ `.

Proof. Assume that s ≥ `. Recall that E[n,k]
GS (s, `, τ) = −

(
s+1

2
)
n+

∑`
t=0 s(n− τ)−

t(k − 1). Since s(n− τ)− t(k − 1) ≥ 0 for all t ≤ s since τ ≤ d, then

∑̀
t=0

s(n− τ)− t(k− 1) ≤
s∑
t=0

s(n− τ)− t(k− 1) = (s+ 1)s(n− τ)−
(
s+1

2
)
(k− 1)

That is to say, E[n,k]
GS (s, `, τ) ≤ E[n,k]

GS (s, s, τ). But E[n,k]
GS (s, s, τ) > 0 implies:

(s+ 1)s(n− τ)−
(
s+1

2
)
(k − 1)−

(
s+1

2
)
n > 0 ⇐⇒ τ < d/2
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Proposition 3.8. There exists suitable choices for s ≤ ` such that E[n,k]
GS (s, `, τ) > 0

for any τ < n−
√
n(n− d).

Proof. We will focus on the ratio `/s, so let ϕ = `/s be some rational number. Then
E

[n,k]
GS (s, ϕs, τ) > 0 becomes

(ϕs+ 1)s(n− τ)− 1
2ϕs(ϕs+ 1)(k − 1) > 1

2ns(s+ 1)⇐⇒

n− τ − 1
2ϕ(k − 1) > 1

2n
1 + 1

s

ϕ+ 1
s

When ϕ ≥ 1, we can find an s large enough to satisfy the above if and only if

n− τ − 1
2ϕ(k − 1) > 1

2nϕ
−1 ⇐⇒

τ < (1− 1
2ϕ
−1)n− 1

2ϕ(k − 1) (3.1)

The following geometrical argument is exemplified on Figure 3.1 on page 53: when-
ever ϕ ≥ 1, the line ψ(k◦) = (1 − 1

2ϕ
−1)n − 1

2ϕk◦ is the tangent line of Ψ(k◦) =
n −
√
nk◦ touching at k◦ = nϕ−2. Since Ψ(k◦) is convex for k◦ > 0, then for any

τ < n−
√
n(k − 1), we can choose a ϕ ≥ 1 such that τ is below the corresponding

tangent line of Ψ(k◦), so it satisfies (3.1) and therefore some large enough s will
satisfy E[n,k]

GS (s, ϕs, τ) > 0. It will always be sufficient to choose ϕ such that the
corresponding tangent line intersects Ψ(k◦) at k◦ = k − 1, namely ϕ =

√
n
k−1 , but

there will be a range of possible values for ϕ depending on τ .

Remark. The function J(n, d) = n−
√
n(n− d) is called the asymptotic Johnson

radius: Johnson [Joh62] gave a bound for the size of constant-weight codes, and this
can be used to prove that any linear code has only a constant number of codewords
within any Hamming ball of radius less than J(n, d), where n is the length and d
the minimum distance of the code [Gur07].

It is beautiful that the Guruswami–Sudan algorithm can decode exactly up to a long-
known bound. We know that there exists infinite families of codes such that there
are exponentially many (in n) codewords in bigger balls than J(n, d) [GRS00], but
it is unknown whether this is the case for Reed–Solomon codes. See also discussion
in Section 3.6. ♦

The following corollary describes the behaviour when decoding toward the limit;
due to integer rounding, an integer decoding radius can not “go towards” some limit,
so it should be understood in the sense of real values of τ, s and `.

Corollary 3.9. For τ → n−
√
n(n− d), choices of s and ` such that E[n,k]

GS (s, `, τ) >
0 must satisfy `, s→∞ with `/s→

√
n
k−1 .

Proof. Referring to the proof of Proposition 3.8, we see that since Ψ(k◦) is convex,
then if we let τ → Ψ(k− 1) we are forced to choosing a tangent of Ψ(k◦) ever closer
to the tangent passing through k◦ = k−1. In the limit, this yields the given value of
ϕ. For the asymptotic behaviour of s, go a few steps back in the above proof and note
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(n, k, d) =(1024, 208, 817) and τ=477
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Figure 3.1: An illustration of the geometric proof of Proposition 3.8, using specific parame-
ters. For any tangent to Ψ(k◦) for which (k−1, τ) = (207, 477) is below, corresponds a value
ϕ for which a large enough value of s exists such that E[n,k]

GS (s, ϕs, τ) > 0. Proposition 3.11
gives (s, `) = (2, 3) and these are also the minimal possible. The corresponding tangent is
different from the tangent touching Ψ(k◦) in k◦ = 207. We also see the tangent correspond-
ing to the value of ϕ = n/(n − τ); Corollary 3.14 gives upper bounds for the parameter
choices given by Proposition 3.11, and the fraction `/s of these bounds will asymptotically
approach n/(n− τ) for n tending to infinity, keeping τ/n and d/n constant.

that we can have E[n,k]
GS (s, ϕs, τ) > 0 only whenever τ < n− 1

2ϕ(k − 1)− 1
2n

1+1/s
ϕ+1/s .

Since the right-hand side increases with increasing s, and only in the limit of infinite
s do we reach the tangent line of Ψ(k◦), and since in the limit of τ → Ψ(k◦) there
is only this one possible tangent line to choose, we must require s → ∞ to get
arbitrarily close to this tangent.

Example 3.10. Consider again the [250, 70, 181] code from Example 3.5. We recall
that the decoding radius was 118, and indeed we have n−

√
n(n− d) ≈ 118.66. ♠

3.1.2 Choosing the parameters

Now for some concrete expressions on how to choose s and `. We introduce some
short-hands; these ease the derivation, especially if the reader wish to verify the (te-
dious) calculations of the following proposition, but they also serve to highlight a con-
nection with rational interpolation as done in Chapter 5, especially Proposition 5.7
on page 131.

Proposition 3.11. For a given code with k > 1 and a given decoding radius
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τ < n−
√
n(n− d), then E[n,k]

GS (s, `, τ) > 0 if s, ` are chosen as

s = bsmin + 1c ` =
⌊
τ̄
k◦
s+ 1

2 −
√
D
k◦

⌋
where

smin = τk◦
τ̄2 − nk◦

τ̄ = n− τ

D = (s− smin)(τ̄2 − nk◦)s+ k2
◦
4 k◦ = k − 1

Proof. We seek s and ` that are both integers and at least 1 which yieldE[n,k]
GS (s, `, τ) >

0. E[n,k]
GS (s, `, τ) = − 1

2k◦`
2 + `(sτ̄ − 1

2k◦) + sτ̄ − 1
2s(s+ 1)n is a second-degree poly-

nomial in ` with negative leading term coefficient, so for a given s the real maximal
is found by differentiating and setting to zero:

`top(s) = sτ̄

k◦
− 1

2

This is not usually integer. Due to the parabolic shape of E[n,k]
GS as a function of `,

the integer value of ` which maximises E[n,k]
GS , `int(s), is then at most 1

2 from `top,
namely `int(s) = d`top(s) − 1

2e. We’ll get back to whether `int(s) ≥ 1. Also, any
value of ` farther from `top(s) results in a lower value of E[n,k]

GS . Therefore, if we
find an s such that E[n,k]

GS (s, ˜̀(s), τ) > 0 for ˜̀(s) = sτ̄
k◦
, then we can be sure that

E
[n,k]
GS (s, `int(s), τ) > 0. Now we have E[n,k]

GS (s, ˜̀(s), τ) > 0 exactly when

s >
τk◦

τ̄2 − nk◦
= smin

whenever τ̄2 > nk◦ which it is exactly when τ < n−
√
n(n− d). Therefore, choosing

s as sint = bsmin + 1c ≥ 1, we are guaranteed that choosing ` as `int(sint), we will
satisfy E[n,k]

GS (s, `, τ) > 0. Since τ ≤ d = n− (k− 1) we have τ̄ = n− τ ≥ k− 1 = k◦
and so `top(sint) ≥ sint − 1

2 ≥
1
2 which gives `int(sint) ≥ 1.

We can find a better list size, though. For s = sint, we now know there exists at
least one positive integer value of `, namely `int(sint), such that E[n,k]

GS (s, `, τ) > 0.
We would like to select the smallest, so we solve E[n,k]

GS (s, `, τ) > 0 for ` and get

` ∈
]
τ̄
k◦
s− 1

2 −
√
D̃

2k◦ , τ̄
k◦
s− 1

2 +
√
D̃

2k◦

[
D̃ = (2sτ̄ − k◦)2 + 4k◦s(2τ̄ − ns− n)

For s = sint, we know that `int(sint) must be in the above range for `, so it is both
non-empty and contains at least one positive integer. By the original expression for
E

[n,k]
GS (s, `, τ), it is clear that the above range cannot include ` = 0 whenever s > 0,

which means that the entire range must be positive numbers. Therefore, we can
choose ` as the smallest integer in the range. After some rewriting, this expression
becomes that of the proposition.
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Remark. Obviously, this is not the first time closed expressions for the parameters
s and ` for the Guruswami–Sudan algorithm have been found, but surprisingly—at
least to me—I have not been able to find any good and correct closed expressions!
In the original article [GS99], a quick analysis yielding expressions for s and ` that
grow asymptotically in an acceptable manner was given, but these are obviously
unsuitable for use or non-asymptotic analysis. McEliece made a lengthy analysis
of the algorithm and its parameters [McE03], but the expressions are not always
correct! (see below). I have not been able to find any other analyses of concrete
parameter choices.

Of course, for given parameters and a given τ , one can simply brute force search
for the smallest ` such that an s exists which give E(s, `, τ) > 0. On Figure 3.2, we
have depicted a comparison of all these list size values for a quite long code; this
also demonstrates that fallibility of McEliece’s expressions. ♦

Remark. As mentioned above, one can brute force search for the smallest ` such
an s exist with E(s, `, τ) > 0, and one can of course also search for a smallest s
such that an ` exists with E(s, `, τ) > 0. I have found no examples where these two
strategies do not yield the same, so I conjecture that they always do.

Going to real analysis, the points in the (s, `) plane given by E[n,k]
GS (s, `, τ) > 0 are

“inside” the branches of a hyperbola, with one branch completely in `, s > 0 and
the other outside. The asymptotes of the hyperbola could be shown to both have
positive, finite slope and are quite close to each other, making the branches relatively
sharp around the centers. I believe my conjecture is paramount to showing that
whenever the region within the “positive” branch contains two Z2 lattice points
(s+ 1, `) and (s, `+ 1), it also contains (s, `). This should be true if the asymptotes
of the branches are as I described them, in precise terms. ♦

Example 3.12. For the [250, 70, 181] code from Example 3.5 on page 50, we men-
tioned parameter choices for various decoding radii; these are all minimally possible
(determined by brute force search). Proposition 3.11 also gives these for τ = 105
and τ = 118, while for τ = 97 it yields (s, `) = (2, 3). ♠

For the sake of the upcoming asymptotic analysis, we can obtain a nice upper bound
on the size of `:

Corollary 3.13. The choice of s and ` given by Proposition 3.11 satisfies

` ≤ τ̄
k◦
smin + 1 = τ τ̄

τ̄2 − nk◦
+ 1

Proof. Let ε = s− smin. Then we have for the chosen value of `:

` ≤ τ̄
k◦
smin + 1

2 + τ̄
k◦
ε− 1

k◦

√
ε2(τ̄2−nk◦)+εk◦τ+

k2
◦
4 (3.2)

The last two terms turn out to be at most a small positive number. In particular

τ̄
k◦
ε− 1

k◦

√
ε2(τ̄2−nk◦)+εk◦τ+

k2
◦
4 ≤

1
2 ⇐⇒

εn(1− ε) ≥ 0
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Figure 3.2: Comparison between the list sizes computed by Proposition 3.11 and by
McEliece’s expressions [McE03] for code parameters chosen for their suitable list-decoding
range. “Minimal” is the minimal ` for the given τ such that ∃s . E[n,k]

GS (s, `, τ) > 0, obtained
by brute force search. Above we see absolute list sizes, while below we see the difference
to “Minimal”.
Note how the sub-optimality of the list size computed by Proposition 3.11 is relatively
small compared to the code parameters, and that it stays small relative to the minimal
values possible.
Note also that McEliece’s expressions quite often gives a list size below the minimal possi-
ble, demonstrating an error somewhere in the derivations of those expressions.
We have left out the parameters given by Guruswami and Sudan [GS99] since they already
for τ = 6083 (the minimal) give ` = 1561, which is way outside the plot area. We have
also included the theoretical list size bound by Cassuto and Bruck [CB04].
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which is always true, as 0 < ε ≤ 1. Inserting the inequality back in (3.2) and
expanding smin, we get the sought upper bound for `.

Corollary 3.14. Let T = τ
n and D = d

n as well as J = 1 −
√

1−D. Then
Proposition 3.11’s choices of s and ` satisfies

s ≤ (D − T )(1− T )
(J − T )(2− (J + T )) <

1− T
1− T

J

` ≤ (D − T )
(J − T )(2− (J + T )) <

1
1− T

J

Proof. Note first that (J − T )(2− (J + T )) = T 2 − 2T +D. First for s; we simply
relax the flooring function and rearrange:

s ≤ τk◦
(n− τ)2 − n(k − 1) + 1 = T (1−D)

(1− T )2 − (1−D) + 1 = T 2 − TD − T +D

T 2 − 2T +D

which simplifies to the tighter of the bounds. For ` we do the same but with the
relaxation of Corollary 3.13:

` ≤ τ(n− τ)
(n− τ)2 − n(k − 1) + 1 = T (1− T )

(1− T )2 − (1−D) + 1 = D − T
T 2 − 2T +D

The relaxations of these bounds are found by upper bounding the function ζ(T ) =
D−T

2−(J+T ) , defined on the range 0 < T < J . The derivative of ζ with regards to T is
always negative, so the maximal value of ζ must be in the limit for T → 0, yielding

lim
T→0

ζ(T ) = D

2− J = J(2− J)
2− J = J

Replacing the term D−T
2−(J+T ) in the above expressions for ` and s with J yields the

corollary’s final inequalities. Note that this approximation is good for low values of
T , but gets increasingly bad for T → J , where ζ(T )→ J

2 .

Remark. For T → J , the fraction `/s between our upper bounds is (1− T )−1 →√
n
k−1 , as we had proven would be the limit for `/s in Corollary 3.9. ♦

Remark. In a technical report Cassuto and Bruck [CB04] presented a new upper
bound for the number of codewords within a Hamming sphere of some radius
τ < n −

√
n(n− d) for any linear code with length n and minimum distance d.

That bound is exactly the tighter of the bounds for ` given in Corollary 3.14! On
Figure 3.2 we have also exemplified this closeness. In [CB04] they compare their
found bound with the expressions of McEliece [McE03], and show that the difference
is “small”, but as we have demonstrated, those expressions are not always correct,
so that has little value. ♦

For even more overview, a rough asymptotic estimate is sometimes very enlightening:

Corollary 3.15. Whenever τ < n−
√
n(n− d), there exist s, ` ∈ O(n2) such that

E
[n,k]
GS (s, `, τ) > 0.
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Proof. As k◦ is an integer and τ̄2 > nk◦, we of course have τ̄2−nk◦ ≥ 1, and we also
have τ, τ̄ ∈ O(n); thus by Corollary 3.13, ` ∈ O(n2) which implies s ∈ O(n2).

It should be noted that this is a worst case, occurring when τ̄2 − nk◦ is very small,
i.e. τ is very close to the decoding bound. Due to integer rounding, cases like these
are not easily found analytically, but they do crop up from time to time.

Example 3.16. An [2480, 1489, 992] GRS code can be decoded up to τ = 559,
which would yield τ̄2 − nk◦ = 1; i.e. the minimum. Using Proposition 3.11, we
get the astronomical ` = 1 073 840 and s = 831 793, which are also the minimum
parameters for these n, k, τ .

However, for those n and k, decoding just one error less, that is τ = 558, we get the
much more reasonable ` = 280 and s = 217. ♠

The above example demonstrates the general behaviour, captured by the following
easy corollary:

Corollary 3.17. Whenever τ ≤ n−
√
n(n− d)−εn for some 0 < ε < 1, there exist

s, ` ∈ O(ε−1) such that E[n,k]
GS (s, `, τ) > 0. In particular, if εn = 1, then `, s ∈ O(n).

Proof. We get J − T ≥ (1 −
√

1−D) − (1 −
√

1−D − ε) = ε. Inserting this in
the tighter of the parameter bounds of Corollary 3.14, we get the sought as the
remaining terms are in O(1).

3.1.3 Sudan: the case of s = 1

The Guruswami–Sudan algorithm was preceded chronologically by the simpler Sudan
algorithm [Sud97], which is exactly the same algorithm but having s = 1 always.
Since we will be discussing Power decoding in Chapter 4, which has strong ties to
this special case of the Guruswami–Sudan, we briefly give some analysis of this case
by itself; fortunately, this is much easier than for the general case.

Proposition 3.18. E[n,k]
GS (1, `, τ) > 0 whenever τ < f(`) where f(`) = `

`+1n −
1
2`(k − 1). Regarding f : N 7→ R then it satisfies f(`) < n+ 1

2 (k − 1)−
√

2n(k − 1)
and is maximal either when ` =

⌊√
2n
k−1 − 1

⌋
or ` =

⌈√
2n
k−1 − 1

⌉
. In particular, if

k−1
n ≥

1
3 then f(`) is maximal at ` = 1.

Proof. We have E[n,k]
GS (1, `, τ) = (`+ 1)(n− τ)− n− 1

2`(`+ 1)(k− 1), and requiring
this to be greater than zero immediately leads to τ < f(`). Going to real analysis
then since f ′(`) = n

(`+1)2 − 1
2 (k − 1) this means that the only stationary point for

positive, real ` is ` =
√

2n
k−1 − 1. It is easy to see that this is a maximal point, from

where the statement on maximal integral ` immediately follows. The maximal value
of f(`) is then f(

√
2n
k−1 − 1) which simplifies to n+ 1

2 (k − 1)−
√

2n(k − 1).
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Figure 3.3: Decoding radii for various multiplicities. Notice how the graphs are piece-wise
linear. For s = 1, i.e. the Sudan case, we also notice that the first piece to lift from the
half-minimum distance line begins at k/n = 1/3, as stated by Proposition 3.18.

For the last statement, notice simply that if f(`) is not maximal at ` = 1 then
f(2) > f(1) = n−k+1

2 which is the same as 2
3n− (k− 1) > n−k+1

2 , i.e. k−1
n < 1

3 .

See Figure 3.3 for a depiction of the decoding radius compared to higher multiplici-
ties and the Johnson bound.

Example 3.19. For the [250, 70, 181] code of Example 3.5 on page 50, we have√
2n
k−1 ≈ 1.69 and f(1) = 90 1

2 while f(2) = 97 2
3 . So, as we already knew, (s, `) =

(1, 2) allows us to decode 97 errors. ♠

Example 3.20. We will meet the Sudan case again, in particular for Power decoding
in Chapter 4, so we will introduce a lower rate code for better exemplification: so
consider instead a [250, 40, 211] GRS code. Half-the-minimum distance decoding
would be 105 errors. We have

√
2n
k−1 ≈ 2.58 and f(2) = 127 2

3 while f(3) = 129;
thus (s, `) = (1, 3) allows us to decode 129 errors. Going to higher multiplicities, we
could have the quite steep (s, `) = (116, 293) decoding 151 errors. ♠

3.2 Finding Q in an explicit module

We will now show an alternative manner in which to find a Q ∈ F[x, y] satisfying
Theorem 3.2 on page 48 for a given decoding instance. The method will turn out
to be much faster than the Gaussian elimination approach, and will of course draw
upon the module minimisation techniques we developed in Chapter 2. We will need
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to assume s ≤ ` which by Lemma 3.7 on page 51 is no real restriction.

Definition 3.21. LetMs,` ⊂ F[x, y] denote the space of all bivariate polynomials
passing through the points (α1, r

′
1), . . . , (αn, r′n) with multiplicity s and with y-

degree at most `, i.e. satisfying Point 1 of Theorem 3.2.

Finding a Q ∈ F[x, y] for satisfying the requirements of Theorem 3.2 is then the
same as finding an element in Ms,` with low enough (1, k − 1)-weighted degree.
Since we know that an element with minimal (1, k− 1)-weighted degree will at least
be low enough, we will find one such.

Following the ideas of Lee and O’Sullivan [LO08], we can first remark thatMs,` is
an F[x] module. Second, we can give an explicit basis forMs,`. First we give two
definitions which will be used repeatedly in the remainder of the thesis:

Definition 3.22. For a given GRS code, define G(x) =
∏n
i=1(x− αi). For a given

received word for this code, define R(x) in F[x] as the unique Lagrange interpolation
polynomial going through the points (αi, r′i) for i = 1, . . . , n. Thus

R(x) =
n∑
i=1

r′i
∏
j 6=i

x− αj
αi − αj

Denote by Q[t](x) the yt-coefficient of Q(x, y) when Q is regarded over F[x][y].

Lemma 3.23. Let Q ∈Ms,` with degy Q = t < s. Then G(x)s−t | Q[t](x).

Proof. Q(x, y) interpolates the n points (αi, r′i) with multiplicity s, so for any i,
Q(x+αi, y+ r′i) =

∑t
j=0Q[j](x+αi)(y+ r′i)j has no monomials of total degree less

than s. Multiplying out the (y + r′i)j-terms, Q[t](x + αi)yt will be the only term
with y-degree t. Therefore Q[t](x+ αi) can have no monomials of degree less than
s − t, which implies (x − αi)s−t | Q[t](x). As this holds for any i, we proved the
lemma.

Theorem 3.24. The module Ms,` is generated as an F[x]-module by the ` + 1
polynomials P (i) ∈ F[x, y] given by

P (t) = Gs−t(y −R)t, for 0 ≤ t ≤ s,
P (t) = yt−s(y −R)s, for s < t ≤ `.

Proof. It is easy to see that each P (t) ∈ Ms,` since both G and y −R go through
the n points (αi, r′i) with multiplicity one, and that G and y −R divide P (t) with
total power s for each t.

To see that any element ofMs,` can be written as an F[x]-combination of the P (t), let
Q(x, y) be some element ofMs,`. Then the polynomialQ(`−1)(x, y) = Q−Q[`](x)P (`)

has y-degree at most `− 1. Since both Q and P (`) are inMs,`, so must Q(`−1) be
in Ms,`. Since P (t) has y-degree t and P (t)

[t] (x) = 1 for t = `, ` − 1, . . . , s, we can
continue reducing this way until we reach a Q(s−1)(x, y) ∈ Ms,` with y-degree at
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most s− 1. From then on, we have P (t)
[t] (x) = Gs−t, but by Lemma 3.23, we must

also have G(x) | Q(s−1)
[s−1] (x), so we can also reduce by P (s−1). This can be continued

with the remaining P (t), eventually reducing the remainder to 0.

Instead of viewingMs,` as an F[x] module of bivariate polynomials with y-degree
at most ` + 1, we can view it as a module of F[x]-vectors of length ` + 1, so that
the ith position of an element corresponds to the F[x]-coefficient to yi−1; obviously,
this retains all F[x] operations. Similarly, any basis ofMs,` can be represented as a
matrix whose rows are such representations of the basis elements. More specifically,
the basis of Theorem 3.24 becomes the following matrix:

As,` =



Gs

Gs−1(−R) Gs−1 0...
. . .

(−R)s
(
s
1
)
(−R)s−1 . . . 1
(−R)s . . . 1

0
. . .

. . .

(−R)s . . .
(
s
s−1
)
(−R) 1


(3.3)

Note that for any Q =
∑`
t=0Qt(x)yt then deg1,k−1Q = deg Φ1,w

(
(Q0, . . . , Q`)

)
,

where w =
(
0, k − 1, . . . , `(k − 1)

)
and Φν,w are from Definition 2.11 on page 16.

We are thus looking for a vector in the module spanned by the rows of As,` which is
minimal under the module monomial ordering �1,w. By Corollary 2.15 on page 18,
if Bs,` is a basis ofMs,` in Φ1,w(Bs,`)-weighted weak Popov form, then the row of
Bs,` which orders minimal according to �1,w must be such a vector. Thus, we can
solve the problem by applying any of the algorithms in Chapter 2 which can bring
Φ1,w(As,`) to weak Popov form.

For complexity estimates, let us investigate some key properties of As,`:

Lemma 3.25. Let w =
(
0, k − 1, . . . , `(k − 1)

)
. Then

maxdeg (Φ1,w(As,`)) = sn

∆(Φ1,w(As,`)) = 1
2 (2`− s+ 1)s(degR− k + 1) < `s(n− k)

Proof. Since degR ≤ n − 1 and k − 1 < n, the max-degree of Φ1,w(As,`) follows
immediately as the degree of the upper left-hand element. For the orthogonality
defect, let us compute both the degree and the determinant.

For the former, we have deg(Φ1,w(As,`)) =
∑`
i=0 deg1,k−1 P

(t)(x, y), where the
P (t) are as in Theorem 3.24. Recall the definition of the positive function pos(·), see
e.g. Appendix A; we can then write P (t) = Gpos(s−b)(x)(y−R(x))t−pos(t−s)ypos(t−s).
Note that whenever E 6= ∅, then degR ≥ k; for otherwise r = evα,β(R) ∈ C.
Therefore, deg1,k−1(y −R)t = tdegR and so

deg1,k−1 P
(t) = pos(s− t)n+ pos(t− s)(k − 1) + min(t, s) degR (3.4)
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This gives

deg(Φ1,w(As,`)) =
(
s+1

2
)
n+

(
`−s+1

2
)
(k − 1) +

((
s+1

2
)

+ (`− s)s
)

degR

Since As,` is lower triangular, the determinant is easy:

det(Φ1,w(As,`)) =
∏̀
t=0

Gpos(s−t)xt(k−1) and so

deg det(Φ1,w(As,`)) =
(
s+1

2
)
n+

(
`+1

2
)
(k − 1)

The orthogonality defect can then be simplified to

∆(Φ1,w(As,`)) =
(
`−s+1

2
)
(k − 1) +

((
s+1

2
)

+ (`− s)s
)

degR−
(
`+1

2
)
(k − 1)

= degR
(
s`− 1

2s
2 + 1

2s
)
− 1

2 (k − 1)
(
`2 + `− (`− s+ 1)(`− s)

)
= 1

2 (2`− s+ 1)s(degR− k + 1)

Lemma 3.26. Computing As,` can be done in O
(
s2`n+ s2P(sn) + P(n) logn

)
.

Proof. Computing R and G by Lagrangian interpolation can be done in complexity
O(P(n) logn), see e.g. [vzGG03, p. 297]. We can then compute all expressions RiGj
for 0 ≤ i + j ≤ s iteratively in O(s2P(sn)). Each of the non-zero entries of As,`
is a constant multiple of such an expression and can thus be computed in O(sn)
afterwards; the total cost follows by remarking that there are fewer than (s+1)(`+1)
non-zero entries.

Proposition 3.27. The worst-case complexity of finding a satisfactory interpolation
polynomial Q by minimising Φ1,w(As,`) is as in Table 3.1, for various choices of
module minimisation algorithm.

Proof. This follows from Table 2.3 on page 42 since we need only one row of the basis
in Φ1,w-weighted weak Popov form, and using Lemma 3.25. It should be noted that
the cost of constructing As,` is dominated by the cost of minimising it, no matter
which method we use for the latter.

Remark. We see that focusing on n, then the GJV is fastest with approximately
O
(
`3sn log(n)O(1)). This is the fastest known interpolation method, and it has been

described in roughly equivalent ways before, see Section 3.6. One can note, however,
that if n− k � n then the Alekhnovich algorithm looks more favourable since most
of the work will be done on truncated polynomials. ♦

Example 3.28. Consider the [250, 70, 181] code from Example 3.5 on page 50
decoded up to τ = 105 choosing (s, `) = (2, 4). We would setw = (0, 69, 138, 207, 276).
Assuming a received word yielding the usual degR = n− 1, the matrix A2,4 satisfies
the following:

A2,4 E


500 ⊥ ⊥ ⊥ ⊥
499 250 ⊥ ⊥ ⊥
498 249 0 ⊥ ⊥
⊥ 498 249 0 ⊥
⊥ ⊥ 498 249 0


maxdeg (Φ1,w(A2,4)) = 500

∆(Φ1,w(A2,4)) = 1260
♠
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Complexity of computing Q for Guruswami–Sudan by minimising As,`
Algorithm Complexity Relaxed
Mulders–Storjohann `3s2n(n− k) `3s2n2

Alekhnovich M(`)P(`s(n− k)) log(`s(n− k)) + `2P(sn) `4sn log(n)2+o(1)

GJV M(`)P(sn) log(`sn)O(1) `3sn log(n)O(1)

Table 3.1: In the Relaxed column, we have used (n− k) ∈ O(n) as well as s, ` ∈ O(nO(1)),
the latter following from Corollary 3.15.

Remark. The “re-encoding transformation” is a technique invented by Kötter and
Vardy [KV03b] for reducing the complexity of the Guruswami–Sudan algorithm by,
reputedly, “replacing n with n−k in the complexity estimate”: one adds a codeword
to the received word before decoding, to force at least k positions to zero; decoding
this modified received word obviously leads to a decoding of the original. Assuming
that one chose the first k position, the result is that g(x) =

∏k−1
i=0 (x− αi) divides

both R and G, where R and G are as in Definition 3.22 but for the modified received
word. Regarding As,`, we see that we could then divide out gi in the first i columns,
and the row space of the resulting matrix Às,` would be isomorphic to that of As,`.
Thus, finding a minimal weighted-degree vector in the row-space of Às,` would also
be a minimal weighted-degree vector in the row-space of As,`, assuming the weights
of the former were corrected appropriately. However, easy calculation shows that
exactly this correction of weights leads to ∆(Φ1,ẁ(Às,`)) = ∆(Φ1,w(As,`)). Since
the last ` − s rows of Às,` equal those of As,`, also the max-degree is unchanged;
thus the running times of all the module minimisation algorithms are essentially
unchanged, at least from an asymptotic perspective. When using the Alekhnovich
algorithm, this was already remarked by Brander in his thesis [Bra10, p. 68].

Exactly same arise when using the Kötter interpolation method, generalised by
Nielsen and Høholdt [NH98], for which the re-encoding transformation was originally
designed: the asymptotic complexity estimate is left completely unchanged by the
transformation. The superficial complexity discussions in both [KV03b] as well as
the much more verbose [KMV11], however, glance over this. Two important points
should be made in their defence though: 1) the transformation does give a (constant)
reduction, one which is more evident when s is close to ` (i.e. high rates), and which
might very well be quite noticeable for practical parameters; and 2) the method
is much more potent when applied to soft-decision decoding, their main area of
interest, since one can eliminate to positions of the highest computational cost. ♦

3.3 Step-wise Q-finding and multi-trial decoding

The main computational task in the method of Section 3.2 is to find a basis of
Ms,` in Φ1,w-weighted weak Popov form, and this can be carried out directly by
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the methods of Chapter 2. In this section we will give a step-wise method for doing
this, utilising a recurrence between the explicit bases ofMs,`, i.e. the matrix As,`
on page 61, when considering increasing values of s and `. This method also gives
the possibility of shaping our list decoder as a maximum-likelihood list decoder.

Since we will be considering series of choices for the parameters s and ` for a given
code, we introduce the function τ(s, `) as the greatest positive integer such that
E

[n,k]
GS

(
s, `, τ(s, `)

)
> 0. For notational convenience, we will also write Φ1,◦ in place

of Φ1,(1,k−1,...,ˆ̀(k−1)) where the value of ˆ̀ is inferred by the objects we apply Φ1,◦
to.

Using the results of the preceding section, we show in Section 3.3.2 that given a
basis Bs,` of Ms,` in Φ1,◦-weighted weak Popov form, then we can write down a
matrix CI

s,`+1 which is a basis of Ms,`+1 and such that the orthogonality defect
of Φ1,◦(CI

s,`+1) is much lower than that of Φ1,◦(As,`+1). This means that reducing
Φ1,◦(CI

s,`+1) to weak Popov form using the Mulders–Storjohann or Alekhnovich
algorithm is faster than reducing Φ1,◦(As,`+1). We call this kind of refinement a
“refinement step of type I”. In Section 3.3.3, we similarly give a way to refine a basis
ofMs,` to one ofMs+1,`+1, and we call this a “refinement step of type II”.

If we first compute a basis in Φ1,◦-weighted weak Popov form ofM1,1 using A1,1,
we can perform a sequence of refinement steps of type I and II to compute a basis
in Φ1,◦-weighted weak Popov form of Ms,`, since s ≤ `. After any step, having
some intermediate ŝ ≤ s, ˆ̀≤ `, we will thus have a basis ofMŝ,ˆ̀ in Φ1,◦-weighted
weak Popov form, say Bŝ,ˆ̀. By Corollary 2.15, we could thus extract from Bŝ,ˆ̀ a
Q̂(x, y) ∈ Mŝ,ˆ̀ with minimal (1, k − 1)-weighted degree. Since Q̂ must satisfy the
interpolation conditions of Theorem 3.2 for multiplicity ŝ and list size ˆ̀, and since
the weighted degree is minimal among such polynomials, it must also satisfy the
degree constraints for τ̂ = τ(ŝ, ˆ̀). By that theorem any codeword with distance at
most τ̂ from r would then be represented by a root of Q̂(x, y).

Algorithm 5 is a generalisation and formalisation of this method. For a given
GRS code, one chooses ultimate parameters (s, `, τ) with s ≤ ` and such that
E

[n,k]
GS (s, `, τ) > 0. One also chooses a list of refinement steps and chooses after

which steps to attempt decoding; these choices are represented by a list of S1,S2
and Root elements. This list must contain exactly s− ` S1-elements and s− 1 S2-
elements, as it begins by computing a basis forM1,1 and will end with a basis for
Ms,`. Whenever there is a Root element in the list, the algorithm finds all codewords
with distance at most τ̂ = τ(ŝ, ˆ̀) from r; if this list is non-empty, the computation
breaks and the list is returned.

The algorithm calls sub-functions which we explain informally: RefinementStep2
and RefinementStep2 will take ŝ, ˆ̀ and a basis Bŝ,ˆ̀ ofMŝ,ˆ̀ in Φ1,◦-weighted weak
Popov form, and it then returns a basis forMŝ,ˆ̀+1 respectivelyMŝ+1,ˆ̀+1 also in
Φ1,◦-weighted weak Popov form; more detailed descriptions for these are given in
Section 3.3.2 and Section 3.3.3. MinimalWeightedRow finds a polynomial of mini-
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Algorithm 5 Multi-Trial Guruswami–Sudan Decoding
Input: The received word r = (r1, . . . , rn). Ultimate parameters τ, s, ` such that

E
[n,k]
GS (s, `, τ) > 0 for the given code. A list C with elements in {S1,S2,Root}

with `−s instances of S1, s−1 instances of S2, and ending with a Root element.
Output: A list of all f ∈ F[x] with deg f < k such that evα,β(f) ∈ C and

dist(evα,β(f), r) is minimal and at most τ . Fail if there are none such.
1 Construct A1,1 as in (3.3)
2 Module minimise A1,1 to obtain a basis in Φ1,◦-weighted weak Popov form, B1,1
3 (ŝ, ˆ̀)← (1, 1)
4 for each c in C do
5 if c = S1 then
6 Bŝ,ˆ̀+1 ← RefinementStep1(ŝ, ˆ̀, Bŝ,ˆ̀)
7 (ŝ, ˆ̀) ← (ŝ, ˆ̀+ 1)
8 if c = S2 then
9 Bŝ+1,ˆ̀+1← RefinementStep2(ŝ, ˆ̀, Bŝ,ˆ̀)

10 (ŝ, ˆ̀) ← (ŝ+ 1, ˆ̀+ 1)
11 if c = Root then
12 Q(x, y) ← MinimalWeightedRow(Bŝ,ˆ̀)
13 if RootFinding(Q, τ(ŝ, ˆ̀)) 6= ∅ then return this list
14 return Fail

mal (1, k − 1)-weighted degree inMŝ,ˆ̀ given a basis in Φ1,◦-weighted weak Popov
form (Corollary 2.15). Finally, RootFinding(Q, τ̂) corresponds to Line 2 and Line 3
of Algorithm 4: it returns all y-roots of Q(x, y) of degree less than k and whose
corresponding codeword has distance at most τ̂ from the received word r.

3.3.1 The possible refinement paths

There is a large amount of flexibility in the algorithm on how to choose the list C.
The two extreme cases are perhaps the most generally interesting: the one without
any Root elements except at the end, i.e. usual list decoding; and the one with a
Root element each time the decoding radius τ(ŝ, ˆ̀) has increased, i.e. a variant of
maximum-likelihood decoding up to a certain radius.

In Section 3.3.4, we discuss complexity concerns with regards to the chosen path,
but it turns out that the price of either type of refinement is very comparable.
Therefore, the computations for the refinements in the worst case are not of much
significance; however, in the case where we have multiple Root elements, we want
to minimise the average computation cost: considering that few errors occur much
more frequently than many, we are then interested in reaching each intermediate
decoding radius after as few refinements as possible.
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Since we do not have a refinement which increases only s, we are inherently limited
in the possible paths we can choose. The strongest condition we would like to
have satisfied is the following: Let bd−1

2 c ≤ τ1 < . . . < τm = τ be the series of
intermediate decoding radii where one would like to decode. Let (si, `i) be chosen
such that E[n,k]

GS (si, `i, τi) > 0 and either si or `i is minimal possible. Can then the
sequence of parameters (si, `i) be reached by refinement steps of type I or II?

I do not have a proof of this statement, but I conjectured with Alexander Zeh
in [NZ13] that it is true, and it has been verified for a large number of parameters.

Example 3.29. Consider the [250, 70, 181] code from Example 3.5 on page 50
decoded up to τ = 105 choosing s, ` = (2, 4). Not considering Root steps, we could
choose to apply steps S1,S2,S1, yielding the following (s, `) refinement path

(1, 1)→ (1, 2)→ (2, 3)→ (2, 4)

This gives the intermediate decoding radii 90, 97, 104, 105 after each step respectively.
We could instead choose S1,S1,S2, yielding the refinement path

(1, 1)→ (1, 2)→ (1, 3)→ (2, 4)

This results in decoding radii 90, 97, 83, 105. This demonstrates that choosing the
right refinement path is very important with respect to achieving high decoding radii
as early as possible. ♠

3.3.2 Refinement step type I: (s, `) 7→ (s, ` + 1)

Lemma 3.30. If B(0), . . . , B(`) ∈ F[x, y] is a basis of M, then the following is a
basis ofMs,`+1:

B(0), . . . , B(`), y`−s+1(y −R(x))s.

Proof. Investigating the basis ofMs,`+1 given in Theorem 3.24, we see that the first
`+ 1 generators are the generators ofMs,`. Thus all of these can be described by
any basis ofMs,`+1. The last remaining generator is exactly y`−s+1(y−R(x))s.

In particular, the above lemma holds for a basis of Ms,` in Φ1,◦-weighted weak
Popov form. Letting Bs,` be such a basis, the following matrix thus represents a
basis ofMs,`+1:

CI
s,`+1 =

 Bs,` 0T

0 . . . 0 (−R)s
(
s
1
)
(−R)s−1 . . . 1

 (3.5)

Lemma 3.31. ∆(Φ1,◦(CI
s,`+1)) = s(degR− k + 1) ≤ s(n− k).
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Proof. We calculate the two quantities det Φ1,◦(CI
s,`+1) and deg Φ1,◦(CI

s,`+1). Since
Φ1,◦ simply scales the ith column with x(i−1)(k−1), it is easy to see that

det Φ1,◦(CI
s,`+1) = x(`+1)(k−1) det Φ1,◦(Bs,`)

For the row-degree, it is clearly deg Φ1,◦(Bs,`) plus the row-degree of the last row.
If and only if the received word is not a codeword then degR ≥ k, so the leading
term of the last row must be (−R)sx(`+1−s)(k−1). Thus, we get

∆(Φ1,◦(CI
s,`+1)) =

(
deg Φ1,◦(Bs,`) + sdegR+ (`+ 1− s)(k − 1)

)
−
(

deg det Φ1,◦(Bs,`) + (`+ 1)(k − 1)
)

= s(degR− k + 1),

where the last step follows from Proposition 2.5 as Φ1,◦(Bs,`) is in weak Popov
form.

3.3.3 Refinement step type II: (s, `) 7→ (s + 1, ` + 1)

Lemma 3.32. If B(0), . . . , B(`) ∈ F[x, y] is a basis ofMs,`, then the following is a
basis ofMs+1,`+1:

Gs+1(x), (y −R(x))B(0), . . . , (y −R(x))B(`)

Proof. Denote by P (0)
s,` , . . . , P

(`)
s,` the basis of Ms,` as given in Theorem 3.24, and

by P (0)
s+1,`+1, . . . , P

(`+1)
s+1,`+1 the basis of Ms+1,`+1. Then observe that for t > 0, we

have P (t)
s+1,`+1 = (y − R(x))P (t−1)

s,` . Since the B(i) form a basis ofMs,`, each P (t)
s,`

is expressible as an F[x]-combination of these, and thus for t > 0, P (t)
s+1,`+1 is

expressible as an F[x]-combination of the (y − R(x))B(i). Remaining is then only
P

(0)
s+1,`+1(x, y) = Gs+1(x).

As before, we can use the above with a basis Bs,` of Ms,` in Φ1,◦-weighted weak
Popov form, found in the previous iteration of our algorithm. Remembering that
multiplying by y translates to shifting one column to the right in the matrix repre-
sentation, the following matrix thus represents a basis ofMs+1,`+1:

CII
s+1,`+1 =

Gs+1 0

0T 0

+

 0 0

0T Bs,`

−R ·
 0 0

Bs,` 0T

 . (3.6)

Lemma 3.33. ∆(Φ1,◦(CII
s+1,`+1)) = (`+ 1)(degR− k + 1) ≤ (`+ 1)(n− k).

Proof. We compute deg Φ1,◦(CII
s+1,`+1) and deg det Φ1,◦(CII

s+1,`+1). For the former,
obviously the first row has degree (s+ 1)n. Let bi denote the ith row of Bs,`. The
(i+ 1)th row of Φ1,◦(CII

s+1,`+1) then has the form

Φ1,◦
(
(0 | bi)−R(bi | 0)

)
= (0 | Φ1,◦(bi))xk−1 −R(Φ1,◦(bi) | 0).
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As previously mentioned, if and only if the received word is not a codeword, then
degR ≥ k. In this case, the leading term of RΦ1,◦(bi) must have greater degree than
any term in xk−1Φ1,◦(bi). Thus the degree of the (i+1)th row is degR+deg Φ1,◦(bi).
Summing up we get

deg Φ1,◦(CII
s+1,`+1) = (s+ 1)n+

∑̀
i=0

(degR+ deg Φ1,◦(bi))

= (s+ 1)n+ (`+ 1) degR+ deg Φ1,◦(Bs,`)

For the determinant, observe that since the top row of CII
s+1,`+1 has only one non-zero

entry, then

det Φ1,◦(CII
s+1,`+1) = x(`+2

2 )(k−1) det(CII
s+1,`+1)

= x(`+2
2 )(k−1)Gs+1 det B̃

where B̃ = Bs,` −R
[
B̀s,`

∣∣ 0T
]
and B̀s,` is all but the zeroth column of Bs,`. This

means B̃ can be obtained by starting from Bs,` and iteratively adding the (j + 1)th
column of Bs,` scaled by R(x) to the jth column, with j starting from 1 up to `.
Since each of these will add a scaled version of an existing column in the matrix,
this does not change the determinant. Thus, det B̃ = detBs,`, and this means

det Φ1,◦(CII
s+1,`+1) = x(`+2

2 )(k−1)Gs+1 detBs,`
= x(`+1)(k−1)Gs+1 det Φ1,◦(Bs,`)

Since Bs,` is in Φ1,◦-weighted weak Popov form, we again have deg Φ1,◦(Bs,`) =
deg det Φ1,◦(Bs,`) and the lemma then follows from the difference of the two calcu-
lated quantities.

Example 3.34. Choosing the first refinement path in Example 3.29, then in a
typical decoding instance A1,1 and B1,1 would satisfy:

A1,1 E

(
250 ⊥
249 0

)
Φ1,◦(B1,1) E

(
160 159
159 159

)
B1,1 E

(
160 90
159 90

)
That yields for the following constructed and minimised matrices:

CI
1,2 E

( 160 90 ⊥
159 90 ⊥
⊥ 249 0

)
Φ1,◦(B1,2) E

(
153 152 152
152 152 152
152 152 151

)
B1,2 E

(
153 83 14
152 83 14
152 83 13

)
CII

2,3 E

(
500 ⊥ ⊥ ⊥
402 332 263 14
401 332 263 14
401 332 262 13

)
Φ1,◦(B2,3) E

(
291 291 291 291
291 291 291 290
291 291 290 290
291 290 290 290

)
B2,3 E

(
291 222 153 84
291 222 153 83
291 222 152 83
291 221 152 83

)

CI
2,4 E

( 291 222 153 84 ⊥
291 222 153 83 ⊥
291 222 152 83 ⊥
291 221 152 83 ⊥
⊥ ⊥ 498 249 0

)
Φ1,◦(B2,4) E

(
288 288 288 288 288
288 288 288 288 287
288 288 288 287 287
288 288 287 287 287
288 287 287 287 287

)
B2,4 E

(
288 219 150 81 12
288 219 150 81 11
288 219 150 80 11
288 219 149 80 11
288 218 149 80 11

)
Notice that module minimisation “evens out” the degrees, so that e.g. the entries
of Φ1,◦(B2,4) all have similar degrees. The orthogonality defect is related to the
“unevenness” of the degrees (of the degrees of the rows, to be more specific); it is
therefore interesting to compare the degrees of CI

2,4 with those of A2,4 on page 62
(remember that the ith column should be weighted by x(i−1)(k−1)). ♠
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Worst-case complexity of the Multi-trial algorithm
Algorithm Complexity Relaxed
Mulders–Storjohann `3s2n(n− k) `3s2n2

Alekhnovich `M(`)
(
s(n− k) log2+o(1)(`(n− k)) + P(sn)

)
`4sn log(n)2+o(1)

GJV `M(`)P(sn) log(`sn)O(1) `4sn log(n)O(1)

Table 3.2: For relaxation, we have used the same rules as in Table 3.1 on page 63.

3.3.4 Complexity of the method

Using the orthogonality defects obtained for the matrices CI
s,`+1 and CII

s,`+1, we
can make a precise worst-case asymptotic complexity analysis of Algorithm 5. The
average running time will depend on the exact choice of C but we will see that the
worst-case complexity will not.

Proposition 3.35. Given ultimate parameters s, `, then no matter what the choice
of C is, the worst-case complexity of Algorithm 5 is as in Table 3.2, for various
choices of module minimisation algorithm. In particular, the number of Root ele-
ments has no influence.

Proof. The worst-case complexity corresponds to the case that we do not break
early but run through the entire list C. Precomputing A1,1 can be performed in
O(n log2 n log logn) according Lemma 3.26 on page 62. Reducing to B1,1 depends on
the module minimisation algorithm, but the relevant measures on A1,1 are bounded
in Lemma 3.25 on page 61.

Now, C must contain exactly ` − s S1-elements and s − 1 S2-elements. Using
Lemma 3.31 and Lemma 3.33, we can upper bound the complexity of minimisa-
tion in each step for any of the minimisation algorithm using Table 2.2 on page 42,
by relaxing the intermediate parameters with ŝ ≤ s and ˆ̀≤ `.

It only remains to count the root-finding steps. Obviously, it never makes sense to
have two Root after each other in C, so after removing such possible duplicates, there
can be at most ` elements Root. When we perform root-finding for intermediate ŝ, ˆ̀,
we do so on a polynomial inMŝ,ˆ̀ of minimal weighted degree, and by the definition
ofMŝ,ˆ̀ as well as Theorem 3.2, this weighted degree will be less than ŝ(n− τ̂) < sn.
Thus we can apply Proposition 3.6 with N = sn.

Note that when using the Mulders–Storjohann or Alekhnovich algorithms for module
minimisation, the worst-case complexity of the multi-trial algorithm is the same
order as when finding a minimised basis for Ms,` immediately, as described in
Section 3.2, see Table 3.1. When using the GJV, the low orthogonality defects of
CI
ŝ,ˆ̀+1 and CII

ŝ+1,ˆ̀+1 provides no immediate benefit, and the total worst-case running
time for the multi-trial algorithm is a factor ` worse than the one in Section 3.2.

Therefore, considering the Mulders–Storjohann or Alekhnovich algorithm for module
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minimisation, we could use any number of intermediate decoding attempts without
changing the asymptotic worst-case behaviour. The obvious strategy is then to
choose a series of refinement steps such that the decoding radius always increases as
early as possible, and attempt decoding after each such increase. The result would be
a “maximum-likelihood list decoder”, i.e. it finds all closest codewords within some
ultimate radius τ < n −

√
n(n− d). If one is working in a decoding model where

such a list suffices, our algorithm will thus have much better average-case complexity
since fewer errors occur much more frequently than many, while this will pose no
(asymptotic) penalty, compared with using the Mulders–Storjohann or Alekhnovich
minimisation algorithms on the final As,` directly. In e.g. software implementations,
average-case behaviour is of much higher importance than worst-case behaviour so
in this setting our algorithm should be highly useful.

Remark. Consider the case where we use a C with only a Root at the very end,
i.e. simply use step-wise interpolation without intermediate decoding attempts, and
consider using either the Mulders–Storjohann or Alekhnovich algorithm for module
minimisation. Though it is not visible on the worst-case running time, it is ensnaring
to believe that the constant for the leading term in the complexity estimates, hidden
by the big-O notation, should be lower for the multi-trial algorithm than for the
method of Section 3.2: since in the former, the matrices and polynomials gradually
increase in size, while in the latter they are of maximal size throughout. It would
be interesting to redo the complexity analysis in a non-asymptotic manner, or at
least with an asymptotic expansion of at least one term, in order to reveal exactly
this most dominant constant. ♦

3.4 Finding Q by key equations

We will now see yet another method to find an interpolation polynomial for the
Guruswami–Sudan algorithm: we will rewrite the requirements for a bivariate poly-
nomial to be in Ms,` in the form of a 2D key equation, and then we will use the
techniques of Section 2.5 to solve it. The rewrite into a 2D key equation is in essence
based on the work of Zeh, Gentner, and Augot [ZGA11]; they used a specially tailored
extension of the Berlekamp–Massey algorithm to solve the emerging equations.

Though the main idea of the rewrite into a key equation form is straightforward,
the details regarding degree constraints and weights for the 2D key equation are
unfortunately highly technical. Expressions in n, k, τ, s and ` quickly become long
and unwieldy; I have opted for introducing a number of short-hand names for the
parameters in an attempt to clarify the relation between the various bounds rather
than always reducing the expressions to their most primitive form. I hope this will
benefit the reader rather than add to the confusion.

As we will see shortly during the derivation, we will need to assume that x - G(x)
which is equivalent to 0 not being an evaluation point. This assumption is not
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intrinsic to the Guruswami–Sudan algorithm, but it is a common assumption for
several other decoders, in particular those based on the traditional key equation for
minimum distance decoding; we will use it again in Section 4.2.

For short-hand, introduce ∇Qt = s(n− τ)− t(k − 1). This is the degree constraint
on the F[x]-coefficient for yt in a polynomial which has (1, k − 1)-weighted degree
at most s(n− τ).

Lemma 3.36. Consider some Q =
∑`
t=0Qt(x)yt ∈ F[x, y] satisfying deg1,k−1Q <

s(n− τ). Then Q ∈ Ms,` if and only if there exists B0, . . . , Bs−1 ∈ F[x] such that
for b = 0, . . . , s− 1 then

∑̀
t=b

(
t
b

)
Qt(x)Rt−b = Bb(x)G(x)s−b (3.7)

Proof. Q ∈ Ms,` if and only if there exists B0, . . . , B` ∈ F[x] such that Q =∑`
t=0BtP

(t)(x, y), where the P (t) are as in Theorem 3.24. Recall as in the proof
of Lemma 3.25 on page 61 that P (t) = Gpos(s−b)(x)(y − R(x))t−pos(t−s)ypos(t−s).
Plugging in y +R(x) in place of y then yields:

∑̀
t=0

Qt(x)(y +R(x))t =
∑̀
b=0

Bb(x)P (b)(x, y +R(x)) ⇐⇒

∑̀
t=0

Qt(x)
t∑

b=0

(
t
b

)
ybRt−b(x) =

∑̀
b=0

Bb(x)Gpos(s−b)(x)yb−pos(b−s)(y +R(x))pos(b−s) ⇐⇒

∑̀
b=0

yb
∑̀
t=b

(
t
b

)
Qt(x)Rt−b(x) =

∑̀
b=0

Bb(x)Gpos(s−b)(x)yb−pos(b−s)(y +R(x))pos(b−s) (3.8)

Now, if Q ∈Ms,`, then comparing F[x]-coefficients of yb for low b we get that

∑̀
t=b

(
t
b

)
Qt(x)Rt−b(x) = Bb(x)Gs−b(x) b = 0, . . . , s− 1

For the other direction, assume that such B0, . . . , Bs−1 exist and we need to prove
that Q ∈ Ms,`, which is paramount to proving that we can find Bs, . . . , B` such
that (3.8) holds. But since these new Bb have no influence on the coefficients of
yb for b = 0, . . . , s − 1, the requirement specialise to only be on the higher degree
terms:∑̀

b=s
yb−s

∑̀
t=b

(
t
b

)
Qt(x)Rt−b(x) =

∑̀
b=s

Bb(x)(y +R(x))b−s

Such Bs, . . . , B` can be found since (y + R(x))i for i = 0, . . . , ` − s is a basis for
F[x, y]/〈y`−s+1〉.

Lemma 3.37. Let ∇Bb = ∇Q` + (` − s)n − (` − b). In the context of Lemma 3.36,
then if such B0, . . . , Bs−1 exist, they must satisfy degBb < ∇Bb .
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Proof. Since degQt < ∇Qt , we get by the equation of Lemma 3.36 that

degBb ≤
`max
t=b
{degQt + (t− b) degR} − (s− b) degG

< ∇Q` + (`− b) degR− (s− b)n
≤ ∇Q` + (`− b)(n− 1)− (s− b)n

since degR > k − 1 whenever errors have occurred.

Remark. The two preceding lemmas are a paraphrasing of [ZGA11, Proposition
3], where the proof is based on the derivatives of such a Q(x, y), rather than our
use of the explicit basis ofMs,`. The wording of [ZGA11, Proposition 3] contains
a small mistake in that the existence of the Bb does not establish an upper bound
on the degree of the resulting Q; therefore, it should be part of the assumption of
the proposition that deg1,k−1Q < s(n− τ). This has no bearing on the rest of their
paper. ♦

We will now reach the formulation of finding a satisfactory Q as a solution to a
certain 2D key equation; first we prove the algebra, and then in Theorem 3.40 we
map the found parameters to the definition of Problem 2.31 on page 26. From
Lemma 3.36, such a formulation is quickly found, but we will go on to rewrite this a
bit more; the reason is to reduce the size of the resulting key equation, and the result
will be basically replacing several powers of ` with s in the resulting complexity
estimates.

We introduce the operator [dp]p(x) for p ∈ F[x] with degree at most dp to mean
[dp]p(x) = xdpp(x−1). We will often simply write p(x) when an implied degree upper
bound on p is known. We now introduce a “syndrome” like power series:

S
(aR,aG)
◦ (x) = R(x)aR

G(x)aG
(3.9)

The exact relation between S(aR,aG)
◦ and the usual notion of syndromes, and espe-

cially their role in classical decoding algorithms for Reed–Solomon codes, is further
explored in Chapter 4.

Proposition 3.38. Consider a Q =
∑`
t=0Qt(x)yt ∈ F[x, y] satisfying deg1,k−1Q <

s(n − τ). Then Q ∈ Ms,` if and only if there exists B̃0, . . . , B̃s−1 ∈ F[x] with
deg B̃b < ∇Bb − µ and such that for b = 0, . . . , s− 1 then

∑̀
t=b

(
t
b

)
Qt(x)S(t−b,s−b)(x)xut+vt−µ ≡ B̃b(x) mod xmb−µ
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where for b = 0, . . . , s− 1 and t = 0, . . . , `:

mb = ∇Q` + (`− b)(n− 1)
ut = (`− t)(n− k)
vt = pos((t− s)n− (t− 1))
µ = min

t
{ut + vt,b} (= us)

S(t−b,s−b) = x−vt
(

(S(t−b,s−b)
◦ mod xmb−ut)− (S(t−b,s−b)

◦ mod xvt)
)

where we for µ mean that µ = us except if s ≥ k−1. Furthermore (mb−µ) ∈ O(sn).

Proof. Note first that either side of (3.7) of Lemma 3.36 has degree less than mb =
∇Q` +(`−b)(n−1). (3.7) is true if and only if it is true when coefficients are reversed:

[mb−1](∑`
t=b
(
t
b

)
Qt(x)R(x)t−b

)
= [mb−1]

Bb(x)G(x)s−b ⇐⇒∑̀
t=b

(
t
b

)
Qt(x)R(x)t−bxut = Bb(x)G(x)s−b

where ut = (∇Q` + (`− b)(n− 1)− 1)− (∇Qt + (t− b)(n− 1)− 1) = (`− t)(n− k).
The above is true if and only if it is true when relaxed to a congruence modulo xmb :

∑̀
t=b

(
t
b

)
Qt(x)R(x)t−bxut ≡ Bb(x)G(x)s−b mod xmb

Since x - G(x), then we can divide by G(x)s−b on both sides of the equation and
replace R(x)t−b/G(x)s−b by S(t−b,s−b)

◦ (x).

Now for the complexity saving reduction. Let S(t−b,s−b)
◦ = Ŝ(t−b,s−b)+xvt,bS(t−b,s−b)+

O(xmb−ut) with deg Ŝ(t−b,s−b) < vt,b and degS(t−b,s−b) < mb − ut − vt,b; we will
determine vt,b momentarily. Note that the definition of S(t−b,s−b) corresponds to the
proposition’s, and note that the big-O part will have no influence on the congruence
relation and can be removed. Then we can move lower degrees on the right-hand
side to the left-hand side:∑̀

t=b

(
t
b

)
Qt(x)S(t−b,s−b)

◦ (x)xut ≡ Bb(x) mod xmb

∑̀
t=b

(
t
b

)
Qt(x)S(t−b,s−b)(x)xut+vt,b ≡ Bb(x)−

∑̀
t=b

(
t
b

)
Qt(x)Ŝ(t−b,s−b)(x)xut mod xmb

We should now choose vt,b such that the right-hand side still has degree less than
∇Bb :

vt,b ≤ pos((∇Bb − 1)− (∇Qt − 1)− ut + 1)
= pos(∇Q` + (`− s)n− (`− b) − ∇Qt − (∇Q` −∇

Q
t + (`− t)(n− 1)) + 1)

= pos((`− s)n− (`− b)− (`− t)(n− 1)) = pos((t− s)n− (t− b− 1))
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For ease of analysis, we choose the (slightly suboptimal) vt,b = pos((t− s)n− (t− 1)),
and since this turns out not to depend on b, let vt = vt,b. We remind that for t ≤ s
then vt = 0 and so Ŝ(t−b,s−b)(x) = 0. Remark that in spite of the Q’s appearing
on the right-hand side, the above equations still constitute a 2D key equation with
Q0, . . . , Q` as a solution, since for a given Q, the right-hand sides simply are some
polynomials of low degree.

Note now that in each congruence, then xµ with µ = mint{ut + vt} divides the
left-hand side and therefore also the right-hand side. That means we can divide the
entire congruence, including modulus, with xµ. Except when s ≥ k−1 the following
holds for µ:

µ = min
t
{ut + vt}

= min
t
{(`− t)(n− k) + pos((t− s)n− t)}

= (`− s)(n− k) = us

The last claim of the proposition is then that the degrees of the moduli, mb−µ, are
in O(sn), but since for real-valued t, the expression of µ has minimum at t = s n

n−1
we have

mb − µ ≥ ∇Q` + (`− b)(n− 1)− (`− s n
n−1 )(n− k)

= s(n− τ) + s n
n−1 (n− k)− b(n− 1)

Example 3.39. Consider the [250, 70, 181] code from Example 3.5 on page 50
decoded up to τ = 105 choosing s, ` = (2, 4). The many values become:

t = 0 t = 1 t = 2 t = 3 t = 4

∇Qt 290 221 152 83 14
ut 720 540 360 180 0
vt 0 0 0 248 497

b = 0 b = 1
∇Bb 510 511
mb 1010 761

mb − us 650 401

Note in particular µ = us = 360, i.e. the number of terms that each congruence
equation was reduced with by the reduction done in the proof of Proposition 3.38.♠

Theorem 3.40. Assume s < k− 1. Let Q =
∑`
t=0Qt(x)yt be a minimal (1, k− 1)-

weighted degree element in Ms,`. Then (Q0, . . . , Q`) is a minimal solution to the
2D key equation of Type 1 with parameters1

• ρ = `+ 1 and σ = s.
• GKE

j = xmj−1−us for j = 1, . . . , s.
• SKE

i,j =
(
i−1
j−1
)
S(i−j,s−j+1)(x)xui−1+vi−1−us if i ≥ j, otherwise SKE

i,j = 0.
• ν = 1
• N = s(n− τ)
• ηi = (i− 1)(k − 1) for i = 1, . . . , `+ 1

1To distinguish names occurring both here and in Section 2.5, we add KE to the names of the
latter.
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• wj = sk − (j − 1) for j = 1, . . . , s

where mb, ut, vt and S(t−b,s−b) are as in Proposition 3.38.

Proof. We seek a 2D key equation such that (Q0, . . . , Q`, B̃0, . . . , B̃s−1) is a solu-
tion, so we map the definition of 2D key equation in Problem 2.31 on page 26, to
Proposition 3.38. Only N and the weights are not obvious; however, we need only re-
quire N as an upper bound on the degrees of all Qi and B̃j , and then ηi = N−∇Qi−1
and wj = N −∇B̃j−1 where ∇B̃j−1 = ∇Bj−1 − us. Since

∇Bb − us = s(n− τ)− `(k − 1) + (`− s)n− (`− b)− (`− s)(n− k)
= s(n− k − τ) + b

then N should exactly be ∇Q0 = s(n− τ). The ηi and wj then follow.

With this mapping, we see that (Q0, . . . , Q`, B̃0, . . . , B̃s−1) is a solution to the 2D
key equation; since this is a minimal solution exactly when

max
i
{degQi−1 + ηi} = max

i
{degQi−1 + i(k − 1)} = deg1,k−1Q

is minimal, the minimality concepts coincide.

Remark. Remember that the approach of Theorem 3.40 still works perfectly well
when s ≥ k−1; in that case, one should replace us by µ in several of the expressions,
and the analysis becomes somewhat more messy. ♦

Example 3.41. Continuing Example 3.39, some of the values of Theorem 3.40
become (“x-pow” refers to the power of x in the expression of SKE

i,j ):

N = 290
wi = [140, 139]

i = 1 i = 2 i = 3 i = 4 i = 5
ηi 0 69 138 207 276

x-pow 360 180 0 68 137

To solve the equation, we will find a basis in Φν,w̄-weighted weak Popov form of:

M =



1 0 0 0 0 S(0,2)(x)x360 0

0 1 0 0 0 S(1,2)(x)x180 S(0,1)(x)x180

0 0 1 0 0 S(2,2)(x) 2S(1,1)(x)

0 0 0 1 0 S(3,2)(x)x68 3S(3,1)(x)x67

0 0 0 0 1 S(4,2)(x)x137 4S(4,1)(x)x137

0 0 0 0 0 x650 0

0 0 0 0 0 0 x401



maxdeg (Φν,w̄(M)) = 790

∆(Φν,w̄(M)) = 3216

Compare the key properties of M with A2,4 from Example 3.28 on page 62. ♠
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Worst-case complexity of solving the Q-finding 2D key equation of Theorem 3.40
Algorithm Complexity Relaxed
Mulders–Storjohann `3s2n2 `3s2n2

Alekhnovich M(`)P(`sn) log(`sn) + `2P(sn) `4sn log(n)2+o(1)

GJV M(`)P(sn) log(`sn)O(1) `3sn log(n)O(1)

D–D `3s2n2 `3s2n2

Table 3.3: For relaxation, we have used the same rules as in Table 3.1 on page 63.

Proposition 3.42. The worst-case complexity of finding a satisfactory interpolation
polynomial Q by solving the 2D key equation of Theorem 3.40 is as in Table 3.3,
for various choices of module minimisation algorithm.

Proof. Follows from Table 2.4 on page 42 after estimating the measures of the
2D key equation. Observe that degGKE

j ∈ O(sn) since mj−1 − us ∈ O(sn) by
Proposition 3.38. Also clearly N, ηi, wJ ∈ O(sn) for all i, j. Now we have

γ = maxdeg (Φ1,w̄(M)) = max{η1, . . . , η`,degGKE
1 + w1, . . . ,degGKE

ρ + wρ}
∈ O(sn)

δ = ∆(Φ1,w̄(M)) < ργ ∈ O(`sn)

Remark. Note that the relaxed complexities of Table 3.3 are all the same as in
Table 3.1 on page 63,meaning that in a strict asymptotic sense, the method described
here is as fast as that of Section 3.2. Looking at the expressions before the relaxation,
we might be tempted to conclude that the latter is actually fastest, but a more precise
analysis would be necessary. Remember also the warnings of Section 1.2. ♦

Remark. There is no need to reverse the order of the polynomials as we did in
Proposition 3.38 in order to arrive at a 2D key equation; however, without the
flipping, it does not seem possible to perform a reduction such as the one we did
by xµb . As previously mentioned, this would cause the complexity estimates to go
up, since nothing better than γ ∈ O(`n) could be stated in general.

The original derivation in [ZGA11] has some issues; referring to their labelling,
it is from equation (33) to (35) and (36), and I have discussed this with one of
the authors, Alexander Zeh. In particular, a reduction such as the one by xµb is
not explained, but seems to have been applied in (36), and the extracted part of
S

(a,b)
◦ (x) are indexed wrongly. Alexander Zeh’s PhD thesis [Zeh13] contains a new,

more verbose, description of the derivation, which seems to follow the same line of
arguments as here. ♦
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3.4.1 The Roth–Ruckenstein reduction in the Sudan case

For s = 1, i.e. the Sudan case, then σ = 1 and there is only one equation of the
form ∑̀

t=0
Qt(x)S(t,1)(x)xut+vt−µ ≡ B̃0(x) mod xm0−µ (3.10)

If we lower the degree of the modulus by m0− (u0 +v0) = n−τ , then we completely
eliminate Q0 from the equation (and since (m0 − µ)− (m0 − u0) > ∇B̃0 = ∇B0 − µ,
the right-hand side still has degree less than the resulting modulus). This lowering
will in general reduce the information in the key equation: regarding it as a linear
equation in the coefficients of the Qt (as in the proof of Proposition 2.39 on page 33),
we are losing n− τ equations. Coincidentally, ∇Q0 = n− τ which means that we are
also getting rid of n− τ variables! Therefore, the reduced linear system must have
exactly the same space of solutions. We can therefore solve the reduced key equation
for Q1, . . . , Q` and then afterwards find Q0, e.g. by Lagrangian interpolation: since
Q(αi, r′i) = 0 for i = 1, . . . , n then Q0(αi) must be something known once Q1, . . . , Q`
have been established. Expanding and simplifying the values of the parameters in
the instance s = 1, we end up with the reduced key equation for Q1, . . . , Q`:∑̀

t=1
Qt(x)S(t,1)(x)x(t−1)(k−1) ≡ B̃0(x) mod xn−k (3.11)

with deg B̃0 < n − k − τ . The module to minimise in order to solve this 2D key
equation is then a weighted variant of

MRR =


1 S(1,1)

1 S(2,1)xk−1

. . .
...

1 S(`,1)x(`−1)(k−1)

0 xn−k

 (3.12)

This reduction was used by Roth and Ruckenstein [RR00] in their paper giving the
key equation approach for the Sudan case. Unfortunately, it does not seem to work
for s > 1: ∇Q0 = s(n− τ) but since m0 − µ−∇B̃0 < s(n− τ) reducing the degree of
the modulus by s(n− τ) does not remove that many equations. For t > 1 each Qt
appears in more than one of the key equations, and so also seem to be too entangled
with each other within the linear system to be removable.

Example 3.43. Consider again the [250, 40, 211] from Example 3.20 on page 59
and choosing ` = 3 to decode 129 errors. The parameters become

∇Qt = [122, 83, 44, 5] (t− 1)(k − 1) = [0, 39, 78] n− k − τ = 82
ηi = [39, 78, 117] w1 = 40
maxdeg (Φν,w̄(MRR)) = 250 ∆(Φν,w̄(MRR)) = 669
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Compared with the 2D key equation, ηi runs for i = 2, 3, 4 since the Q0 equation
was eliminated. ♠

3.5 Guruswami–Sudan decoding Hermitian codes

The Guruswami–Sudan algorithm generalise to a large class of AG codes, and
this was even done in the original publication [GS99] based on Shokrollahi and
Wasserman’s generalisation of the original Sudan algorithm [SW99]. In this section
we will show how this works on one-point Hermitian codes; they are simple, have
excellent parameters, and are probably first in line as an AG alternative to GRS
codes. Still, the results here should generalise rather easily to larger classes of codes,
see also Section 3.6.

The main result of the section is a description of how to find a satisfactory Q-
polynomial in a fast way, analogous to what we did in Section 3.2. As before, this
is strongly inspired by existing work: both Lee and O’Sullivan as well as Beelen
and Brander have extended their algorithms for GRS codes to Hermitian or more
general AG codes. Recall that these two approaches were basically that of Section 3.2
using the Mulders–Storjohann, respectively the Alekhnovich algorithm for module
minimisation. Recall also that asymptotically, using the GJV instead beats these two
approaches; exactly the same will be the case in this section. However, to be able to
achieve this better performance, we will propose a slightly different way to embed the
problem of the function field into one over F[x] than what was done previously. The
result is an algorithm with the best known complexity for list decoding Hermitian
codes.

We will here only focus on finding Q. In particular, we will not discuss parameter
choices, and we will not discuss root-finding. For the former, one could perform a
similar type of analysis as what we did in Section 3.1.2, but just as for the case
of GRS codes, I am (surprisingly) not aware of anyone having done this. For the
latter, Wu and Siegel [WS01] describe how to generalise the Roth–Ruckenstein root-
finding algorithm to polynomials over algebraic function fields. I am not aware of
a generalisation of Alekhnovich’s D&C speedup for the GRS case [Ale05], but one
could suspect that it is possible.

The exposition will be to the point, and so requires a certain familiarity with
algebraic function fields; however, the necessary concepts are all from introductory
parts of the theory. For instance, Chapters 1 and 2 of Stichtenoth’s book [Sti09]
should cover it.



3.5 Guruswami–Sudan decoding Hermitian codes 79

3.5.1 Preliminary concepts and the codes

Let q be some prime power, and consider the curve H over Fq2 defined by the
following polynomial in X,Y :

H(X,Y ) = Y q + Y −Xq+1

H is the Hermitian curve, and it is absolutely irreducible. Let F = Fq2(x, y) be the
algebraic function field achieved by extending Fq2(x) with a variable y satisfying
the relation H(x, y) = 0.

There are certain basic facts about F which we will need:

Proposition 3.44. The genus of H is g = 1
2q(q − 1). F has q3 + 1 rational places,

which we will denote P = {P1, . . . , Pq3 , P∞}. The place P∞ is “the place at infinity”
and the only rational place which has a pole at either x or y (it has both). It has
ramification index q over Fq2(x). Furthermore define

Я =
∞⋃
i=0
L(iP∞)

Then Я = Fq2 [x, y].

Let P? = P \ {P∞}. We can decompose P? into q2 disjoint subsets each of size
q, indexed by the α ∈ Fq2 , and such that Pα,1, . . . , Pα,q all lie above the zero of
x− α ∈ Fq2(x). In particular, this means that (x− α) =

∑q
j=1 Pα,j − qP∞.

Proof. We will not give the proof here but refer to the literature. Genus and rational
points can be found in any text dealing with the Hermitian curve. The fact on Я
is well-known for function fields over “nice curves”; that as well as the facts on
ramification of the affine places are in [Bra10, Section 2.3].

ThatЯ = Fq2 [x, y] is extremely helpful since all these functions can then be described
by polynomials. For brevity, we will write∞P∞ in Riemann–Roch-space definitions
to mean the union of all the Riemann–Roch spaces where ∞P∞ is replaced by iP∞
for i = 0, 1 . . .. For instance, Я = L(∞P∞).

We should furthermore keep in mind the relation H(x, y) = 0. When we need to
consider an element f ∈ Я concretely as a polynomial in x and y, we will always
consider it in a form where H(x, y) = 0 has been used to maximally reduce the
y-degree of f to less than q; we will call this “reducing by H”. We will measure
elements of Я by their pole order in P∞; when elements in Я have been reduced by
H, this takes on a particularly simple form:

Definition 3.45. Let degH : Я 7→ N0 ∪ {−∞} be given as degH(p) = −vP∞(p) for
p 6= 0 and degH(0) = −∞, where vP (·) is the valuation of a function at the place
P . For non-zero input, this is also equal to the Fq2 -linear closure of

degH(xiyj) = degq,q+1(xiyj) = qi+ (q + 1)j

when j < q.
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Note that all monomials xiyj with j < q have different degH. Therefore, degH
induces a term ordering ≤H on Fq2 [x, y] such that xi1yj1 ≤H xi2yi2 if and only if
degH(xi1yj1) ≤ degH(xi2yj2) or i1 = i2 ∧ j1 = j2. This means that we can speak of
leading monomial, LMH(·), and leading coefficient, LCH(·), for elements of Я.

We will also need two easy technical lemmas:

Lemma 3.46 ([Bra10, Proposition 2.2]). For any non-zero h ∈ F then

L(−(h) +∞P∞) = hЯ (3.13)

Proof. If f ∈ hЯ then (f) ≥ (h) − tP∞ for some t, but then f ∈ L(−(h) + tP∞)
which is clearly in the left-hand side of (3.13).

On the other hand, if g ∈ L(−(h) +∞P∞) then for some t we have (g) ≥ (h)− tP∞.
Therefore (g/h) ≥ −tP∞ so g/h ∈ Я. Then clearly g ∈ hЯ.

Lemma 3.47. For any m ∈ Z+, there are at least m− g distinct monomials of the
form xiyj, j < q such that degH(xiyj) < m.

Proof. The statement translates simply to dim L((m − 1)P∞) ≥ m − g, which is
exactly Riemann’s Theorem, see e.g. [Sti09, Theorem 1.4.17].

Let us now formally introduce the class of codes we will be able to decode. Often
in the literature, only Hermitian codes where all q3 affine places P? are used are
considered, but we will support a slightly larger family.

Definition 3.48. Choose some n ≤ q3 with n ≡ 0 mod q, and choose n/q distinct
elements of Fq2 , α1, . . . , αn/q. Let D =

∑n/q
i=1
∑q
j=1 Pαi,j , and for brevity label

suppD as P1, . . . , Pn in some arbitrary manner. Let m be an integer satisfying
2g − 2 < m < n. Then the corresponding Hermitian code over Fq2 is defined as

C =
{(
f(P1), . . . , f(Pn)

)
| f ∈ L(mP∞)

}
Note that L(mP∞) ⊂ Я, so all the f we need to evalute to obtain C are polynomials
in x and y satisfying degH f ≤ m. The basic parameters of the codes are almost
completely known:

Proposition 3.49. In the context of Definition 3.48, C is an [n, k, ≥d] code where

k = m− g + 1 d = n−m

Proof. The proposition is standard for any AG code, see e.g. [Sti09, Theorem 2.2.2]

Remark. When n = q3, i.e. we are evaluating at all affine points, then the exact
minimum distance is known: Stichtenoth showed that it is exactly d as above when-
ever m ≤ n − q2 [Sti88], while the remaining cases were determined by Yang and
Kumar and shown to be slightly better for some of the m [YK92].
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Note also that the construction of the codes work perfectly well withm ≤ 2g−2, but
that for these codes, the dimension and minimum distance are slightly less straight-
forward. To describe clearly for which parameters our decoder has the claimed
performance, we have opted to leave the restriction m > 2g − 2 in the definition.♦

In the following section, we will consider dealing with a particular choice of such an
Hermitian code, and use all these introduced variables n, k, Pi, C, etc.

As a last tool before we begin, we will also need Lagrangian interpolation over the
evaluation points of a considered Hermitian code, i.e. given γi ∈ Fq2 for i = 1, . . . , n
then find some p ∈ Я such that p(Pi) = γi for all i. It is easy to see such a function
must exist: for each i, the requirement specifies a linear equation in the coefficients
over p seen as an element of Fq2 [x, y], so by Lemma 3.47 on page 80 there must
exist one with degH less than n+ g + 1. However, for correctness, it will turn out
that any interpolation function will suffice for us. Since it is slow to solve a linear
system of equations, it is beneficial to have a closed formula though this might yield
a function of slightly suboptimal order. The following lemma is inspired by a similar
result from [LO09]:

Lemma 3.50. Let (αi, βi) be the coordinates corresponding to Pi for i = 1, . . . , n.
Let A = {αi}i and Bi = {βj | αj = αi}j for i = 1, . . . , n. For γi ∈ Fq2 for
i = 1, . . . , n then p ∈ Я given by

p(x, y) =
n∑
i=1

γi
∏

α∈A\{αi}

x− α
αi − α

∏
β∈Bi\{βi}

y − β
βi − β

satisfies p(Pi) = γi for i = 1, . . . , n and degH p < n+ 2g

Proof. Clearly, the given p ∈ Я. For the ith term, the first product ensures evaluation
is 0 at any Pj , j 6= i for which αi 6= αj , while the second product ensures the same
for j where αi = αj but βi 6= βj . We also see that at Pi, the evaluation must be γi,
proving the first claim.

For the order, recall from the restriction on the choice of Pi in Definition 3.48
on page 80, that we must have |A| = n/q and |Bi| = q for each i. Therefore
degx(p) ≤ n/q−1 and degy(p) ≤ q−1, so degH(p) ≤ q(n/q−1)+(q+1)(q−1).

3.5.2 Decoding

We will be working with elements of Я[z], i.e. the univariate polynomial ring over
Я; this is going to take the place of F[x][y] of the GRS case. We naturally extend
our existing zoo of degree functions with degH,w for any w ∈ R, so that some
Q =

∑degz Q
t=0 Qt(x, y)zt ∈ Я[z] has degH,wQ = maxt{degHQt + tw}. Extend also

for such a Q the coefficient-selecting notation Q[t] to mean Q[t] = Qt(x, y) ∈ Я.
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Definition 3.51. A polynomial Q ∈ Я[z] has a zero (P, z0) ∈ P? × Fq2 with
multiplicity s if Q can be written as

∑
j+h≥s γj,hφ

j(z − z0)h for some γj,h ∈ Fq2 ,
where φ is a local parameter for P .

Theorem 3.52 (Guruswami–Sudan for Hermitian codes). Let s, `, τ ∈ Z+ be given.
If Q ∈ Я[z] with Q =

∑`
t=0Qi(x, y)zt 6= 0 satisfying

1. Q has a zero at (Pi, ri) with multiplicity s for i = 1, . . . , n.
2. degHQi < s(n− τ)− im.

and if |E| ≤ τ then Q(f) = 0.

Proof. Consider Q̂ = Q(f) ∈ Я. Clearly degH Q̂ < s(n− τ) by Point 2. By Point 1
then for each i, Q can be written as

∑
j+h≥s γj,hφ

j
i (z − ri)h for some γj,h ∈ Fq2 ,

where φi is a local parameter for Pi. That means Q̂ =
∑
j+h≥s γj,hφ

j
i (f − ri)h.

If i /∈ E then both (f − ri) and φi have a zero at Pi, so the above implies that
Q̂ ∈ L(−sPi +∞P ). Connecting this with degH Q̂ found above, we thus get

Q̂ ∈
⋂
i/∈E

L
(
− sPi + (s(n− τ)− 1)P∞

)
= L

(
− s

∑
i/∈E

Pi + (s(n− τ)− 1)P∞
)

But deg
(
− s

∑
i/∈E Pi + (s(n − τ) − 1)P∞

)
< 0 if |E| ≤ τ so the Riemann–Roch

space contains only 0, whence Q̂ = 0.

Remark. An analogous statement holds for much more general AG codes, though
Я of course needs to be defined properly; the proof also carries over more or less
unchanged. See e.g. [GS99] or the clear description of [BH08a]. ♦

One can find a satisfactory Q by solving a linear system of equations in the Fq2-
coefficients for its xiyjzh-monomials, and one can ensure that this system will have
a non-zero solution by satisfying a certain equation in the parameters, completely
analogous to Proposition 3.4 on page 49. The resulting equation can be analysed for
determining the maximal τ and corresponding choices of s and `. We are not going
to perform that analysis; see e.g. [GS99] for a basic, asymptotically satisfactory
analysis. The summary of the analysis is that choices of s and ` exists ensuring
the existence of a satisfactory Q as long as τ < n−

√
n(n− d), i.e. the asymptotic

Johnson bound again!

Remark. An interesting oddity when decoding AG codes is that in the case ` = s =
1, one does not achieve half the minimum distance! With a rudimentary analysis,
one is only guaranteed of success when τ ≤ d−1

2 − g. By careful inspection of the
linear system of equations, this turns out to be improvable to d−1

2 −
g
2 [Bee13]; but

still not half the minimum distance. We will meet a similar deficiency when power
decoding Hermitian codes in Section 4.4. ♦
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3.5.3 Finding Q in an explicit module

We will only concern ourselves with the problem of finding Q; our approach is
completely analogous to that of Section 3.2. We will again assume s ≤ `, and with
the proper analysis of choices of s and `, one can realise that this is no real restriction.

Definition 3.53. LetMHs,` ⊂ Я[z] denote the set of all Q ∈ Я[z] such that Q has
a zero of multiplicity s at (Pi, ri) for i = 1, . . . , n, and degz Q ≤ `.

Finding a Q ∈ Я[z] for satisfying the requirements of Theorem 3.52 is then the
same as finding an element inMHs,` with low enough degH,m.

To continue, we first need functions R,G ∈ Я, analogous to those we had for GRS
codes in Definition 3.22 on page 60.

Definition 3.54.

G =
n/q∏
i=1

(x− αi) R 6= 0 : R(Pi) = ri ∀i = 1, . . . , n

Note that by Proposition 3.44 on page 79, we must have (G) =
∑n
i=1 Pi − nP∞,

i.e. analogous to the case for GRS codes we have G(Pi) = 0 for i = 1, . . . , n. For
R, any non-zero function in Я satisfying the interpolation constraints will do; we
can either solve the linear system of equations in its coefficients, or we can use the
explicit formula of Lemma 3.50 on page 81.

The following two results perfectly mimic Lemma 3.23 and Theorem 3.24 on page 60,
and the proofs are almost trivial rewrites of those results’.

Lemma 3.55. Let Q ∈ MHs,` with degz Q = t < s. Then Gs−t | Q[t] as a division
over Я.

Proof. For each i, Q has a zero (Pi, ri) with multiplicity s, which means that Q =∑
j+h≥s γj,hφ

j
i (z − ri)h for some γj,h ∈ Fq2 , where φi is any local parameter for Pi.

Since degz Q = t < s then h ≤ t, which means j ≥ s− t.

Therefore, Q = φs−ti

∑
j+h≥s γj,hφ

j−(s−t)
i (z− ri)h = φs−ti

∑t
h=0 qh(x, y)zh for some

qh ∈ F . The qh must be power series in φi, so they each have poles only at P∞,
i.e. qh ∈ Я; therefore the entire sum must be in Я[z], i.e. φs−ti divides Q as a division
over Я. Now, it is easy to show that φi = x−αi is a valid choice as local parameter
for Pi; collecting for all different i, we therefore have Gs−t | Q, immediately implying
the sought.

Theorem 3.56. The moduleMHs,` is generated as an Я-module by the `+ 1 poly-
nomials H(i) ∈ Я[z] given by

H(t)(z) = Gs−t(z −R)t, for 0 ≤ t ≤ s,
H(t)(z) = zt−s(z −R)s, for s < t ≤ `.
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Proof. It is easy to see that each H(t) ∈MHs,` since both G and z−R have a zero of
multiplicity one at (Pi, ri) for i = 1, . . . , n, and that G and z −R divide H(t) with
total power s for each t.

To see that any element ofMHs,` can be written as an Я-combination of the H(t), let
Q(z) be some element ofMHs,`. Then the polynomial Q(`−1)(z) = Q−Q[`](x, y)H(`)

has z-degree at most ` − 1. Since both Q and H(`) are in MHs,`, so must Q(`−1)

be inMHs,`. Since H(t) has z-degree t and H(t)
[t] (x, y) = 1 for t = `, `− 1, . . . , s, we

can continue reducing this way until we reach a Q(s−1)(z) ∈MHs,` with z-degree at
most s − 1. From then on, we have H(t)

[t] (x, y) = Gs−t(x), but by Lemma 3.55, we
must also have G(x) | Q(s−1)

[s−1] (x, y), so we can also reduce by H(s−1). This can be
continued with the remaining H(t), eventually reducing the remainder to 0.

The above theorem gives us a basis in Я[z] of the Я-module MHs,`, and we are
seeking the minimal degH,m-weighted element in this module. We need to project
this module, its basis and the weighted degree into Fq2 [x] in some sensible manner
to be able to use the tools of Chapter 2 to solve this problem. This turns out to
conceptually be rather straightforward: we expand elements of Я = Fq2 [x, y] into
vectors over Fq2 [x] by their Fq2 [x]-coefficients when regarding them as polynomials
in y, using the representation which has been reduced by H, and with a few fur-
ther tricks we obtain a module over Fq2 [x]. To write this down formally requires
introducing a bit of notation, though.

Firstly, introduce g : Я 7→ Fq2 [x]q by for any element of Я, say g =
∑q−1
i=0 y

igi(x),
then g(g) = (g0, . . . , gq−1). As we have previously noted, any element of Я can be
written such that the y-degree is at most q and in only one way.

Of course, we can also consider vectors over Fq2 [x] of length more than q, and this
can be useful as intermediate calculations. In particular, a multiplication g · h for
g, h ∈ Я where g =

∑q−1
i=0 gi(x)yi and h =

∑q−1
i=0 hi(x)yi can be represented as

(
g0 g1 . . . gq−1

)


h0 h1 . . . hq−1 0
h0 h1 . . . hq−1

0
. . .

. . .

h0 h1 . . . hq−1

 (3.14)

The result will be a vector (p0, . . . , p2q−2) ∈ Fq2 [x]2q−1 such that g·h =
∑2q−2
i=0 pi(x)yi.

Denote byq(h) the matrix of the above form, for any h ∈ Я. Reducing
∑2q−2
i=0 qi(x)yi

by H down to y-degree less than q becomes the result of the linear transformation

(
p0 p1 . . . p2q−2

)


Iq×q

xq+1 −1 0
. . .

. . .

0 xq+1 −1
xq+1

 (3.15)
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Where Iq×q is the q × q identity matrix. Denote the matrix in the above product
by Ξ. With this notation then we can write

g(g · h) = g(g)q(h)Ξ (3.16)

Let Я[z]` be polynomials of z-degree at most `; then we also introduce gz : Я[z]` 7→
Fq2 [x](`+1)q, by for some Q ∈ Я[z]`, then gz(Q) =

(
g(Q[0]) | . . . | g(Q[`])

)
.

Proposition 3.57. Let AHs,` ∈ Fq2 [x](q(`+1))×(q(`+1)) be given by

AHs,` =


q(H(0)

[0] )Ξ 0 . . . 0
q(H(1)

[0] )Ξ q(H(1)
[1] )Ξ . . . 0

...
. . .

...

q(H(`)
[0] )Ξ q(H(`)

[1] )Ξ . . . q(H(`)
[`] )Ξ


MHs,` is in bijection with the Fq2 [x] row space of AHs,` through the map gz. Fur-
thermore, let gz(Q) be the element in the Fq2 [x] row space of AHs,` with minimal
Φ1,w-weighted degree, where w = (w0,0, . . . , w0,q−1, w1,0, . . . , w`,q−1) and

wt,j =
⌊
q−1(tm+ (q + 1)j)− ε+ 1

⌋
where ε = q−1s(n− τ)− bq−1s(n− τ)c. Then degH,mQ < s(n− τ).

Proof. Consider some Q(z) ∈ MHs,`; by Theorem 3.52 we can find pt ∈ Я such
that Q(z) =

∑`
t=0 ptH

(t)(z). Clearly then Q[h] =
∑`
t=0 ptH

(t)
[h] . Now expand this

equation using g:

g(Q[h]) =
∑̀
t=0

g(ptH(t)
[h] ) =

∑̀
t=0

g(pt)q(H(t)
[h] )Ξ

Since gz(Q) =
(
g(Q[0]) | . . . | g(Q[`])

)
, we get

gz(Q) =
∑̀
t=0

g(pt)
(
q(H(t)

[0] )Ξ | . . . | q(H(t)
[`] )Ξ

)
=
∑̀
t=0

g(pt)
(
q(H(t)

[0] )Ξ | . . . | q(H(t)
[t] )Ξ | 0 | . . . | 0

)
=
(
g(p0) | . . . | g(p`)

)
AHs,`

where the second step is due to degzH(t) = t. These steps are reversible, so also
any element in the Fq2 [x] row space of AHs,` must be the gz(·)-image of an element
inMHs,`.

For the claim on the minimality, write Q =
∑`
t=0
∑q−1
h=0Qt,h(x)yhzt, for some
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Qt,h ∈ Fq2 [x]. We do some calculation

deg(Φ1,w(gz(Q))) = max
t,h
{wt,h + degQt,h}

= max
t,h

{⌊
q−1((q + 1)j + tm)− ε+ 1

⌋
+ degQt,h

}
=
⌊

max
t,h

{
q−1((q + 1)j + tm) + degQt,h

}
− ε+ 1

⌋
=
⌊
q−1 degH,mQ− ε+ 1

⌋
Therefore, degH,mQ < s(n− τ) ⇐⇒ deg(Φ1,w(gz(Q))) < bq−1s(n− τ) + 1c, by
the definition of ε.

Since we know there exists a Q ∈MHs,` with degH,mQ < s(n− τ), then gz(Q) must
have Φ1,w-weighted degree less than bq−1s(n− τ) + 1c, and so surely the minimal
weighted-degree in the row space of AHs,` is at most this. This minimal element’s
corresponding polynomial inMHs,` must then have degH,m less than s(n− τ).

Notice for the wt,j weights of Proposition 3.57 that 1 has been added to all of them
only to ensure that they are all non-negative.

Proposition 3.58. In the context of Proposition 3.57, the worst-case complexity
of finding a satisfactory Q as a minimal Φ1,w-weighted element in the row space of
AHs,` is as in Table 3.4, for various choices of module minimisation algorithm.

Proof. The proposition follows from Table 2.4 on page 42 after estimating the
measures of Φ1,w(AHs,`); a rough estimate will suffice for us.

Clearly we can overestimate the max-degree by

maxdeg (Φ1,w(AHs,`)) ≤ maxdeg t,h(q(H(t)
[h] )) + maxdeg Ξ + max

t,h
{wt,h}

≤ sdegxR+ (q + 1) + (2 + q−1(q + 1)(q − 1) + q−1`m)

Note by Theorem 3.52, Point 2 that `m < s(n− τ). Now degxR ≤ q−1 degHR, and
assuming that we constructed R using Lemma 3.50 on page 81 then degHR < n+2g.
Therefore the above is in O(sq−1n+ sq). This is O(sq−1n) assuming q ∈ O(q−1n).

For the orthogonality defect, we just employ the straightforward bound

∆(Φ1,w(AHs,`)) ≤ q(`+ 1)maxdeg (Φ1,w(AHs,`)) ∈ O(`sn)

The estimate O(n5/3`3s log(n)O(1)) by using the GJV is, when focusing on depen-
dence on n, the fastest known technique for decoding Hermitian codes, and has
apparently not been obtained in the literature before now. See also the discussion
in Section 3.6

Remark. It is quite possible that one can slightly improve the asymptotic bounds
by a more careful analysis of the orthogonality defect, akin to the estimate for GRS
codes, where we obtained dependence on (n− k) instead of n. ♦
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Complexity for computing Q for Guruswami–Sudan decoding Hermitian codes
Algorithm Complexity Relaxed
Mulders–Storjohann q`3sn2 n7/3`3s

Alekhnovich M(q`)P(`sn) log(n) + q2`2P(sq−1n) n2`4s log(n)2+o(1)

GJV M(q`)P(sq−1n) log(q`sn)O(1) n5/3`3s log(n)O(1)

Table 3.4: In all the estimates, we have assumed q ∈ O(q−1n), i.e. that at least around q2

affine points were chosen. For relaxation, we have also assumed n ≈ q3, i.e. that more or
less all affine points were chosen, and for logs we have used s, ` ∈ nO(1).

Remark. One can easily show that using ν = q and wt,j = (q + 1)j + tm instead
of what we use in Proposition 3.57 will yield deg Φq,w(gz(Q)) = degH,mQ for any
gz(Q) in the row space of AHs,`. Clearly then the minimal degH,m-weighted element
in Q is found as a minimal weighted-degree vector in the row space of AHs,`.

This is a more “true” weighing than what we have used, where we can only ensure
that degH,mQ will be low enough if g(Q) is the minimal weighted-degree vector.
Since the Mulders–Storjohann and Alekhnovich algorithms do not get a performance
penalty for ν > 1, these weights yield exactly the same performance. This is ex-
actly what Brander proposed in [Bra10] using the Alekhnovich algorithm, and it is
very related to what Lee and O’Sullivan propose [LO09] when using their Mulders–
Storjohann variant. Both of them give slightly worse complexity estimates than
that of Table 3.4, though; this is possibly due to our use of the orthogonality defect
which improves the complexity analysis. See also Section 3.6. For ν > 1, however,
the GJV does take a performance penalty of roughly a factor ν; so with these “truer”
weights, its performance would be O(n2`3s log(n)O(1)). ♦

Remark. It is natural and interesting to compare these complexities with those
of decoding GRS codes, e.g from Table 3.1 on page 63 or Table 3.3 on page 76;
evidently, decoding Hermitian codes is slower, but Hermitian codes do allow much
longer codes relative to the field size. Unfortunately, I have not had time to implement
this method and prepare an example to compare with GRS codes. It should be
mentioned that these speeds for decoding Hermitian codes match or beat the best
previously known decoding methods, as discussed in Section 3.6. ♦

3.6 Related work

Bounds on list decoding

The upper bound on decoding radius for Guruwami–Sudan, the Johnson radius
J(n, d) = n −

√
n(n− d), is an intriguing one. Using the original Johnson bound

[Joh62] on the size of constant weight codes, one can show that for any linear code of
length n and minimum distance d, any Hamming ball of radius J(n, d)−ε, ε > 0, the
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number of codewords in this ball is upper bounded by O(1/ε). I.e. it is a “constant”
in terms of n, which means that the Johnson radius is an a priori lower bound on
the possible radius one can list decode any code in polynomial time.

The converse also holds true, in the following sense. It was shown by Goldreich,
Rubinfeld and Sudan [GRS00] that there exists infinite families of codes containing
arbitrary long codes, each with relative minimum distance δ, such that there in each
code is a ball of radius greater than J(n, nδ) containing Ω(2n) codewords. In other
words: a polynomial time list decoder decoding further than J(n, nδ) is impossible
for this family of codes, since it would have to produce an exponentially long list
of results. We do not know whether Reed–Solomon codes are such codes, and no
polynomial time algorithm decoding asymptotically beyond the Johnson radius for
these codes is known. List decoding bounds are a deep combinatoric field, and we
will not discuss more on this; a good introduction, complete reference and all but
very recent results can be found in Guruswami’s book [Gur07].

Confining ourselves to codes over Fq, there is the q-ary Johnson radius: Jq(n, d) =
q−1
q (n −

√
n(n− q

q−1d)). Though perhaps not immediately obvious, Jq(n, d) >

J(n, d) for all legal values of the parameters. In particular for q = 2, the difference
is quite big. Confined to q-ary codes and families of such, exactly the same as the
above two statements hold. A variant of the Guruswami–Sudan can actually decode
Alternant codes, being sub-field sub-codes of GRS codes, up to Jq(n, d); more on
this a bit further down.

The Johnson bound [Joh62] gives a maximal number of codewords in a ball of
any radius less than the Johnson radius. For q → ∞, this bound was slightly
improved by Cassuto and Bruck [CB04], and the list size bound for the Guruswami–
Sudan algorithm of Corollary 3.14 is exactly this. However, that does not mean
that the Guruswami–Sudan algorithm will ever return that many codewords; in
random experiments, it is for most code parameters exceedingly rare that it even
returns more than a single codeword. There are, however, certain evidence that
the number of codewords will match the list size for certain (large) parameters
and specially constructed received words; in particular in [JH01], but see also the
extensive discussion in Guruswami’s thesis [Gur01, Section 4.8, but also elsewhere].

As mentioned, I have been unable to find good and closed expressions for the choice of
the parameters s and ` in the literature. The analysis of Section 3.1.2 was originally
developed for the Wu algorithm for a preprint version of [BHNW13], but recast for
this thesis for the Guruswami–Sudan (see duality in Section 5.2.2). Independently
of us, Trifonov and Lee [TL12] did a similar analysis of the parameter choices in
Wu’s algorithm, which one could probably apply to the Guruswami-Sudan as well,
and one might very well reach the same expressions as ours. I have not seen the
relaxation of the list size in Corollary 3.13 on page 55, nor the asymptotic analysis
elsewhere.
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Other interpolation methods

As already remarked, the interpolation method of Section 3.2 follows closely the one
of Lee and O’Sullivan [LO08]; in fact, the only difference is how we obtain the shortest
vector from the row space of As,` from (3.3) on page 61. As discussed toward the end
of Section 2.7, their algorithm is a reinvention of the Mulders–Storjohann algorithm,
but due to an inferior complexity analysis, they report the complexity O(`4sn2).
Alekhnovich proposed an interpolation method using his own minimisation algorithm
[Ale05], but his explicit basis was much larger than that of As,`, resulting in a
worse complexity (though still quasi-linear in n). Beelen and Brander [BB10] were
the first to combine Lee and O’Sullivan’s module approach with the Alekhnovich
minimisation algorithm. They used a slightly worse basis than As,` which they then
rewrote using some of the same techniques as we used when deriving the 2D key
equation in Section 3.4; the result is a basis with the same max-degree as that of As,`
(they do remark toward the end that a reviewer made them aware of the possibility
of using As,` instead). They end up reaching the same speed as in Table 3.1 on
page 63 with the Alekhnovich algorithm.

Cohn and Heninger [CH10] generalised work by Coppersmith [Cop97], Howgrave-
Graham [HG01], and May [May03] for solving certain polynomial equations over
the integers, to the case of function fields, by which one arrives at exactly the
Guruswami–Sudan algorithm. For Reed–Solomon codes, the explicit basis of As,`
is also quickly apparent. They propose to find the shortest vector of the row space
using the GJV, and so naturally arrives at the same complexity as ours (it should
be noted that their notation is very different from ours, however, making direct com-
parison cumbersome). Independently, Bernstein [Ber11a] also pointed out the same
equivalence between the Guruswami–Sudan algorithm and the above-mentioned
work of Coppersmith and Howgrave-Graham. Bernstein also proposed to use the
GJV for module minimisation.

Trifonov proposed a different way to utilise Gröbner bases over modules for the
interpolation problem [Tri10b]: one can combine Gröbner bases for small s and
` into bases for larger ones by element-wise multiplication of the bases followed
by a Gröbner basis computation; by “binary exponentiation”, one arrives at the
desired s and ` after logarithmically many such combinations. He relies on fast
multiplication techniques but still estimates a complexity ofO

(
s3n(n−

√
n+log(n))

)
,

which is worse than the module minimisation approach using D&C techniques, see
Table 3.1 on page 63. Furthermore, his analysis is involved and relies on an algebraic
assumption he states is known to be false. There is also room for improvement:
Trifonov uses Lee–O’Sullivan’s module minimisation for the intermediate Gröbner
basis computations, i.e. basically Mulders–Storjohann, and one can readily replace
these by the Alekhnovich algorithm or the GJV, which should speed up computations
(Trifonov himself suggests the former in his article on the Wu list decoder [Tri10a],
but has, to my knowledge, not examined the performance of doing so). Also, it would
be of prime interest to see if one can utilise the orthogonality defect measure to
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prove that the intermediate Gröbner basis computations are indeed fast if using the
Mulders–Storjohann or Alekhnovich algorithm; just as we did for the Multi-trial
algorithm of Section 3.3.

The Kötter interpolation method is yet another Gröbner basis approach for con-
structing an interpolation polynomial [Köt96], which was generalised to handle the
Guruswami–Sudan case by Nielsen and Høholdt [NH98]. No running time was re-
ported in the latter, but by inspecting the pseudo-code it seems to be O(s3`2n2),
thus comparable to the method of Section 3.2 using Mulders–Storjohann, but slower
than the D&C-approaches, see Table 3.1 on page 63.

As mentioned previously, the 2D key equation formulation of finding a satisfactory
Q was first given by Zeh, Gentner and Augot [ZGA11]. They also gave an extended
version of the Berlekamp–Massey algorithm to solve the equation, and for this
application, they report a complexity of O(`s4n2). This is faster than ours using
Mulders–Storjohann or the Demand–Driven algorithm since s < `. Two things might
be noted here: first, they assume that E[n,k]

GS (s, `, τ) ≈ 0 in an asymptotic sense, such
that they can replace `s(n − τ) −

(
`+1

2
)
(k − 1) with

(
s+1

2
)
n; it is possible that by

going carefully through the analysis of the Mulders–Storjohann or Demand–Driven
algorithm for this special case, one can utilise that assumption to similar effect.
In any case, one should here be wary of the warnings of Section 1.2. Second, as
described in Section 2.7, there is hope that using a better order of row-reductions in
the Demand–Driven algorithm and improving analysis might yield another reduction
since the algorithms are fundamentally similar. On the other hand, I know of no
D&C variant of the algorithm of [ZGA11] which might solve the 2D key equation in
a complexity with quasi-linear dependence on n, such as we accomplish using the
Alekhnovich algorithm or the GJV. The above discussion also applies to the case
s = 1 where the Roth–Ruckenstein algorithm is faster than our non-D&C solutions;
see also Section 2.7.

Guruswami–Sudan list decoding other codes

Kötter and Vardy showed in their famous paper [KV03a] how Guruswami–Sudan
can be used for soft-decision decoding of GRS codes, by using different multiplicities
for each possible received symbol: if we are fairly confident of a symbol on a certain
position, we give it high multiplicity, while if we are uncertain, we give it low to
none. By rigorously analysing the choices of multiplicities, they showed how the
soft-decision information could be put to efficient use. They suggested finding the
interpolation polynomial using the Kötter method (see above). Lee and O’Sullivan
[LO06] showed how to compute an initial basis analogous to As,` in (3.3) on page 61,
though they did not write it up explicitly. One could then apply any of the module
minimisation methods, and Lee and O’Sullivan apply their Mulders–Storjohann
variant and analyse its complexity; I am not aware of anyone having looked into
using other module minimisation algorithms.
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Since Alternant codes are sub-field sub-codes of GRS codes, the Guruswami–Sudan
algorithm can also decode these up to J(n, d), where d is the designed minimum
distance, i.e. the minimum distance of the enclosing GRS code. Using a clever
multiplicity assignment, inspired by their soft-decision variant of Guruswami–Sudan,
Kötter and Vardy showed how to decode up to the q-ary Johnson radius Jq(n, d)
(see above) where q is the size of the small field that the Alternant code is in. Kötter
and Vardy circulated a preprint which is now not easily found, but never published
their results; the method is however well described by Roth [Rot06] and by Augot,
Barbier and Couvreur [ABC10]. Bernstein got to the same result [Ber11a] using
the approach of Coppersmith and Howgrave-Graham already mentioned (citing in
particular a paper by Coppersmith, Howgrave-Graham and Nagaraj [CHGN08]),
and described how to find the interpolation polynomial using the GJV; his reported
complexity is O(`M(`)n log(`n)O(1)). We get back to this decoding method for q = 2
by a relation to Wu list decoding binary Goppa codes in Section 5.3.2.

For AG codes, Brander in his thesis [Bra10] gives a concise description of how to use
a similar module minimisation approach for the class of AG codes constructed with
simple Cab curves, of which the Hermitian curves are members. As already remarked,
the weights he applies for the minimisation problem have ν = q; when using the
Alekhnovich algorithm this is not a problem, but since we wanted to also apply the
GJV, we wanted to avoid the performance penalty of ν. Like for the case of GRS
codes, Brander used a slightly inferior explicit basis than AHs,`, so he reached the
complexityO

(
n2`5 log2+o(1)(n)

)
for decoding an Hermitian code; using the basisAHs,`

replaces a factor ` with a factor s. As mentioned, Lee and O’Sullivan also presented
essentially the same technique but using an extension of their Mulders–Storjohann
variant for module minimisation. They arrive at the complexity O

(
n8/3`3s2), which

is for some reason worse than what we get using Mulders–Storjohann; I have no
explanation for this discrepancy. Brander’s thesis contains a comparison with other
strategies for finding Q for AG codes [Bra10, Section 4.2.2], all of which are slower
than his method, and therefore ours. The technique of Lee and O’Sullivan has
since been generalised to other AG codes in various publications, e.g. [GMR12],
and for soft-decision decoding [LO10], and it would be interesting to see if for these
generalised works, one can also readily replace the module minimisation techniques
with the faster D&C algorithms. Cohn and Heninger [CH10] can decode any AG
code using their Coppersmith–Howgrave-Graham language of Guruswami–Sudan,
but since they do not give a way to put the resulting minimisation problem into
an F[x]-module form, they can give no better complexity than “polynomial time”
through Gaussian elimination.

Apart from the generalisation of Guruswami–Sudan to AG codes, the algorithm was
furthermore conceptually generalised to the class of “Ideal codes” by Guruswami,
Sahai and Sudan [GSS00], though this conceptual algorithm only runs in polynomial
time assuming certain basic algorithms exist for the codes in question; one of these
is a polynomial-time method to construct a Q polynomial. The class of Ideal codes
include the Chinese Remainder codes, for which the LLL algorithm [LLL82] is used
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for constructing Q; apparently, the lattice in which they find a Q polynomial as a
short vector is rather large, and it would be interesting if one could use techniques
like those of Section 3.2 for searching in a smaller lattice.

The interpolation ideas of the Guruswami–Sudan algorithm also form the basis of
the decoding algorithms for the various “folded” codes, which can be list decoded
arbitrarily close to capacity 1 − k

n (for very large alphabets, and some only in
probabilistic polynomial time), see e.g. [GR06,GX12,GW12].

Similar to the 2D key equations of Section 3.4, Beelen and Høholdt obtained Hankel-
form matrix equations for certain AG codes using linear algebraic rewriting [BH08b].
It is interesting whether it is immediately or easily possible to solve these 2D key
equations fast using the module minimisation methods presented in Chapter 2.

Other multi-trial approaches

Not much work has been done similar to the Multi-Trial algorithm of Section 3.3.
Cassuto, Bruck and McEliece [CBM13] described an iterative Guruswami–Sudan,
where one chooses final s, `, but from the beginning only utilise a subset of the
usually allowed xiyj-monomials for constructing Q(x, y). One then finds a Q which
can correct fewer errors, but it is also cheaper to construct; if no nearby codewords
are found, one adds monomials and constructs a better Q. The spirit is therefore
similar to ours. However the computational saving is far from ours, with only a
factor 2 saved when comparing the complexity of correcting a single error with
correcting up to the decoding radius; furthermore, the method is based on the
Kötter interpolation method.

Tang, Chen and Ma [TCM12] gave a different iterative variant based on this interpo-
lation method, and applied to the Kötter–Vardy soft-decision variant of Guruswami–
Sudan [KV03a]. There is little analysis on the complexity, however, making direct
comparison with ours (in the hard-decision case) difficult; being based on Kötter’s
interpolation method, it is clear it must have at least quadratic dependence on n.
It is not clear whether our methods of Section 3.3 generalise to the soft-decision
case: we seem to be crucially dependent on the nice form of the explicit basis As,`,
leading to the recurrence relations of Lemma 3.30 and Lemma 3.32.

One could also employ Trifonov’s binary exponentiation interpolation method (see
above) in a multi-trial manner. After each intermediate combination and Gröbner
basis reduction, one indeed has a Gröbner basis for intermediate values of s and `.
However, due to the nature of the binary exponentiation, it would be non-trivial
to let these intermediate parameter values achieve useful values, i.e. yielding high
intermediate decoding radii, while at the same time resulting in only logarithmically
many combination steps.



Chapter 4

Power decoding

Power decoding, or “virtual extension to an interleaved code”, is a more recent
paradigm for decoding low-rate codes beyond half the minimum distance than the
Guruswami–Sudan. It was originally developed by Schmidt, Sidorenko and Bossert
for GRS code [SSB06]. Their description stems from the surprising fact that a
received word coming from a low-rate GRS code can be “powered” to give a received
word of a higher-rate GRS code having the same error positions. This additional
received word usually aids in identifying the error positions, making one capable of
correcting more errors. In rare cases, the new restrictions add no new information
and the method then fails. The method is not a list decoder since it either returns
exactly one result or it fails; in particular it fails whenever there are more than one
codeword equally close to the received word.

A classical way to decode GRS up to half the minimum distance is to solve the
so-called “Key Equation”, that is, a simple key equation where the main unknown
is the error locator: a polynomial identifying the erroneous positions by its roots. In
Power decoding, each “power” of the received word has its own key equation, so one
ends up with a 2D key equation in the error locator with ρ > 1 and σ = 1. Schmidt
and Sidorenko proposed to solve this using an extension of the Berlekamp–Massey
algorithm; see also the discussion in Section 2.7. Not surprisingly, we will solve the
2D key equation using module minimisation techniques.

We will begin in Section 4.1, not with the original description of Schmidt, Sidorenko
and Bossert, but by deriving an alternative formulation which we call “Power Gao
decoding”, where we instead “power” the key equation which is at the heart of the
Gao decoding algorithm [Gao03]. This new formulation is very easy to derive and
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its behaviour is arguably easier to analyse than the original. However, in Section 4.2
we derive the original “Power Syndromes” formulation from Power Gao, and show
that the two are in fact equivalent. In Section 4.3 we expound on certain deep
connections between Power decoding and with Sudan decoding, i.e. the Guruswami–
Sudan algorithm with s = 1. In Section 4.4 we extend Power Gao to Hermitian
codes, and again solve the emerging 2D key equation using the results of Chapter 2.

Contributions
• The Power Gao formulation, as well as the Proposition 4.10 on page 103

describing the equivalence between Power Gao and Power Syndromes.
• Proposition 4.7 on page 101 which proves that the failure behaviour of Power

decoding is invariant under shifts by codewords.
• Applying module minimisation methods to Power decoding. Using the GJV

or Alekhnovich algorithm, this is faster than previously known methods for
this decoding paradigm.

• Proposition 4.13 on page 106 giving an orthogonality between Power Syn-
dromes and the Roth–Ruckenstein method for finding Q in Sudan decoding.

• Theorem 4.17 on page 111 upper bounding the failure probability of Power
decoding to that of Coppersmith–Sudan decoding. Also the remark on page
112 that the same matrix has Power decoding solutions in its left kernel and
Sudan decoding solutions in its right kernel.

• The Power Gao formulation for Hermitian codes.
• Applying module minimisation techniques for Power decoding Hermitian

codes, resulting in the fastest known algorithms for this approach.
• A rigorous and precise analysis of the decoding radius of Power decoding

Hermitian codes.

4.1 Empowering Gao

We will now show how the polynomials that we have already dealt with in the last
chapter, R and G, turn out to be involved in a different key equation relation than
that of Section 3.4, and how this can be used for a different key equation-based
decoding algorithm; naturally, the resulting key equation can be solved using the
methods of Chapter 2. To begin, we need to introduce a number of new polynomials;
Proposition 4.2 relating them will seem like magic. Indeed, the unfair amount of
foresight in the definitions of the in-going polynomials is based on a long history of
key equation decoding.

Recall that c = evα,β(f) was the sent word, achieved as the evaluation of some infor-
mation polynomial f , that r is the received word and that we let r′ = ( r1β1

, . . . , rnβn ).
Recall also R(x) and G(x) of Definition 3.22 on page 60. For the former, we gener-
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alise this to the power Lagrangian of the received word:

R(t)(x) : R(t)(αi) = r′ti , for i = 1, . . . , n (4.1)

Just as for R(x), we have degR(t)(x) ≤ n− 1 and R(t) can be easily calculated by
the receiver. We will also introduce a power error vector e(t) = (e(t)

1 , . . . , e
(t)
n ) where

e
(t)
i = (rti − cti)/βti = r′ti − f(αi)t. Finally, introduce ζi =

∏
j 6=i(αi − αj)−1 for each

i = 1, . . . , n; note that R(t) =
∑n
i=1 r

′t
i ζi
∏
j 6=i(x− αj).

Definition 4.1. The error-locator and the power error-evaluator is defined as

Λ(x) =
∏
j∈E

(x− αj)

Ω(t)(x) =
∑
j∈E

ζje
(t)
j

Λ(x)
x− αj

=
∑
j∈E

ζje
(t)
j

∏
h∈E\{j}

(x− αh)

Note that deg Ω(t) < deg Λ = |E|. Clearly, if we can find Λ and Ω(1) then we can
immediately decode: Λ will tell us the error positions as its roots, and Ω(1) will
evalute to the error value multiplied with a known constant for each of those error
positions. Once Λ and Ω(1) have been obtained, a faster, but essentially equivalent,
strategy is Forney’s method, see e.g. [Bos99, p. 71].

Remark. The reader familiar with decoding methods using the error-locator and
error-evaluator might be surprised at our definition; for example, the error-locator
is often defined as Λ(x) =

∏
j∈E(1− xαj), thus revealing the inverse of the errors

positions’ evaluation points (recalling the p(x)-notation, see Appendix A). We call
this the “indirect error-locator” It stems from the classical key equation using the
classical syndromes, and we will meet it in Section 4.2; since we will begin with the
Gao key equation, however, we will use the “direct error-locator” now. ♦

Choose now some ` ∈ N subject to `(k − 1) < n. Then we have the following
fundamental decoding relation which allows us to find Λ and Ω(t) in a variety of
ways:

Proposition 4.2. For t = 1, . . . , ` then

ΛR(t) − Ω(t)G = Λf t

Proof. The above is equivalent to R(t) − Ω(t)Υ = f t, where Υ =
∏
i/∈E(x − αi) is

the truth-locator. We will show that the two sides of this equation evaluate to the
same at all n different αi; this will imply that they are equivalent modulo G but
since degR(t) < n, deg(Ω(t)Υ) < |E| + (n − |E|) = n and tdeg f < n that means
they are equal.

First, for i /∈ E then immediately R(t)(αi) = f t(αi) and Υ(αi) = 0. For i ∈ E ,
note that Ω(t)(αi) = ζie

(t)
i

∏
h∈E\{i}(αi − αh), since all but the ith term in the sum
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vanishes. Therefore

R(t)(αi)− Ω(t)(αi)Υ(αi) = (f(αi)t + e
(t)
i )− ζie(t)

i

∏
h∈E\{i}

(αi − αh)
∏
j /∈E

(αi − αj)

which reduces to f(αi)t.

The first way which we are going to decode using Proposition 4.2 is by the following
“Power Gao” key equation:

Corollary 4.3. For t = 1, . . . , ` we have

ΛR(t) ≡ Λf t mod G(x) (4.2)

Therefore (Λ,Λf, . . . ,Λf `) is a solution to the 2D key equation of Type 2 having
parameters

• ρ = 1, σ = `.
• GKE

j = G(x) for j = 1, . . . , `.
• SKE

1,j = R(j)(x), for j = 1, . . . , `.
• ν = 1 and η1 = `(k − 1) + 1.1
• wj = (`− j)(k − 1) for j = 1, . . . , `.

Proof. Equation (4.2) follows immediately from Proposition 4.2, which means that
most of the 2D key equation parameters follow directly from mapping to Problem 2.31
on page 26; only η1 and the wj need a brief explanation: for a 2D key equation of
Type 2, we should set those such that deg Λ + η1 > maxj{deg(Λf j) +wj}. Any set-
ting of η1 and the wj satisfying this would mean that (Λ,Λf, . . . ,Λf `) is a solution,
but in order to disallow as many other solutions as possible, we should maximise
wj under these constraints. The chosen weights are then chosen minimally under
these considerations (adding some number δ ∈ N to all ηi and wj will not change
the set of solutions).

The matrix to be minimised when solving the 2D key equation of Proposition 4.2
is a weighted version of:

MGao =


1 R(1) R(2) · · · R(`)

G

G
.. .

G


We then have a decoding algorithm: solve for the minimal solution of the 2D
key equation of Corollary 4.3. If this solution has the very special structure of
s = (Λ,Λf, . . . ,Λf `), then return this. For added confidence, one could verify that
deg Λ = dist(c− evα,β(f)) ≤ τ for the chosen decoding radius τ .

1In [Nie13b, p. 881], it was erroneously stated that η1 = `(k − 1).
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However, we have not stated that s is a minimal solution to the 2D key equation
so we are not sure that s will be found by using the methods of Chapter 2. Even
stronger, we actually need it to be the only minimal solution, up to F-scalar multiples,
for otherwise it depends on rather arbitrary computations during the chosen module
minimisation whether s will emerge as the computed solution or not. Let us therefore
say that decoding using Power Gao fails if s is not the only minimal solution to the
2D key equation (up to F-scalar multiples).

It turns out that for only few errors beyond half the minimum distance, and assuming
random error patterns, the probability that we fail is very small; not surprisingly, the
probability then increases with the number of errors and at a certain point, we can
be certain we will fail. Simulations indicate that the increase in failure probability
is extremely slow up until very close to this upper bound on the radius, and then
it goes rapidly to 1. We have not found an analytical upper bound for the failure
probability and this is still an open problem; we will discuss it again twice, both
in Section 4.2 and Section 4.3.2, directly relating it to failure probabilities of other
methods (whose failure probability have not been determined well either). We can,
however, find the ends of the interval by inspecting the 2D key equation:

Proposition 4.4. In the context of Corollary 4.3, whenever |E| ≤ n−k
2 then the

vector (Λ,Λf, . . . ,Λf `) is the minimal solution to the 2D key equation up to F
scaling. It is not a minimal solution whenever

|E| > ˆ̀
ˆ̀+1n−

1
2

ˆ̀(k − 1)− ˆ̀
ˆ̀+1 (4.3)

where ˆ̀ = min
{
`,

⌊√
( 1

2 + 1
k−1 )2 + 2(n−2)

k−1 − ( 1
2 + 1

k−1 )
⌋}

, except possibly under

special circumstances pertaining to a certain system of equations specified in the
proof.

Proof. Consider first the lower bound: let (λ, ψ) be a minimal solution to the 2D
key equation for ` = 1 while |E| ≤ n−k

2 , and we will show that λ = Λ and ψ = Λf .
Thus by assumption deg λ ≤ deg Λ and deg λ+ k > degψ. By Proposition 4.2, we
have R = f + Ω(1)Υ. Since (λ, ψ) satisfies the key equation, G divides λR − ψ =
λ(f +Ω(1)Υ)−ψ = λf −ψ+λΩ(1)Υ, and since Υ | G that means Υ | (λf −ψ). Now
deg(λf − ψ) ≤ deg λ+ k − 1, so if not λf − ψ = 0 then we get deg Υ = n− |E| ≤
deg λ + k − 1. But deg λ ≤ deg Λ so that immediately yields the contradiction
2|E| ≥ n− k + 1. Therefore λf = ψ, so plugging this back in the key equation we
get G | (λR − λf) which implies Λ | λ; obviously, the minimal such solution must
be λ = Λ.

For the upper bound, let s = (s0, s1, . . . , s`) be a minimal solution to the 2D key
equation. Since s is a solution and the key equation is of Type 2, then deg s0 + η1 >

maxj=1,...,`{deg sj+wj} which means deg(Φ1,w̄(s)) = deg s0+η1. We will prove that
deg(Φ1,w̄(s)) ≤ d ˆ̀

ˆ̀+1n+ (`− 1
2

ˆ̀)(k− 1) + 1
ˆ̀+1e, where

ˆ̀ is as the proposition states,
and that whenever the expression within d·e is not integer, then there is another
minimal solution which differs on the first 1 + ˆ̀positions by more than an F scaling.
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Since η1 = `(k− 1) + 1 this means that when deg Λ >
ˆ̀

ˆ̀+1n−
1
2

ˆ̀(k− 1)− ˆ̀
ˆ̀+1 , then

(Λ,Λf, . . . ,Λf `) can’t be a minimal solution. When deg Λ equals this right-hand
side, on the other hand, our sought vector is a minimal solution, and it might well
be the only one (up to F scaling).

To prove the claim on d, we will employ Corollary 2.40 on page 34. Reusing notation
there, we have ζj = n+ (`− j)(k − 1) for j = 1, . . . , ` and ζ`+1 = −∞, as well as

dj = (j + 1)−1
(
`(k − 1) + 1 +

∑j
h=1

(
(`− h)(k − 1) + n

))
= . . .

= j
j+1n+ 1

j+1 + (`− 1
2j)(k − 1)

where Mj is the first j + 1 rows and columns of MGao. The corollary states that for
the greatest integer 0 < j ≤ ` such that ζj+1 ≤ ddje < ζj , then deg(Φ1,w̄(s)) ≤ ddje.
Since ζj is an integer for all j, this is the same as satisfying ζj+1 ≤ dj + 1 < ζj .
Assume first j < `. Then after some rearranging, the requiring amounts to√

( 1
2 + 1

k−1 )2 + 2(n−1)
k−1 − ( 3

2 + 1
k−1 ) < j ≤

√
( 1

2 + 1
k−1 )2 + 2(n−2)

k−1 − ( 1
2 + 1

k−1 )

Now, if the lower bound is at least `, then the assumption must have been false,
so j = `: the upper bound is then surely satisfied which implies d` < ζ` and we of
course have d` ≥ ζ`+1 = −∞, so indeed j = ` is a valid, and obviously maximal,
choice.

If the lower bound is less than `, however, we see that the allowed interval for j has
width at most 1. So it contains at most one integer; however, it must contain one
integer, by Corollary 2.40. This integer is therefore the floor of the right-hand side,
and that, single allowable choice of j, must be maximal.

The resulting choice of j is exactly ˆ̀; Therefore, by Corollary 2.40, deg(Φ1,w̄(s)) ≤
ddˆ̀e and if ddˆ̀e is not an integer, there are multiple F-linearly independent minimal
solutions; the corollary states that this is true, except possibly if a certain system
of equations one can get from the 2D key equation has a specific property described
in Proposition 2.39 on page 33.

Remark. In spite of the lack of finality in the statement of Proposition 4.4, it
should be emphasised how precisely it seems to predict what actually happens in
simulations. When |E| is less than or equal to the right-hand side of (4.3), we almost
always decode correctly. For the case of equality, this means that almost always,
even though the sought vector (Λ,Λf, . . . ,Λf `) has exactly the expected degree of a
minimal solution to the 2D key equation, this is the only minimal solution (up to F
scaling). When |E| is greater than the given bound, we almost always fail. However,
and I believe this observation is new, it turns out that we do succeed once in a while.
For instance, on a [10, 2, 9] GRS code with ` = 3, Proposition 4.4 predicts that we
should be able to decode at most 5 errors; in a simulation with 20 000 random error
patterns of weight 6, however, we decoded successfully in 0.02% of the cases. ♦

Remark. Compare the decoding radius upper bound of Proposition 4.4 with that
of Sudan decoding on Proposition 3.18 on page 58 assuming ` = ˆ̀: their difference
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is only `
`+1 , and even less when considering the bound here is ≤ while that of Sudan

is <. For many parameter choices, when relaxing to integers they become the same,
but occasionally Sudan decoding can correct one more error. ♦

Remark. Proposition 4.4 clearly implies that picking ` so high that ˆ̀< ` does not
make sense: it won’t improve the decoding radius. Therefore, the maximal sensible
choice of ` is

⌊√
( 1

2 + 1
k−1 )2 + 2(n−2)

k−1 − ( 1
2 + 1

k−1 )
⌋
. Compare this with the choice

of ` from Proposition 3.18 on page 58: for high n and k they are almost the same.
It is not too difficult to find examples where they differ by 1; however, I have been
unable to find such an example which also produced a decoding radius which was
off by more than the single error remarked upon above. ♦

Example 4.5. Consider again the [250, 40, 211] code from Example 3.20 on
page 59. We get ˆ̀ = min{`, 3.08}. Choosing ` = 3, then the right-hand side of
(4.3) gives 128 1

4 . Thus, we can hope of decoding success only when |E| ≤ 128; note
that this is one less than for Sudan decoding.

The parameters of the 2D key equation of Corollary 4.3 become

η1 = 118 maxdeg (Φ1,w̄(MGao)) = n+ w1 = 328
wj = [78, 39, 0] ∆(Φ1,w̄(MGao)) = n+ w1 − 1 = 327

Compare this with Example 3.43 on page 77.

In a trial of 10 000 decodings of random error patterns of weight 128, success was
in 99.99%. Performing the same number of trials with errors of weight 129 failed
every time. ♠

This decoder is not a list decoder, since it returns at most one codeword, and it is
therefore important to be clear on how the decoder behaves in the presence of more
than one codeword within the upper bound on decoding radius. To each of these
codewords will correspond an information word and error locator, and these will be
solutions to the 2D key equation. Since the minimal of these solutions will be the one
with the error locator of lowest degree, then when the decoder returns a codeword
it will always be the closest codeword. If the two codewords have different distance
to the received, then the decoder might succeed in finding the closest, or it might
fail altogether. If two codewords are equally close to the received, however, then the
decoder must fail (by our definition of “fail”): they will both be minimal solutions
whence the minimal solution is non-unique. Lastly, it should be remarked that the
decoder might also fail even when there is only one codeword within the decoding
distance, simply due to an unintended small solution to the 2D key equation. All
of these cases have indeed been observed in experiments using Codinglib [Nie13a].

Remark. We call this decoding method “Power Gao” since it is a power-extended
version of what one could call the Gao key equation: ΛR ≡ Λf mod G. In his paper
on decoding GRS codes [Gao03], Gao never wrote it as such, but it is exactly this
relation he is using to decode by running the Euclidean algorithm on R and G and
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halting when the remainder has degree less than (n + k)/2. Choosing ` = 1 and
solving the 2D key equation of Corollary 4.3 using Mulders–Storjohann is, step-wise
computationally, exactly the same as this. Mulders–Storjohann would compute a
matrix Φ1,w̄(

[
g1
g2

]
) ∈ F[x]2×2 in weighted weak Popov form, and this is also just

what the Euclidean algorithm would compute: in particular g1,2 and g2,2 are the
“remainders” on and before the iteration where the Euclidean algorithm should be
terminated in Gao decoding, since gi,1R+ hiG = gi,2 for i = 1, 2 for some hi ∈ F[x]
not recorded in our matrix representation. Note also how the decoding limits of
Proposition 4.4 coincide at this case of ` = 1, as was expected. ♦

Remark. If Power Gao decoding fails, then we know by Theorem 2.35 that s
can be constructed as an F[x]-linear combination of the rows of the found Φ1,w̄-
weighted weak Popov form; furthermore, we have upper bounds on the degrees
of the coefficient polynomials, assuming that deg Λ < τ for some chosen τ . One
could therefore exhaustively search through this space, looking for the very special
structure of s. Of course, the complexity of this is exponential in the difference
between τ and the degrees of the rows of the matrix in Φ1,w̄-weighted weak Popov
form (see Theorem 2.35), but if these are all 0 or small, one might consider doing
it.

Wu’s decoding algorithm, which Chapter 5 is devoted to, is a special case of this
strategy for ` = 1, i.e. classical key equation solving, where one uses a method closely
related to the polynomial interpolation of Guruswami–Sudan to “search” through
this exponential space in polynomial time. ♦

Proposition 4.6. The worst-case complexity of finding Λ and f as a minimal
solution to the 2D key equation of Corollary 4.3, or fail, is as in Table 4.1, for
various choices of module minimisation algorithm.

Proof. Follows from Table 2.4 on page 42 after estimating the measures of the 2D
key equation. Remember that `(k − 1) < n, from which it easily follows that

γ = maxdeg (Φ1,w̄(M)) = max{η1,degGKE
1 + w1, . . . ,degGKE

ρ + wρ} ∈ O(n)
δ = ∆(Φ1,w̄(M)) < ργ ∈ O(n)

Remark. The complexity-dominating part of the work for Power Gao decoding
is performed when searching for Λ and f ; the remaining work can be done in
O(n logn). Similarly for the methods in Chapter 3, the dominating part is in finding
a satisfactory Q(x, y); thus, we can fairly compare the complexities of Table 4.1 with
those of Table 3.1 on page 63; Table 3.2 on page 69; and Table 3.3 on page 76 when
setting s = 1, to determine which decoding method is fastest. Note how Power Gao
decoding provides a factor 1 to ` speedup when using D&C algorithms, while it gives
a factor `2 speedup when comparing the D–D algorithm of Table 4.1 with other
non-D&C methods. As theorised in Section 2.7, it might be possible to improve the
Demand–Driven algorithm when applied to the Q-finding key equations to reduce or
remove this gap. In particular, the algorithm of Roth and Ruckenstein to solve the



4.1 Empowering Gao 101

Complexity of finding Λ with Power Gao key equation of Corollary 4.3
Algorithm Complexity Relaxed
Mulders–Storjohann `2n2 `2n2

Alekhnovich M(`)P(n) log(n) + `2P(n) `3n log(n)2+o(1)

GJV M(`)P(n) log(`n)O(1) `3n log(n)O(1)

D–D `nP (n) `n2 log1+o(1)(n)

Table 4.1: For relaxation, we have used the same rules as in Table 3.1 on page 63. Remember
that P̃ (n) for the D–D algorithm is P(n) = n logn log logn since GKE

j (x) are not powers
of x.

Sudan key equations (see Section 3.4.1) runs in O(`n2) and so matches our Power
Gao decoding complexity (ignoring the log-factors of the latter). ♦

It is a fundamentally aesthetic property of any algebraic decoder that it behaves
invariant under which codeword was sent, so its behaviour depends only on the error
vector. For analysis, it can also be an important simplifying step. Since for t > 1
then e(t) depends on the sent codeword, one could be concerned that the Power
Gao decoder does not have this property; fortunately, we have:

Proposition 4.7. Power Gao decoding fails for some received word r if and only
if it fails for r + ĉ where ĉ is any codeword.

Proof. We will show that Power Gao decoding fails for r = c+ e if and only if it
fails for e as received word; since c was arbitrary, that implies the proposition.

Let R(t)
e (x) be the power Lagrangians for e as received word, i.e. R(t)

e (αi) = (ei/βi)t
for each i and t and let Re = R

(1)
e . Consider a solution to the corresponding 2D key

equation (λ, ψ1, . . . , ψ`); i.e. λR(t)
e ≡ ψt mod G and deg λ+ t(k − 1) + 1 > degψt.

Let as usual R(t)(x) be the power Lagrangians for r as received word and R = R(1).
Note now that R(t) ≡ Rt mod G since both sides of the congruence evaluate to the
same at all αi; similarly R(t)

e ≡ Rte mod G. Since r′i = f(αi) + ei/βi we have by
linearity of Lagrangian interpolation that R(x) = f(x) +Re(x). Define ψ0 = λ and
note that then also for t = 0 we have deg λ+ t(k − 1) + 1 > degψt. We then have
the congruence chain modulo G:

λR(t) ≡ λRt ≡ λ(f +Re)t ≡ λ
t∑

s=0

(
t
s

)
fsRt−se ≡

t∑
s=0

(
t
s

)
fsψt−s mod G

Each term in the last sum has degree sdeg f + degψt−s < s(k − 1) + deg λ+ (t−
s)(k − 1) + 1 = deg λ+ t(k − 1) + 1, which means that(

λ,

1∑
s=0

(1
s

)
fsψ1−s, . . . ,

∑̀
s=0

(
`
s

)
fsψ`−s

)
is a solution to the 2D key equation with r as a received word. The same argument
holds in the other direction, so any solution to one of the key equations induces a
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solution to the other with the same first component; obviously then, their minimal
solutions must be in bijection, which directly implies that they either both fail or
neither fail.

4.2 Empowering the classical syndromes

Now we will derive the original Power decoding as proposed by Schmidt, Sidorenko
and Bossert [SSB06,SSB10]. Just as they did, we will now assume that αi 6= 0 for all
i which is equivalent to x - G. Recall the “reversal” notation p(x), see Appendix A,
and introduce then a set of power series, strongly reminiscent of (3.9) on page 72:

S
(t)
• (x) = R

(t)(x)
G(x)

(4.4)

In Proposition 4.11, we specify the exact relation between these two power series.
For now, using the results of the last section, we immediately get:

Corollary 4.8. For t = 1, . . . , ` then

ΛS(t)
• ≡ Ω(t) mod xn−t(k−1)−1 (4.5)

Therefore (Λ,Ω(1)
, . . . ,Ω(`)) is a solution to the 2D key equation of Type 2 having

parameters

• ρ = 1, σ = `.
• GKE

j = xn−j(k−1)−1 for j = 1, . . . , `.
• SKE

1,j = (S(j)
• (x) mod xn−j(k−1)−1), for j = 1, . . . , `.

• ν = 1, η1 = 0 and wj = 0 for j = 1, . . . , `.

Proof. Reversing both sides of the equation of Proposition 4.2, we get

ΛR(t) − Ω(t)
G = Λ f

t
xn−t(k−1)−1

Reducing this modulo xn−t(k−1)−1 and dividing by G on both sides gives (4.5);
note that we can divide by G = [n]∏n

i=1(x− αi) since no αi = 0 and therefore
gcd(x,G) = 1.

For the modelling as a 2D key equation, we proceed exactly as for Corollary 4.3
excepting that we reduce S(t)

• (x) modulo GKE
j = xn−j(k−1)−1 first.

The matrix to be minimised when solving the 2D key equation of Proposition 4.2
is a weighted version of:

MSyn =


1 S(1) S(2) · · · S(`)

xn−k

xn−2k+1

. . .

xn−`(k−1)−1
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It is fascinating to compare this with the matrix for finding Q in Guruswami–Sudan
in the case s = 1, (3.12) on page 77. This duality, as well as the fact that they are
the same for ` = 1, is expounded in Section 4.3.1.

Example 4.9. For the [250, 40, 211] code of Example 4.5 on page 99 and ` = 3,
the parameters of the 2D key equation of Corollary 4.8 become

maxdeg (Φ1,w̄(MGao)) = n = 250 ∆(Φ1,w̄(MGao)) = n− 1 = 249

Compare this with Example 3.43 on page 77 and Example 4.5 on page 99. ♠

Obviously, this “Power Syndromes” key equation leads to a decoding algorithm just
as for the Power Gao key equation. We could proceed as before and deduce an upper
bound on the decoding radius, but the following result is much stronger and more
interesting.

Proposition 4.10. Decoding using Power Gao fails if and only if decoding using
Power Syndromes fails.

Proof. Power Gao fails if there is some λ ∈ F[x] which is not a constant times
the sought Λ and such that deg λ ≤ deg Λ and ψ(t)(x) = (λR(t) mod G) has
deg λ+ `(k− 1) + 1 > degψ(t) + (`− t)(k− 1) i.e. degψ(t) < deg λ+ t(k− 1) + 1 for
each t = 1, . . . , `. This means there must be some ω(t)(x) with degω(t) ≤ deg λ− 1
such that

λR(t) − ω(t)G = ψ ⇐⇒
λR

(t) − ω(t)G = ψ
(t)
xdegG+degλ−1−(degλ+t(k−1)) =⇒

λR
(t) ≡ ω(t)G mod xn−t(k−1)−1

Dividing by G, we see that λ and the ω(t) satisfy the congruence equations as well
as the degree bounds which are necessary to form a solution to the Power Syndrome
key equation. Showing the proposition in the other direction runs analogously.

Clearly, the Power Syndromes decoding algorithm then has the same upper bound
on its decoding radius as well as the same failure probability as Power Gao decoding.
Schmidt, Sidorenko and Bossert did not compute this failure probability in general,
but they did upper bound it for ` = 2 when the codes are over binary extension
fields [SSB10, Theorem 3]: they reach an upper bound of (γq3)|E|

q3τmax (q−1) , where γ is a
specific number slightly greater than 1, and τmax is the right-hand side of (4.3) on
page 97. This was generalised to general q in [ZWB12], still only for ` = 2. This
is quickly decaying exponentially for |E| moving away from the upper bound. We
discuss failure probability again in Section 4.3.2.

The utilised coefficients of the power series S(1)
• are usually arrived at by starting

with a parity check matrix for the GRS code; for indeed, it is exactly the classical
syndrome polynomial, used for decoding GRS codes for decades. It is also simply a
shifted version of S(1,1)

◦ of (3.9) on page 72, which we used for the Guruswami–Sudan
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Q-finding key equations in Section 3.4. The following proposition sums up these
relations for all t ≥ 1:

Proposition 4.11. For t = 1, . . . , `, there exists U (t) ∈ F[x] with degU (t) <

(t− 1)(n− 1) and such that S(t,1)
◦ (x) = U (t)(x) + x(t−1)(n−1)S

(t)
• (x). Furthermore,

S
(t)
• (x) ≡

n∑
i=1

e
(t)
i ζi

1− xαi
≡
n−k−1∑
j=0

xj
n∑
i=1

e
(t)
i ζiα

j
i mod xn−t(k−1)−1

and is the classical syndrome polynomial for the received word (r′t1 β1, . . . , r
′t
nβn) in

the GRS code [n, t(k − 1) + 1, n − t(k − 1)] having α,β as evaluation points and
column multipliers respectively.

Proof. Note first that Rt ≡ R(t) mod G since Rt(αi) = R(t)(αi) = r′ti for each i.
This means that for t > 1 there exists q ∈ F[x] with deg q ≤ t(n− 1)− n such that

Rt − qG = R(t) ⇐⇒ R
t − qG = x(t−1)(n−1)R

(t)

where the exact power of x after the reversal of coefficients comes from degRt =
t(n − 1) > n when t > 1. Dividing the reversed equation by G gives the sought,
where q = U and since then degU ≤ t(n− 1)− n < (t− 1)(n− 1) as promised.

For the syndrome characterisation, we simply insert the definition of the power
error-evaluator into (4.5):

ΛS(t)
• ≡

∑
j∈E

ζje
(t)
j

Λ(x)
1− xαj

mod xn−t(k−1)−1

We can divide through by Λ since gcd(x,Λ) = 1 since 0 is not an evaluation point, and
the first equivalence follows. The second equivalence comes simply from expanding
the fraction 1

1−xαi to a power series. For S
(1)
• (x), this is clearly the classical syndrome

polynomial, see e.g. [Rot06, (6.3) on p. 185]2. For t > 1, it follows by inserting the
modified code parameters.

Remark. The shift of (t−1)(n−1) from S
(t,1)
◦ to S(t)

• (x) equals vt in Proposition 3.38
on page 72 when s = 1; so S(t,1)(x) of that proposition equals S(t)

• (x) mod xm0−ut .
Together with the additional Roth–Ruckenstein reduction in Section 3.4.1, we end
up using exactly the same part of S(t)

• (x) in the two methods. ♦

Remark. The usual way of deriving the Power Syndrome equations of Corollary 4.8,
as introduced by Schmidt, Sidorenko and Bossert in [SSB06], begins by remarking
exactly that from one received word (r1, . . . , rn), one can “virtually extend” to `
received words in progressively larger codes in the manner described by the above
proposition. One can consider the interleaved code from these ` GRS codes, and the
` “virtual words” as one codeword in this code. Finding the common error locator

2In that section of [Rot06], GRS codes are introduced using parity check matrices, and one
needs also [Rot06, Problem 1 on p. 211] to see that our ζi are equivalent to his vi.
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Complexity of finding Λ by solving Power Syndrome key equation of Corollary 4.8
Algorithm Complexity Relaxed
Mulders–Storjohann `2(n− k)2 `2n2

Alekhnovich M(`)P(n− k) log(n− k) + `2P(n− k) `3n log(n)2+o(1)

GJV M(`)P(n− k) log(`(n− k))O(1) `3n log(n)O(1)

D–D `(n− k)2 `n2

Table 4.2: For relaxation, we have used the same rules as in Table 3.1 on page 63. Remember
that P̃ (n) for the D–D algorithm is O(n) since all GKE

j (x) are powers of x. One should
keep in mind that the decoder works best for low rates, so n− k is close to n.

using multiple key equations for general interleaved GRS codes had already been
examined by these authors in [SS06]. This description originally gave the name
“decoding by virtually extending to an interleaved Reed–Solomon code” to Power
decoding. ♦

Proposition 4.12. The worst-case complexity of finding for Λ and the Ω(t) as a
minimal solution to the 2D key equation of Corollary 4.8, or fail, is as in Table 4.2,
for various choices of module minimisation algorithm.

Proof. Follows from Table 2.4 on page 42 after estimating the measures of the 2D
key equation. Since all weights are trivial Φ1,w̄(M) = M , where M is the relevant
matrix to minimise. It easily follows that both γ = maxdeg (M) and δ = ∆(M) are
in O(n− k).

Remark. From classical coding theory, “syndromes” are usually reserved for values
derived from the received word which depend only on the error vector and not
the codeword. For S(1)(x), this is true for the first n− k coefficients, by the above
proposition. However for S(t)(x), t > 1, then e(t) itself depends on the sent codeword.
This immediately raises the question whether the failure behaviour of Power decoding
is invariant under shifting by codewords; we saw in Proposition 4.7 that this was
indeed so for Power Gao decoding, so by Proposition 4.10, it must also hold for
Power Syndrome decoding. ♦

4.3 Connections with Sudan decoding

Clearly, Power decoding and Guruswami–Sudan for s = 1, i.e. Sudan decoding, must
be closely related: as already remarked, they decode up to nearly the same radius,
and the utilised part of the power series S(t)

• (x) occurs also in the Roth–Ruckenstein
speedup Section 3.4.1.

In this section we give two new algebraic connections between Power decoding and
Sudan decoding, demonstrating that there is an even more intimate relation between
them; in a sense, we will show how they are “dual” to each other.
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The connection of Section 4.3.1 seems to be completely of theoretical interest, while
the connection in Section 4.3.2 might help analyse the failure probability of Power
decoding. Though I have not succeeded in doing so, it is my hope that both of the
connections can help in finding a “Power decoding with multiplicities” algorithm,
assuming that such a method should be dual to the Guruswami–Sudan algorithm
in the way that Power decoding is dual to Sudan.

4.3.1 Orthogonality with Roth–Ruckenstein

For half-the-minimum distance decoding, there is a well-known connection between
the error-locator from the key equations and the Guruswami–Sudan algorithm with
s = ` = 1.3 Specifically, let Q(x, y) be a minimal interpolation polynomial for
Guruswami–Sudan with s = ` = 1, see Theorem 3.2 on page 48. Since Q(αi, r′i) = 0
for all i as well as 0 = Q(x, f(x)) = Q0(x) + f(x)Q1(x), then clearly Q0 = −Q1f ,
which means Q1(αi)f(αi) + r′iQ1(αi) = 0 for all i. Whenever i ∈ E this means
Q1(αi) = 0, which implies that Λ | Q1. However, we are decoding up to half the
minimum distance which means τ < n − τ , and therefore Q̂ = Λf + yΛ is an
interpolation polynomial satisfying the degrees; by the minimality of Q with the
requirement that Λ | Q1, we must have Q = γQ̂ for some γ ∈ F.

Note that in Power Gao for ` = 1, i.e. regular Gao decoding, we would also search for
(Λ,Λf); indeed, if we compare the matrix used for Q-finding of Guruswami–Sudan
by the method of Section 3.2, i.e. A1,1 from page 61, with the one for Power Gao
for ` = 1, we see that they are the same except for the order of the columns!

Assume again αi 6= 0. The following is a generalisation of the above connection for
` > 1 and s = 1, which ties together all the important variables of Power Syndrome
decoding with those of Guruswami–Sudan key equation interpolation:

Proposition 4.13. Let Q(x, y) =
∑`
t=0Qt(x)yt be a valid interpolation polynomial

for the Guruswami–Sudan algorithm with s = 1 and some `. Let B̃(x) = B̃0(x) with
B̃0(x) as in (3.11) on page 77. Let Λ,Ω(1), . . .Ω(`) be the error-locator and the power
error-evaluators respectively. Then(

Λ, Ω(1)
, xk−1Ω(2)

, . . . , x(`−1)(k−1)Ω(`)) · (−B̃, Q1, Q2, . . . , Q`
)

= 0

Proof. As remarked on page 104, S(t,1)(x) ≡ S(t)
• (x) mod xn−t(k−1)−1 when s = 1,

where S(t,1) is as in Proposition 3.38 on page 72. Thus, from (4.5) we have

Λ(x)S(t)
• (x) ≡ Ω(t)(x) mod xn−t(k−1)−1 ⇐⇒

Λ(x)S(t,1)(x)x(t−1)(k−1) ≡ x(t−1)(k−1)Ω(t)(x) mod xn−k

3The latter is occasionally called the Welch–Berlekamp algorithm, after the patented decoding
algorithm in [WB86]. This decoder has little to do with the Guruswami–Sudan for s = ` = 1 on
the surface, but algebraic connections between the two decoders have led them to be considered
“the same”. To me, it seems that the algebraic connections between Gao decoding and Guruswami–
Sudan for s = ` = 1 are tighter, however.
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Beginning from (3.11) on page 77 and inserting the above, we get:

∑̀
t=1

Qt(x)S(t,1)(x)x(t−1)(k−1) ≡ B̃(x) mod xn−k ⇐⇒

∑̀
t=1

Qt(x)Λ(x)S(t,1)(x)x(t−1)(k−1) ≡ Λ(x)B̃(x) mod xn−k ⇐⇒

∑̀
t=1

Qt(x)x(t−1)(k−1)Ω(t)(x) ≡ Λ(x)B̃(x) mod xn−k

Recall ∇Qt = s(n − τ) − t(k − 1) and degQt < ∇Qt . Therefore, the left-hand side
has degree at most maxt{(∇Qt − 1) + (t− 1)(k− 1) + (τ − 1)} = n− k− 1, and the
right-hand side has degree at most τ + (n− k − τ − 1) = n− k − 1. Thus the two
sides both have degree below the modulus and must be equal.

For ` = 1, the above is equivalent to the connection mentioned initially, i.e. Λ | Q1,
since (

Λ, Ω(1)) · (−B̃, Q1
)

= 0 ⇐⇒ ΛB̃ = Q1Ω(1)

Since by their definitions Λ and Ω(1) share no roots, they are coprime, so the above
implies Λ | Q1 which is the same as Λ | Q1.

Remark. The above “duality” of the two types of key equations, (3.11) and (4.5),
is well-known for Padé approximations: as indicated on Table 2.1 on page 28 and
further discussed in Section 2.7, (3.11) has the form, but not type, of a Hermite
Padé approximation, while (4.5) has the form, but not type, of a Simultaneous Padé
approximation. The duality of Hermite and Simultaneous Padé approximations, in
exactly the sense of Proposition 4.13, is described in e.g. [BGM96].

It has also been generalised for so-called Matrix-Padé approximations [BL94], see also
Table 2.1. An analogous duality could certainly be given for two 2D key equations
which are similarly strongly connected in the Si,j and the Gj . If there exists a
form of Power decoding involving multiplicities, I imagine that the resulting 2D key
equation would be dual to the Q-finding 2D key equations of Section 3.4 in this
manner. ♦

Remark. For s = 1, from (3.7) on page 71 one immediately gets
∑`
t=1Qt(x)R(x)t ≡

−Q0 mod G, and combining this key equation with the Power Gao key equation
(4.2) on page 96, one can get a duality exactly like above. Interestingly, this ends up
simply stating

∑`
t=0Qt(x)f(x)t = 0, i.e. that f(x) is a y-root of Q(x, y); which we

of course already knew. Since Power Gao and Power Syndromes are connected via
the simple rewrite across the fundamental relation of Proposition 4.2 on page 95, it
would seem that the relation of Proposition 4.13 is just an incarnation of the same
fact. ♦
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4.3.2 Across Coppersmith–Sudan

The Coppersmith–Sudan algorithm [CS03] is an alternative list-decoder, decoding
errors almost up to the Guruswami–Sudan radius4. This algorithm is very simple
and has virtues that the Guruswami–Sudan does not, e.g. that it immediately
generalises to decode Interleaved Reed–Solomon codes. It is also clearly connected
to the Guruswami–Sudan decoder: as we will see, and as the authors themselves
remarked, a central matrix appears in both Coppersmith–Sudan and the simplest
way of calculating an interpolation polynomial in Guruswami–Sudan.

For s = 1, we will give some new connections between Coppersmith–Sudan and
Power Syndrome decoding; in fact, Power Syndrome decoding can be seen as a
Fourier transformed analogue of Coppersmith–Sudan. This will transitively reveal
yet another facet of the relation between Power Syndrome and Roth–Ruckenstein
interpolation.

First, we describe briefly the Coppersmith–Sudan algorithm for the special case of
s = 1. For notational brevity, we need to introduce the following short-hands, for
v ∈ Fb and a, b, t ∈ N:

Va(v) =

v
0
1 v1

1 . . . va−1
1

...
. . .

...

v0
b v1

b . . . va−1
b

 vt = (vt1, . . . , vtb)

Let τ be a decoding radius to be upper bounded shortly, and define ∇̀Qt = n− τ −
t(k − 1)− 1 = ∇Qt − 1. Define now the component matrices Ct:

Ct =


α0

1r
′t
1 α1

1r
′t
1 . . . α

∇̀Qt −1
1 r′t1

...

α0
nr
′t
n α1

nr
′t
n . . . α

∇̀Qt −1
n r′tn

 = diag(r′t) · V∇̀Qt (α)

The total matrix C is then C = [C0 | C1 | . . . | C`] and has dimensions n×∇̀QΣ where
∇̀QΣ =

∑`
t=0 ∇̀

Q
t .

Consider now the sub-matrix C̀ consisting of the rows ofC corresponding to positions
not in error. Any column of C̀ can be seen as the evaluations of some monomial
xayt at (αi, f(αi)), i /∈ E , i.e. evaluating xa(f(x))t at αi. Since a + t(k − 1) <
∇̀Qt + t(k−1) = n−τ−1, then xa(f(x))t is a polynomial of degree at most n−τ−2.
The fundamental observation that Coppersmith and Sudan make is that C̀ has
rank at most n − τ − 1: any column can be written as a linear combination of
the columns 1, . . . , n− τ − 2, since these correspond to evaluating the polynomials
1, x, . . . , xn−τ−2. C therefore has rank at most n− τ − 1 + |E|. If there are at least

4In [CS03], they report the same decoding radius, but as we will see, they made a small but
important mistake which decrease the decoding radius slightly
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n columns, i.e. ∇̀QΣ ≥ n, and if |E| ≤ τ , then n− τ − 1 + |E| is less than the generic
rank n, which can be exploited to identify the non-error rows constituting C̀. The
requirement on the number of columns leads to having to choose:5

τ < `
`+1n−

1
2`(k − 1)− `

`+1 (4.6)

Just like for Power decoding. From this intuition, Coppersmith and Sudan prove
the following three observations:

Proposition 4.14 (Coppersmith–Sudan).

1. If |E| ≤ τ then C has a non-trivial left kernel [CS03, Claim 2].
2. Any non-zero element in the left kernel will have at least n − |E| non-zero

positions [CS03, Claim 3].
3. Assuming that e is picked uniformly at random from all vectors in Fn of

Hamming weight |E| ≤ τ , then for any non-zero vector v in this left kernel,
then supp(v) will be disjoint with E with probability at least (1 − `

q−1 )|E|,
where q is the cardinality of the field, assuming ` < q [CS03, Lemma 4
slightly modified].

The decoding algorithm is then clear: construct C and find any vector v in the left
kernel space of C. v probably has at least n− τ non-zero positions, all of which are
probably non-errors; erase all the other positions and perform erasure-decoding.

By the third point in the above, this algorithm can fail if the found vector in the
left kernel of C is not non-zero in only the non-error positions. Similar to how we
defined “failure” for Power decoding, let us consider Coppersmith–Sudan to fail if
there is any such vector in the left kernel of C. We will show that whenever Power
Syndrome decoding fails, exactly this occurs.

Remark. What is extremely fascinating is that in the right kernel of C lies the
Q-polynomials of Sudan decoding! Interpreting the requirements of Theorem 3.2
on page 48 for an interpolation polynomial Q(x, y) =

∑`
i=0Qt(x)yt as a system of

linear equations in the coefficients of Q, then the system matrix is almost identical
to C: the difference is that in Sudan decoding, we allow deg1,k−1(Q) ≤ n − τ − 1
so degQt ≤ ∇̀Qt . Therefore, the sub-matrices corresponding to Ct will have ∇̀Qt + 1
columns, while Ct has only ∇̀Qt columns. In Sudan decoding, searching instead a
Q such that deg1,k−1Q < n− τ − 1 could be done as finding a vector in the right
kernel of C; the decoding radius of the Sudan algorithm would then decrease to
exactly that of (4.6). ♦

Now for the connection to Power decoding: we will show that any element in the
left kernel of C gives rise to a solution to the Power Syndrome key equation of

5Note that there is an important mistake in [CS03]: In Section 2.1 and 2.2 of that paper,MT

is defined as all monomials in x and y of (1, k − 1)-weighted degree at most T ; however, from the
proofs in Section 2.3 (in particular for Claim 2, line 6 and Claim 3 line 3) it is clear that they
assumeMT as all monomials of weighted degree less than T . This off-by-one corresponds exactly
to our use of ∇̀Qt instead of ∇Qt , which is why we reach the slightly reduced decoding radius.



110 Power decoding

Corollary 4.8 on page 102. Recall that ζi =
∏
j 6=i(x−αj)−1 and let ζ = (ζ1, . . . , ζn).

A well-known identity for Vandermonde matrices is that for any m < n:

(diag(ζ)Vm(α))>Vn−m(α) = 0

We have therefore that diag(ζ)Vτ+1(α)C0 = 0, so by multiplying the entire C on
the left with diag(ζ)Vτ+1(α) we get:

diag(ζ)Vτ+1(α)C = [0 | Z1 | . . . | Z`] where
Zt =

(
diag(ζ)Vτ+1(α)

)>diag(r′t)V∇̀Qt (α)

=
[

n∑
i=1

αa+b−2
i r′ti ζi

]
(a,b)=(1,1),...,(τ+1,∇̀Qt )

Note how Zt has Hankel form. Define Z = [Z1 | . . . | Z`]. We can easily show that
the left and right kernels of C and Z are pairwise in bijection:

Lemma 4.15.

rankC + (n− τ) = rankZ

Furthermore, let LC and RC denote the left respectively right kernel space of C, and
LZ and RZ that of Z. Then dimLC = dimLZ and dimRC = dimRZ . Furthermore,
the maps ϕL : LZ → LC and φR : RC → RZ defined as

φR
(
(q1, . . . , q∇̀QΣ

)
)

= (q∇̀Q0 +1, . . . , q∇̀QΣ
)

ϕL
(
(v1, . . . , vτ+1)

)
= (v(α1)ζ1, . . . , v(αn)ζn), where v(x) =

∑τ+1
i=1 vix

i−1

are bijections.

Proof. Consider first φR. Considering how we obtained Z, clearly dimRC ≥ dimRZ
and the image of φR is a subset of RZ . Now φR is linear so it is a homomor-
phism, but its kernel is also trivial: otherwise there would exist a non-zero vector
(q1, . . . , q∇̀Q0

, 0, . . . , 0) ∈ RC , by which C0(q1, . . . , q∇̀Q0
)T = 0. However, since C0 is

a Vandermonde matrix with more rows than columns, it has full column rank so
such a vector can’t exist. Thus φR is injective and we get dimRC ≤ dimRZ from
which equality follows, and so φR is also onto.

Now, since Z has n − τ fewer columns than C, it follows from the fundamental
theorem of linear algebra (applied twice) that rankC − dimRC = ∇̀QΣ = rankZ −
dimRZ + (n− τ), so from the above isomorphism rankC = rankZ + (n− τ). Since
Z also has n− τ fewer rows than C, applying the fundamental theorem to the left
kernel spaces immediately then yields dimLC = dimLZ .

Consider now ϕL, and note that the map is equivalent to v 7→ v ·
(
diag(ζ)Vτ+1(α)

)T
,

so the image of ϕL must be a subset of LC . Due to the equality in dimension, ϕL
must thus be at the same time onto and injective if it has a trivial kernel; but this
must be true, since otherwise there would exists a non-zero polynomial of degree
τ < n with n zeroes.
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At first glance, Zt looks alien, but we can find a most familiar description of it: from
the definition of S(t)

• = R
(t)

G
we can expand and rewrite

S
(t)
• (x) =

∑n
i=1 r

′t
i ζi
∏
j 6=i

1−xαj
αi−αj∏n

i=1(1− xαi)
=

n∑
i=1

r′ti ζi
1− xαi

=
∞∑
j=0

xj
n∑
i=1

r′ti ζiα
j
i

So Zt is the first n− t(k− 1)− 1 coefficients of S(t)
• arranged in Hankel form! With

the above lemma, this leads quickly to the following

Lemma 4.16. A vector λ = (λ0, . . . , λτ ) is in the left kernel of Z if and only
if λ(x) =

∑τ
i=0 λτ−ix

i is a solution to the Power Syndromes 2D key equation of
Corollary 4.8.

Proof. Assume that λZ = 0 so for t ≥ 1 then λZt = 0, which means
τ∑
j=0

λjsj+i = 0, i = 0, . . . , ∇̀Qt − 1

where sh =
∑n
i=1 r

′t
i ζiα

h
i and is the hth coefficient of S(t)

• (x). Since λ(x) consists of
the elements of λ in reverse order, then

∑τ
j=0 λjsj+i is the (i+ τ)th coefficient of

the product λ(x)S(t)
• (x); so the above states deg(λ(x)S(t)

• (x) mod x∇̀
Q
t −1+τ ) < τ .

Since ∇̀Qt − 1 + τ = n− t(k− 1)− 1, this immediately implies that λ(x) is a solution
to the 2D key equation of Corollary 4.8. The opposite direction runs analogously
when assuming that λ(x) is solution to the 2D key equation and has degree at most
τ .

From the above two lemmas we immediately get

Theorem 4.17. For some number of occurred errors, |E| ≤ τ , the probability that
Power Syndrome decoding fails is upper bounded by the probability that Coppersmith–
Sudan decoding fails.

Proof. If Power Syndrome decoding fails, then there is a minimal solution λ(x) 6=
Λ(x) to the 2D key equation of Corollary 4.8 with deg λ ≤ |E| ≤ τ . By Lemma 4.16,
there corresponds to this a vector in the left kernel ofZ, and according to Lemma 4.15,
this gives a vector in the left kernel of C; studying the two bijections, note that
this vector is

(
λ(α1)ζ1, λ(α2)ζ2, . . . , λ(αn)ζn

)
. Since Λ - λ then obviously this vector

must be non-zero in one or more of the error positions; hence Coppersmith–Sudan
decoding fails.

Remark. Note that the probabilities of failing are not the same: if Coppersmith–
Sudan decoding fails we could indeed go back through the bijections to a polynomial
λ(x) which is a solution to the Power Syndrome key equation, but this solution need
not be minimal! In this case Power Syndrome decoding wouldn’t fail. Simulations
that I have performed with Codinglib [Nie13a] on small codes indicate that the
difference here is small but measurable, so these cases really do crop up randomly.

♦
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Remark. Theorem 4.17 together with Proposition 4.14 implies that the probability
that Power decoding (Gao or Syndrome) fails when at most τ errors has occured is
upper bounded by 1− (1− `

q )|E|. This is not a very impressive bound, though, and
it’s a long-shot away from the much more quickly decaying behaviours discussed on
page 103.

Simulations I have performed indicate much lower failure probabilities; in particular,
for n = q − 1 = 255 and for |E| just a few errors from the upper bound τ , the
probability is close enough to 0 for such instances never cropping up in many
thousands of experiments for both Coppersmith–Sudan as well as Power decoding.

My hope is that it is possible to improve the upper bound on the failure probability
of Coppersmith–Sudan, owing to its rather direct linear algebraic nature, and that
this could then give a satisfactory upper bound on the failure probability of Power
decoding. As an entry to this, Coppersmith and Sudan’s failure probability depends
on the number of roots in a series of polynomials; these polynomials are neither
independent nor completely random, but fairly so. The derived failure probability is
based on the worst case: that all of these polynomials completely split over Fq with
distinct roots. However, it has been shown that a polynomial in Fq[x] on average
has only a single root [Leo06], and if one is able to use this estimate unrestrictedly,
we would get the failure probability 1− (1− 1

q )|E|. This is, however, still not nearly
as good as simulations predict, and does not decay fast enough for |E| moving away
from the decoding upper bound. ♦

Remark. We remarked earlier that in the right kernel of C are the vectors forming
Q polynomials of Sudan decoding. Similarly, it is straightforward to show that in
the right kernel of Z are the Q1, . . . , Q` sought in the Roth–Ruckenstein speedup
Section 3.4.1. In a precise sense, then, the left kernel of Z contains vectors forming
error locators and the right kernel contains vectors forming Q polynomials; this
is yet another facet of the “orthogonality” between Power Syndrome and Roth–
Ruckenstein decoding, as discussed in the previous section.

In fact, one can use a similar matrix-style rewrite from C to Z to obtain the Q-
finding key equations from Section 3.4 also for s > 1; Ruckenstein did so in her
thesis [Ruc01, Section 5.2 and 5.3], and Beelen and Høholdt did the analogous
rewrite for AG codes [BH08b]. ♦

4.4 Power decoding of Hermitian codes

Several classes of codes have minimum distance decoders based on solving a key
equation containing the error locator: these include Goppa codes, AG codes, L,G
codes and Gabidulin codes. One can in each instance consider whether the principle
of power decoding can be applied as well; this is unknown for three of the above
families, but for at least some AG codes, it does apply in a straightforward manner;
this was demonstrated by Kampf [Kam11]. The main problem lies in how to solve
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the emerging “set of key equations”, since they must inherently be defined over the
function field of the AG code.

Kampf handled only the one-point Hermitian codes. In [Kam11], only a trivial, slow
algorithm was given for solving the key equations. In [KL13], Kampf and Li instead
used an extension of the Euclidean algorithm to bivariate polynomials, which is
probably more efficient, but see discussion in Section 4.5. We will show how to map
the set of key equations of the function field into a larger set over F[x], and this
will yield a 2D key equation as defined in Section 2.5. Using Mulders–Storjohann to
solve this equation is quite related to Kampf and Li’s Euclidean algorithm extension,
while the other choices of module minimisation yield better performance.

Though the approach most likely extends to many other AG codes, we will like in
Section 3.5—and like Kampf—only handle the one-point Hermitian codes.

Like in the beginning of this chapter, we will base our exposition on a “Gao key
equation”, where earlier work for decoding using a key equation has been a syndrome-
style formulation, e.g. [JLJ+89,JLJH92,SJH95,OBA08,Kam11,BK12]. To the best
of my knowledge, a Gao-style key equation has not been proposed for decoding AG
codes previously. Apart from the joy of variety, the Gao-style formulation admits
succinct arguments based on Riemann–Roch-spaces, which makes the derivation
of the central result, Proposition 4.20, quite short. Furthermore, as for the case of
GRS codes, solving the key equation of the Gao formulation reveals the information
polynomial f directly, with no need for finding error values and correcting. It should
perhaps be noted that the basic Gao key equation, i.e. ` = 1, can be seen as just a
facet of the Sudan decoder for AG codes [SW98] with ` = 1, in a manner analogous
to what we described in the beginning of Section 4.3.1.

We will use all the notation introduced in Section 3.5.1; consult possibly Appendix A.
In particular, we will be decoding the codes of Definition 3.48 on page 80 so consider
such a code C. Let as usual c ∈ C be some sent codeword and r = c+e be the received
word which has been subjected to some noise e ∈ Fnq2 . Let also E = {i | ei 6= 0}.

Recall G and R from Definition 3.54 on page 83, and extend the latter to its powers:

R(t) 6= 0 : R(t)(Pi) = rti ∀i = 1, . . . , n, t ∈ N0 (4.7)

Again, these can be found by solving the emerging linear systems of equations or
using the explicit formula of Lemma 3.50 on page 81. Now for the error locator.
Again, we are forced to be less explicit than in the case of GRS codes:

Definition 4.18. The error locator Λ is the non-zero polynomial in L(−
∑
i∈E Pi+

∞P∞) with minimal degH and LCH(Λ) = 1.

Clearly, Λ ∈ Я since the defining Riemann–Roch space is a subset of Я. The
definition is well-defined, i.e. there is exactly one element in the Riemann–Roch
space satisfying the restrictions: for if we have two error locators Λ1,Λ2 with the
same minimal degH, then LMH(Λ1) = LMH(Λ2) since all xiyj have unique degH
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whenever j < q. But then degH(Λ1 − Λ2) < degH Λ1, and this linear combination
must be in L(−

∑
i∈E Pi +∞P∞). Since Λ1 has minimal order of non-zero elements

in this Riemann-Roch space, then Λ1 − Λ2 = 0.

Lemma 4.19. |E| ≤ degH Λ ≤ |E|+ g

Proof. Being in L(−
∑
i∈E Pi +∞P∞) specifies |E| homogeneous equations in the

coefficients of Λ, so by Lemma 3.47 on page 80, we will still have more coefficients
than equations after requiring degH Λ < |E|+ g+ 1. For the lower bound, then since
deg(−

∑
i∈E Pi + tP∞) < 0 for t < |E| we must have L(−

∑
i∈E Pi + tP∞) = {0}

whenever t < |E|. Since Λ 6= 0 is in this Riemann–Roch space when t = degH Λ,
then clearly degH Λ ≥ |E|.

We then surprisingly easily arrive at the analogue of Corollary 4.3 on page 96:

Proposition 4.20. ΛR(t) ≡ Λf t mod G for t ∈ N0 as a congruence over Я.

Proof. We must have ΛR(t) − Λf t = Λ(R(t) − f t) ∈ L(−
∑n
i=1 Pi +∞P∞) since

for i ∈ E then Λ(Pi) = 0 while for i /∈ E then R(t)(Pi) = f t(Pi). Recall that (G) =∑n
i=1 Pi−nP∞; therefore by Lemma 3.46 on page 80 we must have G | Λ(R(t)−f t)

over Я.

This means that the sought Λ is a, hopefully, quite small solution to a list of
key equations – but over Я. Just as in the case of Power decoding GRS codes,
we will solve these key equations by regarding the right-hand sides as unknowns
independent of Λ; therefore, only the first few values of t will provide us with new
information. In particular, when degH(Λf t) > degH(G) then the key equation
becomes worthless to us. We do not know degH Λ but we can at least stop once
tm ≥ degH f t > degHG = q(n/q) = n. Thus, in the following, assume that ` ∈ Z+
is a parameter chosen such that `m < n.

For us to be able to apply the methods of Chapter 2, and in particular model the
equations as in Problem 2.31 on page 26, we need somehow to map it into key
equations over Fq2 [x].

Theorem 4.21. Let Λ(x, y) =
∑q−1
i=0 y

iΛi(x). (Λ0, . . . ,Λq−1) is a solution to the
2D key equation of Type 2 with parameters:

• ρ = q and σ = q`.
• GKE

j = G for j = 1, . . . , q`.
• Si,j = (mR(t)

i,h mod G) where t = b(j− 1)/qc+ 1 and h = ((j− 1) mod q) + 1,
and mR(t)

i,h is as in (4.8) and (4.9) on page 115.
• ν = q.
• ηi = (i− 1)(q + 1) + `m+ 1 for i = 1, . . . , q.
• wj = wt,h for j = 1, . . . , q`, where wt,h = (h− 1)(q + 1) + (`− t)m and t, h

are as above.

Proof. The key equation of Proposition 4.20 implies for each t that there is a
pt(x, y) ∈ Я such that Λ(x, y)R(t)(x, y) − Λ(x, y)f t(x, y) = pt(x, y)G(x). In par-
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ticular, the above holds if Λ(x, y)R(t)(x, y), Λ(x, y)f t(x, y) and pt(x, y)G(x) are all
represented fully reduced by H. Since G(x) is exactly only a polynomial in x, then
pt(x, y)G(x) is reduced when pt(x, y) is. Therefore, for each of the q powers of y, the
key equation can be regarded independently as key equations over Fq2 [x], once both
sides have been fully reduced by H. Recalling the notation on page 84 for dealing
with elements of Я as vectors, then denoting Λ = g(Λ) we have

Λq(R(t))Ξ ≡ Λ(q(f)Ξ)t mod G(x)

where the modulo operation is over Fq2 [x] and independent on each position of the
vectors. If we let mR(t)

:,h be the hth column of q(R(t))Ξ and mft

:,h the hth column of
(q(f)Ξ)t for h = 1, . . . , q, the above vectorised key equation expands to:

ΛmR(t)

:,h ≡ Λmft

:,h mod G(x), h = 1, . . . , q

Explicitly, letting 0t denote a sequence of t zeroes, then the entries of mR(t)

:,h satisfy
for 1 ≤ i ≤ q − 1 and 2 ≤ h ≤ q:

mR(t)

i,h =
(
0i−1, R

(t)
0 , . . . , R

(t)
q−1, 0q−i+1

)
·
(
0h−1, 1, 0q−2, −1, xq+1, 0q−h−1

)
=


R

(t)
h−i if i < h

R
(t)
0 −R

(t)
q−1 if i = h

−R(t)
q−1−(i−h) + xq+1R

(t)
q−(i−h) if i > h

(4.8)

For h = 1 we instead have

mR(t)

:,1 =
(
R

(t)
0 , xq+1R

(t)
q−1, x

q+1R
(t)
q−2, . . . , x

q+1R
(t)
1
)

(4.9)

Thus, for each t, then Λ must be a solution to the 2D key equation with q equations
and Si,j = mR(t)

i,h , and with a right-hand side of Ψt,h(x) = Λmft

:,h for h = 1, . . . , q, for
some assignment of the weights. Clearly, it will make no difference reducing mR(t)

i,j

modulo G. Note that in the theorem we have identified the single index j = 1, . . . , q`
with the double index (t, i) by j = q(t− 1) + i.

We have then left only to show that the choices of weights are correct, i.e. that for
each t = 1, . . . , `:

max
i=1,...,q

{q deg Λi + (i− 1)(q + 1) + `m+ 1} >

max
h=1,...,q

{q deg Ψt,h + (h− 1)(q + 1) + (`− t)m} (4.10)

However, by the way we derived it, Ψ(t)(x, y) =
∑q−1
h=0 y

hΨt,h(x) = Λ(x, y)f t(x, y)
after reduction by H. Therefore degHΨ(t) = degH(Λf t) ≤ degH Λ+ tm. But clearly
degHΨ(t) = maxh{q deg Ψt,h(x) + (h− 1)(q + 1)}. Therefore the right-hand side of
(4.10) is at most degH Λ+`m. Similarly, the left-hand side is exactly degH Λ+`m+1.
This finishes the proof.



116 Power decoding

The matrix to be minimised for solving a 2D key equation in general was given in
(2.3) on page 30; for the 2D key equation of Theorem 4.21, the matrix will therefore
have the form:

MH =


Iq×q [MR(1)Ξ]G [MR(2)Ξ]G . . . [MR(`)Ξ]G

0 G(x)I(q`)×(q`)

 ∈ Fq2 [x](q(`+1))×(q(`+1))

(4.11)

where [MR(t)Ξ]G equals MR(t)Ξ where each entry has been reduced modulo G.

Just as for Power decoding of GRS codes, the above leads immediately to a decoding
algorithm, which will most of the time—but not always—be capable of decoding
beyond what is possible with only a single key equation, i.e. ` = 1. This case is
more difficult to analyse than for Power decoding of GRS codes, so we have split
the analogue of Proposition 4.4 on page 97 into several results. First a decoding
radius lower bound; complications pertaining to degH Λ usually exceeding |E| due
to the positive genus of the curve leads to a defect in decoding using a single key
equation: one can decode somewhat less than half the minimum distance!

Proposition 4.22. In the context of Theorem 4.21, the vector (Λ0, . . . ,Λq−1) is a
minimal solution to the 2D key equation whenever |E| ≤ d−1

2 −
g
2 .

Proof. Let (λ0, . . . , λq−1, ψ0, . . . , ψq−1) be a minimal solution to the 2D key equation
for ` = 1 while |E| ≤ n−k

2 −
g
2 , and we will show that λi = γΛi for some γ ∈ F∗q2 . Since

for ` > 1 we impose further restrictions on the solution set, the analogous statement
must then be true. Define λ(x, y) =

∑q−1
i=0 y

iλi(x) and ψ(x, y) =
∑q−1
i=0 y

iψi(x). By
assumption degH λ ≤ degH Λ, and by the degree constraints of the 2D key equation,
recalling how we in the proof of Theorem 4.21 established the values of the ηi and
wj , we know

degH λ+m+ 1 > degH ψ (4.12)

The 2D key equation is an Fq2 [x] equivalent of the congruence of Proposition 4.20 on
page 114 so we can also go back, which means λR(1) ≡ ψ mod G as a congruence
over Я, that is, G | (λR(1) − ψ). By Lemma 3.46 on page 80 then λR(1) − ψ ∈
L(−

∑n
i=1 Pi +∞P∞). Introduce ê = R(1) − f ∈ Я so ê(Pi) = ei for i = 1, . . . , n.

Clearly ê ∈ L(−
∑
i/∈E Pi +∞P∞), which means

λf − ψ = (λR(1) − ψ)− λê ∈ L(−
∑
i/∈E Pi + hP∞)

where h is an upper bound on degH(λf−ψ); by (4.12), we can choose h = degH λ+m.
Now we simply want to show that if degH λ ≤ degH Λ then this Riemann–Roch
space is {0}; for in that case λf = ψ, so by the congruence then G | λ(R−f), which
means λ ∈ L(−

∑
i∈E Pi +∞P∞); but Λ has minimal degH of non-zero elements in

this Riemann–Roch space, and so we have the sought.
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We have L(−
∑
i/∈E Pi + hP∞) = {0} at least when the defining divisor is negative,

and since all Pi and P∞ are rational, this happens when n− |E| > h = degH λ+m.
Now degH λ ≤ degH Λ ≤ |E|+ g by Lemma 4.19. Therefore, the divisor is negative
at least when

n− |E| > |E|+ g +m ⇐⇒ |E| < n−m− g
2 = d− g

2

The upper bound, i.e. when we can be quite certain Power decoding will fail, is
somewhat more technical to derive; it is a matter of properly counting linear equa-
tions and indeterminates, and we will draw upon a result from Section 2.5.1 and
follow the same strategy as the GRS analogue (4.3) on page 97.

Lemma 4.23. In the context of Theorem 4.21, the vector (Λ0, . . . ,Λq−1) is not a
minimal solution whenever degH Λ + `m + 1 > δ, where δ is the smallest integer
satisfying

∑̀
t=1

q∑
h=1

pos(q−1n− dq−1(δ − wt,h)e) ≤
q∑
i=1
bq−1(δ − ηi)c+ q − 1, (4.13)

except possibly under special circumstances pertaining to a certain system of equa-
tions specified in the proof.

Proof. Let s = (s1, . . . , sq(`+1)) be a minimal solution to the 2D key equation, and
let w̄ = (η1, . . . , ηq, w1, . . . , wq`), where the ηi and wj are as in Theorem 4.21. We
will prove that deg Φq,w̄(s) ≤ δ, where δ is as in the lemma, and this will lead to
the sought: since s = (Λ0, . . . ,Λq−1,Ψ1, . . . ,Ψq`) for some Ψj is a solution and the
2D key equation is of Type 2, then

deg Φq,w̄(s) = max
i=1,...,q

{ν deg Λi−1 + ηi} = degH Λ + `m+ 1

Clearly, if δ < degH Λ+`m+1, then (Λ0, . . . ,Λq−1) can’t be a minimal solution. But
the claim on s follows immediately from Proposition 2.39 on page 33: this states
that, except in special circumstances, then deg Φq,w̄(s) ≤ δ where δ is the least
integer satisfying

σ∑
j=1

pos(degGKE
j − dν−1(δ − wj)e) ≤

ρ∑
i=1
bν−1(δ − ηi)c+ (ρ− 1)

Inserting ν = ρ = q, σ = q` and degGKE
j = n/q, and changing the left sum to a

double sum in t and h, we get the sought. Note that the exception to the bound of
the lemma is exactly the exception also stated in Proposition 2.39.

For any given code parameters, the δ of Lemma 4.23 is easy to compute; however,
analytically it is a bit hard to work with. It turns out that we can lower bound δ
rather precisely:
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Proposition 4.24. In the context of Lemma 4.23, then

δ ≥ ˆ̀
ˆ̀+1n+ (`− 1

2
ˆ̀)m+ g + 1

ˆ̀+1

where ˆ̀= min
{
` ;
⌊
−( 1

2 + g
m ) +

√
( 1

2 + g
m )2 + 2(n−g−1)

m

⌋}
.

Proof. Overall, we will progress in a manner similar to in the proof of Corollary 2.40
on page 34 combined with the proof of Proposition 4.4 on page 97, but we first need
to handle the positive operator and the rounding operators.

Consider the least integer δ̂ which satisfies

∑̀
t=1

[t

q∑
h=1

(q−1n− dq−1(δ̂ − wt,h)e) ≤
q∑
i=1
bq−1(δ̂ − ηi)c+ q − 1 (4.14)

where [t = 1 if for all h = 1, . . . , q it holds that q−1n ≥ dq−1(δ̂ −wˆ̀,h)e, and [t = 0
otherwise. Clearly then δ̂ ≤ δ. Our estimation will be of δ̂.

Note first that there is an index ˆ̀ such that [t = 1 for all t ≤ ˆ̀ and [t = 0 for
t > ˆ̀ since wt,h > wt+1,h for all t and h. Now we can get rid of the rounding
operators: since δ̂ − ηi = (δ̂ − `m − 1) − (i − 1)(q + 1), then for i = 1, . . . , q, this
expression goes through all congruence classes modulo q. Therefore, when rounding
these down after division by q, we are essentially subtracting 0, 1

q ,
2
q , . . . ,

q−1
q in some

order; thus,
∑q
i=1bq−1(δ̂ − ηi)c =

∑q
i=1 q

−1(δ̂ − ηi) − q−1(q
2
)
. Similarly, for each t

then d− wt,h runs through all congruence classes modulo q for h = 1, . . . , q, so the
ceiling-function in the inner loop subtracts exactly q−1(q

2
)
in each of the outer loop

iterations. Inserting this in (4.14), we get:

q−1
ˆ̀∑

t=1

(
−
(
q
2
)

+
q∑

h=1
(n− (δ̂ − wt,h))

)
≤

q∑
i=1

q−1(δ̂ − ηi)− q−1(q
2
)

+ q − 1 ⇐⇒

δ̂ ≥ ˆ̀
ˆ̀+1n+ (`− 1

2
ˆ̀)m+ g + 1

ˆ̀+1 (4.15)

So δ̂ is the smallest integer at least the above right-hand side. Unfortunately, δ̂
depends on ˆ̀ and vice versa; we handle this in the same manner as in the proof of
Corollary 2.40.

Note first that since q−1n is an integer, then q−1n ≥ dq−1(δ̂ − wt,h)e is equivalent
to q−1n ≥ q−1(δ̂ − wt,h), i.e. n + wt,h ≥ δ̂. Therefore, since wt,h < wt,h+1, then ˆ̀
can be characterised simply as the greatest index such that n + wˆ̀,0 ≥ δ̂. Define
now ζt = n + wt,0 for t = 1, . . . , ` as well as ζ`+1 = −∞, and note that ζ1 > ζ2 >

. . . > ζ`+1. Define also δt = t
t+1n+ (`− 1

2 t)m+ g+ 1
t+1 for t = 1, . . . , q. From these

definitions, it is clear that

ζˆ̀+1 < δ̂ = dδˆ̀e ≤ ζˆ̀
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Since the ζt are integers, then ζˆ̀+1 < dδˆ̀e is equivalent to ζˆ̀+1 < δˆ̀. Similarly,
dδˆ̀e ≤ ζˆ̀ is equivalent to δˆ̀≤ ζˆ̀. Assume first that ˆ̀< `. Inserting the expression
of δˆ̀ into these inequalities and rearranging, we arrive at

−(χ+ 1) +
√
χ2 + 2χ+ 2(n−g−1)

m < ˆ̀≤ −χ+
√
χ2 + 2(n−g−1)

m

where χ = 1
2 + g

m . If the lower bound is greater than `, then the assumption ˆ̀< `

must have been wrong, but then ˆ̀= `: this choice is also valid, since obviously the
upper bound must be satisfied implying δ` < ζ`, and therefore −∞ = ζ`+1 < δ` ≤ ζ`.

On the other hand, if the lower bound is smaller than `, then ˆ̀must be in the above
interval, which must contain an integer since ˆ̀ was well-defined. The interval has
width less than 1, so this integer must be the floor of the upper bound, exactly as
stated in the proposition.

The purpose of the last two results is to estimate how many errors we will usually
be able to correct. Though we have no bound on the failure probability within the
two extreme ends, the prediction from linear algebra on when the 2D key equation
ought to have a solution provides a good intuition, and simulations indicate that
this describes the truth to a large extend: linear systems of equations only have
unexpected small solutions when the system has surprisingly low rank; and for this
the errors should probably be made in a very “unlucky” way. Whenever degH Λ
is below the upper bound of Lemma 4.23, we would therefore expect no shorter
solutions to the key equation. The lower bound on δ from Proposition 4.24 therefore
provides an estimate on the “usual” decoding radius we should expect from the
Power decoding of Hermitian codes: for most error patterns then degH Λ = |E|+ g

so decoding should usually succeed only whenever:

|E| ≤ ˆ̀
ˆ̀+1n−

1
2

ˆ̀m− ˆ̀
ˆ̀+1 (4.16)

Note that most of these concerns are completely analogous to Power decoding of
GRS codes. Note also how the above decoding bound matches exactly that of Power
decoding, Proposition 4.4 on page 97, since m corresponds to k− 1. Also analogous
to this case, it seems possible that if more errors than the above occur, but they
align in a particular lucky way, then we might still be able to decode them; this
seems to happen quite rarely in practice, though, see Example 4.25 on page 120.

Remark. For ` = 1, i.e. minimum distance decoding, then (4.16) gives |E| ≤
n−m−1

2 = d−1
2 , while Proposition 4.22 only promises |E| ≤ d−1−g

2 . This is an in-
teresting caveat of “pure” key equation decoding AG codes: we are only assured
decoding success until g/2 less than (d − 1)/2, but almost always, decoding will
succeed all the way until (d− 1)/2. Unfortunately and surprisingly, I do not know
of any work investigating the probability that we will fail.

Still having ` = 1, it is even possible that we should be able to decode beyond
d−1

2 : the error positions might align such that degH Λ < |E|+ g, or the rare linear
algebraic circumstances indicated by Lemma 4.23 might occur. The probability of
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the former event occurring has been investigated: for low rate codes it was proven
to be 1/q asymptotically in [JNH99], and in [Han01] the same was proven for all
rates. ♦

Remark. Clearly, δ̂ ≤ δ, where δ̂ is from the proof of Proposition 4.24, but they
should also be quite close to each other; in fact, if m ≥ q2 − 1 = 2g + q, then
wt,h ≥ wt+1,h′ for all t < ` and h, h′; so the contributions for t = ˆ̀+ 2, . . . , ` in
(4.13) on page 117 will indeed be zero, while for t = ˆ̀+1 it might be slightly positive,
but still small.

Just as in the case of Power Gao decoding, in Proposition 4.24 it usually does not
make sense to choose ` high enough that ` > ˆ̀; however, since δ̂ is just an estimate
on δ, it just might and one should for concrete parameters calculate the true value
of δ for various `. ♦

Example 4.25. Consider q = 7 and the Hermitian code with parameters [q3 =
343, 35, ≥ 288] and m = 55. This code was chosen to be somewhat comparable with
the [250, 70, 181] GRS code of Example 3.5 on page 50. They have similar codeword
lengths in bits and similar relative minimum distance, which of course means that
the Hermitian code has lower rate.

For this curve g = 21, so by Proposition 4.22, we are assured of decoding success
whenever |E| ≤ bd−1−g

2 c = 133, but with ` = 1 we would usually be able to decode
up to bd−1

2 c = 143 errors. Proposition 4.24 sets ` = min{`; b2.65c}, so by choosing
` = 2 the proposition promises δ ≥ 305 and one sees that equality indeed holds by
solving (4.13) on page 117. By (4.16), this gives a “usual” decoding radius of 173
errors. However, this is not quite optimal: with ` = 3 Proposition 4.24 would set
ˆ̀= 2 and promise δ ≥ 360; but solving (4.13), we get the true δ = 363: this yields
a slightly better decoding radius of 174.

Nevertheless, let us choose ` = 2 and decode 173 errors. MH from (4.11) on page 116
is then a 21× 21 matrix over F72 [x], and the weights of the 2D key equation are set
as:

η = [111, 119, 127, 135, 143, 151, 159]
w = [53, 63, 71, 79, 87, 95, 103, 0, 8, 16, 24, 32, 40, 48]

To find a minimal solution, we will minimise Φq,w̄(MH); in a usual run, this matrix
has the following ν−1-normalised characteristics:

q−1maxdeg (Φq,w̄(MH)) = 635
7 q−1∆(Φq,w̄(MH)) = 304

Compare these figures with those for Example 4.5 on page 99 of Power Gao decoding
GRS codes. The orthogonality defects are very comparable, so we would expect the
minimisation algorithms Mulders–Storjohann, Alekhnovich and the Demand–Driven
to run a similar number of iterations. Though the matrix for decoding Hermitian
codes is larger by a factor q = 7 in each dimension, so is the normalised max-
degree of the matrix more than a factor 5 smaller. Of course, since the codes are
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not completely comparable, and since ` is only 2 in this example but 3 in the Gao
example, direct comparisons can be misleading.

The decoding method has been implemented and tested in Codinglib [Nie13a]. Solving
the above 2D key equation for various weights of random error patterns with 500
trials each yielded the following rates of decoding success:

# Errors 172 173 174

Success rate 100% 98% 2%

Remember that two types of events can make the method decode beyond the expected
173 errors: Λ has degH lower than the expected |E|+ g = 195, or the linear system
of equations one can set up to solve the 2D key equation is degenerate in the way
specified in Proposition 2.39. In all of the 10 successful decodings in the above test,
the first of these was the case. ♠

Proposition 4.26. The worst-case complexity of finding Λ and f as a minimal
solution to the 2D key equation of Theorem 4.21, or fail, is as in Table 4.3, for
various choices of module minimisation algorithm.

Proof. Let w̄ = (η1, . . . , ηq, w1, . . . , wq`), where the ηi andwj are as in Theorem 4.21.
The proposition follows from Table 2.4 on page 42 after estimating the measures of
Φq,w̄(MH). We apply Lemma 2.38 on page 32: we easily see max{ηi} = (q − 1)(q +
1) + `m+ 1, while max{νGj +wj} = q(n/q) + (q− 1)(q+ 1) + (`− 1)m, and so the
ν-normalised max-degree becomes:

γ = ν−1maxdeg (Φq,w̄(MH)) = q−1(n+ q2 + (`− 1)m− 1) ∈ O(n/q + q)

From this and again Lemma 2.38, we immediately get δ = ν−1∆(Φq,w̄(MH)) upper
bounded by

q−1(q(maxdeg (Φq,w̄(MH))− 1
)
−
∑ρ
i=1 ηi

)
= n+ q2 + (`− 1)m− 1− q−1∑q

i=1((i− 1)(q + 1) + `m+ 1)
= n+ q2 − 2− 1

2 (q2 − 1)−m
= n+ g −m− 1

2 (q − 1)− 1

which is in O(n) since m > 2g − 2 ≥ g − 1.

Remark. The complexities of Table 4.3 are very comparable with those of Table 3.4
on page 87, except in the case of the GJV where Power decoding suffers the ν = q

penalty; therefore, it is important to know whether setting ν = q is really necessary.
We demonstrated in Example 2.33 on page 29 that ν > 1 can be useful for being
very specific about which solutions one accepts in a 2D key equation, but this was
a rather contrived example. Specifically, for Power decoding Hermitian codes, we
could make a new 2D key equation with weights set instead to ν̃ = 1, η̃i = dηi/qe
and w̃j = bwj/qc. One can easily verify that the sought vector (Λ0, . . . ,Λq−1) is
still a solution to this new key equation; but due to integer rounding, we now
possibly accept “false solutions” which would have been rejected with the more
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Complexity of Power decoding Hermitian codes
Algorithm Complexity Relaxed
Mulders–Storjohann q`2n2 n7/3`2

Alekhnovich M(q`)P(n) log(n) + q2`2P(n/q + q) n2`3 log(n)2+o(1)

GJV M(q`)P(n) log(n)O(1) n2`3 log(n)O(1)

D–D q2`nP(n/q + q) n7/3` log1+o(1)(n)

Table 4.3: For relaxation, we have assumed n ≈ q3, i.e. that more or less all affine points
were chosen. Remember that P̃ (n) for the D–D algorithm is P(n) since GKE

j (x) are not
powers of x.

precise weights. The question is whether this makes a practical difference: it seems
it does. In the example [343, 35,≥ 288] code of Example 4.25 with the ν = q weights,
we could decode up to 173 errors almost always with ` = 2. Using the above ν = 1
weights, decoding fails in around 50% of the cases with only 170 errors, and for more
errors it fails almost always. I have not analysed this case to get a theoretical bound
to see if the difference is asymptotically noticeable, though. On the ν = 1 weights,
the GJV would have the relaxed asymptotic complexity O(n5/3`3 logO(1)). ♦

Remark. It is intriguing that also Sudan decoding exhibits the strange behaviour
of a usual decoding radius which is much higher than the worst case. Just counting
linear equations versus variables in the Welch–Berlekamp case, i.e. Guruswami–
Sudan with s = ` = 1, yields the decoding radius d−1

2 −g, see e.g. [BH08a]. However,
similar to our remarks in the beginning of Section 4.3.1, then Q(z) = Λf − Λz is
a valid interpolation polynomial whenever τ < d−1

2 −
g
2 , which implies that some

of these equations must be linearly dependent. A similar improvement can be done
when s = 1 and ` > 1 so we can Sudan decode up to τ < `

`+1n−
1
2`m−

g
2 [Bee13].

I don’t know of any work examining rigorously the probability that Guruswami–
Sudan will succeed when more errors occur; however, Lee and O’Sullivan included
some experimental results in [LO09] demonstrating that the Guruswami–Sudan
usually decodes up to what seems to be `

`+1n−
1
2`m. In most of their trials s > 1,

so we can only compare the Welch–Berlekamp case with simple Gao decoding. Here,
the only anomaly where Sudan decoding seems to behave differently than we expect
key equation to is with the [27, ≥ 22, ≥ 3] code over F9: they report 0 successes out
of 10 000 trials of error weight 1; here, my experiments indicate that Gao decoding
with ` = 1 succeeds almost every time. ♦

4.5 Related work

As mentioned in Section 4.2, Power decoding was first described in [SSB06] as a
“virtual extension” of a single GRS code into an interleaving of several such codes,
and the algorithms those authors had developed for decoding Interleaved GRS
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codes were then applied to single, low rate GRS codes [SSB09]. Similarly, the two
new Power decoders discussed in this chapter can be straightforwardly turned into
decoders for interleaved codes with these components codes. The greatest difference
is in analysing the probability of failure: considering an interleaved code allows one
to regard the errors in component codewords as independent except that they are
non-zero on the same positions. For Power decoding, this is clearly not the case, so
that case is more complex.

The algorithm Schmidt et al. proposed for solving the Power Syndrome key equation
of Corollary 4.8 is the extension of Berlekamp–Massey for Multi-sequence LFSRs,
which was also discussed in Section 2.7. It has complexity O(`(n − k)2), just as
solving the 2D key equation using the Demand–Driven algorithm; most probably,
the two algorithms could be shown to be step-wise equivalent on this type of 2D
key equation.

Not all the connections between Power decoding and Sudan decoding described
in this chapter are new; in particular, it was already noted in [SSB06] how the
syndromes used in Power decoding coincide with those used in the Roth–Ruckenstein
speedup, and how the decoding radii are close to each other. The authors also
remarked that Power decoding and Coppersmith–Sudan both decode beyond half
the minimum distance though neither are list decoders; however, they did not give
the close algebraic connection given in Section 4.3.2.

Decoding Hermitian codes using a Syndrome key equation is rather classical, see
e.g. [JLJ+89, JLJH92, SJH95]. These works treat more general AG codes than
Hermitian codes. Using Sakata’s generalisation of the Berlekamp–Massey algorithm,
their decoding approach seem to have the same complexity as ours using the Demand–
Driven algorithm (with ` = 1). I am not aware of a D&C speedup of Sakata’s
algorithm; such a speedup is likely possible, though probably technically involved.
My expectation is that such a D&C algorithm would resemble the Alekhnovich
algorithm and achieve the same complexity.

Sabine Kampf was the first to describe Syndrome Power decoding of Hermitian codes,
and she also focused only on one-point Hermitian codes [Kam11]. Only a trivial
Gaussian elimination approach to solving the key equations was considered then,
but in [KL13], together with Li she presented a Euclidean algorithm approach over
Fq2 [x, y]. This algorithm is only partially proved correct, though, and no complexity
estimate is given. The latter might also be rather complicated: the algorithm is an
extension of the Sugiyama-type algorithm for minimum-distance decoding Hermitian
codes that Kampf had described in [Kam11], and even this algorithm was not given
a full complexity analysis. Kampf and Li do not project the equations onto Fq2 [x]
like we do, but it seems possible to argue about their algorithm using the module
language from Chapter 2. In this light, it resembles a version of Mulders–Storjohann
which starts with a matrix with only few rows and dynamically enlarges it whenever
it can apply no more row operations; it does so by choosing a “worst” existing
row v and adding the row g(yg−1(v)). Analysing the complexity of this using the
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orthogonality defect and the related tools, we might be able to find the complexity.
It would be interesting to understand why this dynamic approach, which at first
glance might seem to tighter incorporate the algebraic rules of Я, does not yield
better performance.

It is clearly interesting to see whether the Hermitian Gao key equation given here
can be formulated for a wider class of AG codes. In particular, I foresee no prob-
lems whatsoever in extending the approach to one-point AG codes over “simple
Cab curves”, which were those handled by Brander in his thesis [Bra10], since the
important assumptions are all fulfilled there as well; in particular the curve has one
point P∞ at infinity with Я = L(∞P∞) = Fq2 [x, y], and the codes are evaluations
of functions in L(mP∞). The related Miura–Kamiya curves investigated for decod-
ing by Lee et al. [LBAO12] also seem to satisfy these properties. We also used in
our derivation that G was univariate in x, but that does not seem to be a crucial
property, which would also be likely to not hold for more general codes.

The uncertainty gap between d−1
2 −

g
2 and d−1

2 , where decoding should always be
possible, but the key equation approach will sometimes fail, can be closed when
using Syndrome key equation with Feng et al.’s majority voting scheme [FWRT94].
This scheme can also be applied in conjunction with Sakata’s algorithm for solving
the key equation [SJH95]. It would be highly interesting to examine majority voting
for the Gao key equation, to understand what it means in the module minimisation
approach, and whether it can easily be applied as an extension to any or all of the
minimisation algorithms. Lee et al. [LBAO12] showed how to use a Gröbner basis
approach akin to both Guruswami–Sudan with s = ` = 1 as well as majority voting
to decode up to d−1

2 , but I have not yet examined how related it is.

I have not yet looked deeper into the equivalence between Power Syndrome and
Power Gao decoding in the Hermitian code case, but it is clearly interesting to
see whether the arguments from GRS codes extend; I am rather optimistic in this
regard. Similarly, I have not extended Proposition 4.7 on page 101 and verified that
the failure behaviour is invariant of the sent codeword, but the argument seems to
generalise. It is probably more involved, however, to generalise the orthogonalities
between Sudan decoding and Power decoding; a useful description in this regard is
the Welch–Berlekamp type description of decoding Hermitian codes in [JH04], as well
as the Q-interpolation by key equations (analogous to in Section 3.4) in [BH08b].

In [LSN13], Li, Sidorenko and I developed a Power decoder for Chinese Remainder
codes, and we also analysed the failure probability for the interleaved case. Chinese
Remainder codes are the Z-analogue of GRS codes, and the setup we use is com-
pletely an analogue of the module approach presented here. To perform “module
minimisation”, or “lattice basis reduction” as it is customarily called in the number
theory field, we use the famous Lenstra–Lenstra–Lovász algorithm [LLL82]. Analysis
is complicated by the fact that this algorithm does not promise the shortest solution,
but rather one which is close to the shortest; finding the shortest vector in the row
space of a Z matrix is known to be NP-hard [Ajt98]. The decoding algorithm still
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works very well, however. An interesting facet of this work is that the Berlekamp–
Massey algorithm does not have a Z analogue, which is why the Berlekamp–Massey
type algorithms for solving the “powered” key equations for GRS codes can not be
accommodated to Chinese Remainder codes; one really needs the module language
as a generalisation of the Euclidean algorithm.
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Chapter 5

Wu list decoding

Wu proposed in [Wu08] a completely new list decoder for GRS codes. It was presented
as an analytic extension of the Berlekamp–Massey algorithm applied to the classical
key equation involving the error locator and the syndrome polynomial. Wu observed
that when more errors than half the minimum distance occurs, the error locator is a
small F[x]-linear combination of the two polynomials computed by the Berlekamp–
Massey. By utilising the knowledge that the error locator has zeroes at the error
positions, Wu described how to find this linear combination using a generalisation
of the Guruswami–Sudan algorithm. Perhaps surprisingly, the resulting decoding
algorithm has exactly the same decoding radius as the Guruswami–Sudan.

More generally, one can see the paradigm of Wu’s method as that of solving a simple
key equation, i.e. γS ≡ δ mod G, whenever one has certain side-information on the
evaluations of γ and δ. We will demonstrate this paradigm twice, in the original
setting for GRS codes in Section 5.2, and a new application for binary Goppa codes
in Section 5.3; the nature of the side-information is going to be different in these
two cases.

The host of observations that Wu needed from the results of the Berlekamp–Massey
algorithm, more verbosely described and proved in [Nie10], turn out all to follow
from the fact that they constitute “half” of a Gröbner basis of the module for the
key equation, in the sense of Section 2.5. Therefore, applying the general results of
Chapter 2 makes us capable of deriving this part of the algorithm very easily.

The generalisation of the Guruswami–Sudan algorithm for solving the “rational
interpolation” can be completely detached from the decoding problem, and we
begin by describing this in Section 5.1, as well as give algorithms for solving it fast.
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Since this is the computationally heavy part of the algorithm, the complexity of the
decoding algorithms will follow immediately.

Contributions
• Description of Wu’s paradigm for solving key equations by drawing on the

Gröbner basis language; however, see also Section 5.4. This appeared in an
equivalent form in [BHNW13].

• Closed expressions for good choices of parameters s and ` for rational inter-
polation by pointing out a general duality between the parameter choices of
rational interpolation and the Guruswami–Sudan.

• Generalised module approach for fast Q-interpolation for rational interpola-
tion. This appeared in essence in [BHNW13].

• The root-finding method we describe is in essence that suggested by Wu
in [Wu08], though we have extended it to handle the case x | p2(x), and we
point out the use of the fast D&C speedup of Roth–Ruckenstein described
by Alekhnovich, see Proposition 3.6 on page 50.

• Proposition 5.22 describing (another) duality in the parameter choices be-
tween the Wu list decoder and the Guruswami–Sudan when decoding GRS
codes; we discovered this but did not write it in a preprint of [BHNW13],
and one of the anonymous reviewers independently discovered it as well and
kindly pointed it out to us.

• Applied the Wu list decoding method to binary Goppa codes. This appeared
in [BHNW13].

• Parallel decoding variant of Wu decoding binary Goppa codes, Section 5.3.1.
This appeared as a remark in [BHNW13] but has been greatly expanded for
the thesis.

• Proposition 5.33 describing (yet another) duality in the parameter choices
between the Wu list decoder for binary Goppa codes and the Guruswami–
Sudan with Kötter–Vardy multiplicity assignment for binary Alternant codes.
This appeared in [BHNW13] after having been pointed out to us by the same
anonymous reviewer as before. Using the closed expressions for choices of
parameters in Wu list decoding, we therefore get parameter choices for this
Guruswami–Sudan decoding of Alternant codes. This is to my knowledge the
first such optimised closed form parameter choices, even for this special case
of the decoding algorithm.

5.1 Rational interpolation

We will first describe a solution to the problem of finding “small” rational curves that
go through at least some number of prescribed points; this will turn out to be the
main computational burden in Wu’s list decoder. Notice that the analogous problem
of finding low-degree polynomials that go through some of a list of prescribed points
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is exactly Reed–Solomon decoding, and indeed, the rational interpolation method
we present here is a generalisation of the Guruswami–Sudan algorithm. It was first
described by Wu [Wu08], but we will use a different formulation using partially
homogenised polynomials, originally introduced by Trifonov [Tri10a].

We are basically interested in a rational expression p1
p2
∈ F(x) with numerator

and denominator of low degrees, which goes through at least some τ out of n
points

(
(x0, β0), . . . , (xn−1, βn−1)

)
where all xi ∈ F while βi ∈ F ∪ {∞}. To handle

the points at infinity, we can instead consider these as partially projective points
(xi, yi : zi) ∈ F × P1(F) with yi

zi
= βi whenever βi 6= ∞ and (yi, zi) = (1, 0) other-

wise. In this language, the interpolation amounts to finding low-degree polynomials
p1, p2 ∈ F[x] such that for at least τ values of i, we have zip1(xi)− yip2(xi) = 0.

Introduce first the structure F[x][y : z]` by which we mean trivariate polynomials
which are homogeneous of total degree ` in y and z; i.e a polynomial which can be
written P =

∑`
i=0 pi(x)yiz`−i; when the variables are important, we employ the

notation P (x, y : z). Notice that F[x][y : z]` is an F[x]-module, but that multiplying
e.g P1 ∈ F[x][y : z]`1 with P2 ∈ F[x][y : z]`2 yields an element in F[x][y : z]`1+`2 . We
can directly carry over many definitions and results from F[x, y, z], such as “zero
of multiplicity” from Definition 3.1 on page 48. To get better acquainted with this
definition for elements of F[x][y : z]`, we first prove two small lemmas:

Lemma 5.1. P (x, y : z) =
∑`
t=0 Pt(x)ytz`−t ∈ F[x][y : z]` has a root (x0, y0 : z0)

of multiplicity s if and only if P =
∑`
t=0 P`−t(x)ytz`−t has a root (x0, z0 : y0) of

multiplicity s.

Proof. Since P (x, y : z) = P (x, z : y) then clearly P (x+ x0, y + y0 : z + z0) = P (x+
x0, z + z0 : y + y0), so the statement trivially follows from the definition of root of
multiplicity.

Lemma 5.2. P (x, y : z) =
∑`
t=0 Pt(x)ytz`−t ∈ F[x][y : z]` has a root (x0, y0 : z0) of

multiplicity s if and only if there exist P̀h(x, y : z) ∈ F[x][y : z]`−h such that

P (x, y : z) =
∑
j+h≥s

(x− x0)j(z0y − y0z)hP̀h(x, y : z)

Proof. Clearly if P (x, y : z) can be written in such a form, then P (x+x0, y+y0 : z+z0)
has no monomials of degree less than s, so by definition P (x, y : z) has a zero of
multiplicity s.

For the other direction, assume first that z0 6= 0. Since for any γ ∈ F∗, then
0 = P (x0, y0 : z0) = γ−`P (x0, γy0 : γz0), we can assume that z0 = 1. Since P (x +
x0, y+y0 : z+1) =

∑`
t=0 Pt(x+x0)(y+y0)t(z+1)`−t has no monomials of degree less

than s, then in particular this means when setting z = 0 that
∑`
t=0 Pt(x+x0)(y+y0)t

has no monomials of degree less than s, so there must exist qjh ∈ F such that

∑̀
t=0

Pt(x+x0)(y+y0)t =
∑
j+h≥s

qjhx
jyh ⇐⇒

∑̀
t=0

Pt(x)yt =
∑
j+h≥s

qjh(x−x0)j(y−y0)h
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But then

P (x, y : z) = z`
∑̀
t=0

Pt(x)(yz )t = z`
∑
j+h≥s

qjh(x− x0)j(yz − y0)h

which immediately gives the sought since z0 = 1.

If on the other hand z0 = 0 then y0 6= 0. Since P (x, y : z) has root (x0, y0 : 0) of
multiplicity s, then P (x, y : z) has root (x0, 0 : y0) of multiplicity s by Lemma 5.1.
By the already proved part of this lemma, then we can find P̀t such that P (x, y : z) =∑
j+h≥s(x−x0)j(y0y− z0z)hP̀h(x, y : z). But that means P (x, y : z) =

∑
j+h≥s(x−

x0)j(z0y − y0z)hP̀h(x, z : y).

Corollary 5.3. P ∈ F[x][y : z]` has a zero (x0, y0 : z0) of multiplicity s with z0 6= 0
if and only if P (x, y : 1) ∈ F[x, y] has a zero (x0, y0/z0) of multiplicity s.

Now for the theorem leading to the rational interpolation method; it’s basically just
a projective extension of Theorem 3.2 on page 48. Note that we allow non-integral
weights θ1, θ2, which will, curiously, be necessary when list decoding binary Goppa
codes in Section 5.3.

Theorem 5.4. Let `, s and τ be positive integers, and let (xi, yi : zi) ∈ F × P1(F)
for i = 1, . . . , n be n partially projective points. Assume that Q(x, y : z) ∈ F[x][y : z]`
is non-zero and such that (xi, yi : zi) are zeroes of multiplicity s for all i = 1, . . . , n,
and deg1,θ1,θ2 Q < sτ , for θ1, θ2 ∈ R+ ∪ {0}. Any two coprime polynomials p1, p2
satisfying deg p1 ≤ θ1, deg p2 ≤ θ2, as well as zip1(xi)− yip2(xi) = 0 for at least τ
values of i, will satisfy Q(x, p1(x) : p2(x)) = 0.

Proof. Let Q̂(x) = Q(x, p1(x) : p2(x)). Consider an i such that zip1(xi)−yip2(xi) =
0. By Lemma 5.2, we haveQ(x, y : z) =

∑
j+h≥s(x−xi)j(ziy−yiz)hQ̀h(x, p1(x) : p2(x))

for some Q̀h ∈ F[x][y : z]`, and so

Q̂(x) =
∑
j+h≥s

(x− xi)j(zip1(x)− yip2(x))hQ̀h(x, y : z)

Since zip1(x)−yip2(x) has a zero at xi then (x−xi) | (zip1(x)−yip2(x)). Therefore,
(x−xi)s must divide each term in the above sum and therefore Q̂. This is true for all τ
of the choices of i where zip1(xi)−yip2(xi) = 0, which means Q̂ is divisible by a poly-
nomial of degree sτ . However, deg Q̂ = deg

(
Q(x, p1(x) : p2(x))

)
≤ deg1,θ1,θ2 Q < sτ ,

since deg p1 ≤ θ1 and deg p2 ≤ θ2. Therefore Q̂ = 0.

Just as with Theorem 3.2, we need to analyse the interplay between the problem
parameters n, θ1 and θ2, the decoding radius τ , and the parameters s and ` to
determine when we can be sure that such a Q can be found. We can mimic the first
part easily:

Definition 5.5. Let the Wu satisfiability function E
[n,θ]
Wu (s, `, τ) be given by

E
[n,θ]
Wu (s, `, τ) = (`+ 1)sτ −

(
`+1

2
)
θ −

(
s+1

2
)
n
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Lemma 5.6. In the context of Theorem 5.4, a Q exists if E[n,θ1+θ2]
Wu (s, `, τ) > 0.

Proof. This is completely analogous to Proposition 3.4 on page 49: the number of
variables is the number of coefficients at our disposal, i.e.

∑̀
i=0

(
sτ − biθ1 + (`− i)θ2c

)
≥
∑̀
i=0

(
sτ − iθ1 − (`− i)θ2

)
= (`+ 1)sτ −

(
`+1

2
)
(θ1 + θ2)

For the number of constraints, one uses Corollary 5.3 to see that each point (xi, yi : zi)
with zi 6= 0, specifies

(
s+1

2
)
linear constraints on the coefficients of Q(x, y : 1), i.e. the

coefficients of Q; when zi = 0 one regards Q(x, 1 : y) instead.

As we will see later, in decoding applications the value θ = θ1 + θ2 will depend
on the code parameters and τ in various ways, so though τ of Theorem 5.4 will
correspond to the decoding radius, we can not already now give a sensible bound
on it. However, treating θ as an independent variable, we can by reusing analysis of
Chapter 3 easily arrive at the following, which within bounds for τ, n and θ gives
good choices of s and `. Due to a technicality later in the decoders, we also need to
be sure that we can find parameters satisfying `/s ≥ τ/θ.

Proposition 5.7. If τ2 > nθ, then E[n,θ]
Wu (s, `, τ) > 0 if we choose ` and s as:

s = bsmin + 1c ` =

 b
n
τ c if θ = 0⌊
τ
θ s+ 1

2 −
√
D(s)
θ

⌋
if θ > 0

where

smin = θ(n− τ)
τ2 − nθ

D(s) = (s− smin)(τ2 − nθ)s+ θ2

4

Furthermore, if θ > 0 then there exists an integer δ ≤ 2θ
n−τ ∈ O(n) such that

E
[n,θ]
Wu (s+ δ, d τθ (s+ δ)e, τ) > 0 for the above choice of s.

Proof. By insertion we see that E[n,θ]
Wu (s, `, τ) = E

[n,θ+1]
GS (s, `, n − τ), so we wish

to reuse the parameter choices given by Proposition 3.11 on page 53. Introduce
kGS = θ+1 and τGS = n−τ ; the proof of the proposition assumed certain properties
which follow from being legal decoding parameters, in particular n > τGS and
n− τGS ≥ kGS − 1. The first is obviously true and the latter follow from τ2 > nθ.
Note also that nowhere was it assumed that k is an integer. We can then use
the proposition as long as we satisfy its two main assumptions: kGS > 1 and
τGS > n−

√
n(n− (n− kGS + 1)).

Assume first θ > 0 whence kGS > 1. Since we have assumed τ2 > nθ then (n −
τGS)2 > n(kGS−1) which is true if and only if τGS < n−

√
n(n− kGS + 1). Therefore

we can use the parameters of Proposition 3.11, replacing k◦ with θ, τ with n − τ
and τ̄ with τ .
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If on the other hand θ = 0, we cannot use Proposition 3.11. But then we need
to satisfy E[n,0]

Wu (s, `, τ) = (` + 1)sτ −
(
s+1

2
)
n > 0. Setting s = 1 as the minimal

possible, we immediately get ` = bnτ c. Note that since smin = θ(n−τ)
τ2−nθ = 0 then

s = 1 = bsmin + 1c.

For the second statement, assume again θ > 0. We need to dig deeper into the
proof of Proposition 3.11: paraphrasing, then it was actually shown that for any
value of s > smin then choosing ` in the range

]
τ
θ s−

1
2 −
√
D(s)
θ ; τθ s−

1
2 +
√
D(s)
θ

[
yields parameters satisfying E[n,k]

GS (s, `, τGS) > 0. This range clearly holds an integer
˜̀≥ τ

θ s at least when
√
D(s)
θ ≥ 3

2 . That restriction becomes

(s− smin)(τ2 − nθ)s+ θ2

4 ≥
9
4θ

2 ⇐⇒
s− smin ≥ 2θ2

τ2−nθ s
−1

Upper bounding s−1 by s−1
min and simplifying we get that there is a satisfactory s

with s− smin ≤ 2θ
n−τ ∈ O(n).

Similarly, reusing the analyses of Section 3.1, one can replicate most of the results
on the asymptotic behaviour of the parameter choices. Note that the poor bound
on the mentioned δ reflects reality quite badly: firstly, usually θ

n−τ is usually in
O(1), so expecting O(n) is very pessimistic. Secondly, the result is necessary for
technically securing parameters satisfying inequalities such as ` ≥ s while knowing
τ ≥ θ (in e.g. Algorithm 6 on page 143); but for almost all code parameters the
closed form parameter choices will satisfy the necessary inequalities directly.

Though Theorem 5.4 is a parallel to Theorem 3.2, it will not be quite enough for
our applications to decoding: when we later need to solve a rational interpolation
problem for decoding, we seek p1 and p2 which interpolate on the error positions,
and therefore an unknown number of points, but their maximal degrees increase with
the number of points they interpolate. This means that we can’t use Theorem 5.4
directly: setting τ low while the allowed degrees of p1, p2 high would not allow us to
construct Q, while setting τ high would not guarantee that we would find p1 and p2
when only few points were interpolated. Luckily, we have the following lemma which
says that the Q we construct for high τ will also find p1 and p2 that interpolate
fewer points, as long as their degrees decrease appropriately:

Lemma 5.8. Let Q(x, y : z) satisfy the requirements of Theorem 5.4 for some choice
of τ, `, s, θ1, θ2. Then Q also satisfies the requirements for τ̃ , `, s, θ̃1, θ̃2 as long as

min{θ1 − θ̃1 , θ2 − θ̃2} ≥ s
` (τ − τ̃)

Proof. Since the interpolation points and multiplicity as well as the list size have
not changed, we only need to show deg1,θ̃1,θ̃2 Q < sτ̃ . We have:

deg1,θ̃1,θ̃2 Q ≤ deg1,θ1,θ2 Q−min{i(θ2 − θ̃2) + (`− i)(θ1 − θ̃1) | 0 ≤ i ≤ `}
< sτ − `min{θ1 − θ̃1, θ2 − θ̃2}
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Therefore Q satisfies the degree constraints whenever

sτ − `min{θ1 − θ̃1, θ2 − θ̃2} ≤ sτ̃ ⇐⇒
min{θ1 − θ̃1, θ2 − θ̃2} ≥

s

`
(τ − τ̃)

5.1.1 Root-finding for rational interpolation

After having computed the interpolation polynomial Q, one needs to find the y
and z roots p1, p2 predicted by Theorem 5.4. First note that for any p1, p2 with
p2 6= 0 such that Q(x, p1(x) : p2(x)) = 0 then also Q(x, p1(x)

p2(x) : 1) = 0. Therefore, it
suffices to find F(x) y-roots of Q̃(x, y) = Q(x, y : 1) ∈ F[x][y]. Wu1 and Siegel [WS01]
generalised the Roth–Ruckenstein root-finding algorithm [RR00]—which we already
mentioned in Proposition 3.6 on page 50—to work for AG codes over curves, and
rational expression root-finding is a special case of this. In fact, in this case the
root-finding algorithm becomes identical to that of [RR00], except that one considers
any found polynomial p(x) as an approximate power series expansions of a root p1

p2
,

i.e. p(x) ≡ p1(x)
p2(x) mod xm for any desired m. As long as m is chosen large enough

compared to the degrees of the sought p1 and p2, one can use Padé approximation
techniques to retrieve them. This leads to:

Proposition 5.9. Given Q ∈ F[x][y : z]` with degxQ ≤ N , there exists an algorithm
for finding all coprime p1, p2 ∈ F[x] with max{deg p1,deg p2} < N/2 and such that
Q(x, p1(x) : p2(x)) = 0 in complexity O(`2P(N) logN), assuming that `, q ∈ O(N)
where q is the cardinality of F.

Proof. [sketch] If p2 = 0 then p1(x) = 1 by coprimeness. So we simply check whether
Q(x, 1 : 0) = 0. For the remaining cases, it suffices if we in the described speed can
find all p1

p2
∈ F(x) such that Q̃(x, p1(x)

p2(x) ) = 0, where Q̃ = Q(x, y : 1), and where
max{deg p1,deg p2} < N/2.

Assume first x - p2(x). Then there is a polynomial p̂ ∈ F[x] such that p̂ ≡ p1
p2

mod xN ; clearly Q̃(x, p̂) ≡ 0 mod xN . Following the remark on page 51, the Roth–
Ruckenstein root-finding method [RR00] with the D&C speedup by Alekhnovich
actually finds all p ∈ F[x] such that Q̃(x, p(x)) ≡ 0 mod xN ; thus, p̂ must be among
these found polynomials. Roth and Ruckenstein proves that this list will contain at
most degy Q̃ ≤ ` elements.

Now, p̂ ≡ p1
p2

is the same as p2p ≡ p1 mod xN . This is a simple key equation.

Following Section 2.5, we minimise the matrix
(

1 p̂

0 xN

)
to get

(
g1

g2

)
in weak

Popov form, and number it so that LP(g1) = 1 so LP(g2) = 2. We must have
deg g1 + deg g2 = N since the determinant is unchanged by minimisation. Thus
only either g1 or g2 has degree less than N/2, say gi. The only possibility is now

1Xin-Wen Wu and not Yinquan Wu, originator of the Wu list-decoder.
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(p2, p1) = gi or there is no solution satisfying our requirements: any other solution
to the key equation must be an F[x]-linear combination of g1 and g2; but it will
have degree greater than N/2 if g3−i enters in the combination (since g1, g2 form
a Gröbner basis with respect to �1,0), and non-coprime elements if it is not just
an F-scaling of gi. Now, if gcd(gi,1, gi,2) = q(x) 6= 1, then q | det

(
g1
g2

)
= xN , so

q(x) = xt for some t. But we assumed that x - p2, so either q(x) = 1, in which case
(p2, p1) = gi is a valid solution, or q(x) 6= 1, in which the polynomial p did not yield
a valid rational root of Q̃.

The case x | p2 is now easy. First note that x - p1. Analogous to before,Q(x, p1 : p2) =
0 implies Q̄(x, p2

p1
) = 0, where Q̄(x, z) = Q(x, 1 : z). Therefore, in the manner above,

we just find all F(x)-roots p2
p1

of Q̄ where x - p1. Together with the roots found
before, we have all roots.

By Proposition 3.6, it costs O(`2P(N) logN) to call to Roth–Ruckenstein D&C
root-finding, while each of the up to ` module minimisations costs O(P(N) logN)
if we use the Alekhnovich algorithm, see Table 2.4. Doing this twice is obviously in
the same complexity.

Corollary 5.10. In the context of Theorem 5.4, if τ2 > n(θ1 + θ2) we can find all
p1, p2 such that Q(x, p1(x) : p2(x)) = 0 and satisfying deg p1 ≤ θ1 and deg p2 ≤ θ2
in complexity O(`2P(sτ) log(sτ)), assuming q ∈ O(sn).

Proof. Taking N = 2sτ = 2 degxQ, then from Proposition 5.9, we can find p1 and
p2 in the specified complexity as long as θ1, θ2 < sτ . But if τ2 > n(θ1 + θ2) then
θ1 + θ2 ≤ τ since τ ≤ n.

Remark. There is an easy check which will often allow one to skip one of the two
root-finding-attempts in the method outlined in Lemma 5.8: assume that p1 : p2 is
a root of Q(x, y : z) with x | p2. Then

0 = Q(x, p1 : p2) = Q`(x)p`1(x) + p2(x)
`−1∑
i=0

Qi(x)pi1(x)p2(x)`−i−1

which implies p2 | Q`(x) since gcd(p1, p2) = 1. Therefore, if x - Q`, there can be no
rational roots of Q̃ with x dividing the denominator, so there is no need to perform
the root-finding attempt on Q̄. On the other hand, if there is, one can check if x | Q0;
if not, then one can instead skip the root-finding in Q̃ and apply only that in Q̄.

One can take this observation a step further to find all rational roots completely
without the Padé approximation: since p2 | Q`(x), we can do a “Gauss’ Lemma”-like
change of variables in Q̃ to end up with a new polynomial with roots only in F[x]:
consider Q̂(x, y) = Q`−1

` (x)Q̃(x, y
Q`(x) ). Clearly Q̂ ∈ F[x, y] and has Q̂[`] = 1. By

the argument just above, any p′1
p′2
∈ F(x) such that Q̂(x, p

′
1
p′2

) = 0 must have p′2 = 1.
Note also that if p1

p2
∈ F(x) are such that Q̃(x, p1

p2
) = 0, then

Q̂(x, Q`p2
p1) = Q`−1

` Q̃(x, p1
p2

) = 0
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Thus the F(x)-roots of Q̃ are represented as F[x]-roots of Q̂. We can therefore
just apply Roth–Ruckenstein’s root-finding algorithm to Q̂, possibly with the D&C
speedup, and then easily map the found roots back to those of Q̃.

Though simpler and arguably more elegant, it is quite likely, however, that this
strategy is slower than that of Proposition 5.9, since degx Q̂ ∈ O(`N). ♦

5.1.2 Finding Q in an explicit module

We will now show how the techniques described in Section 3.2 applies to the con-
struction of a satisfactory Q polynomial in the rational interpolation case. The
projective points complicate certain matters somewhat, but the general idea is
completely unchanged.

We will again assume that s ≤ `. However, to use Proposition 5.7, we will be
restricting ourselves to cases where τ2 > nθ, and in that case τ/θ > 1 and we can
choose the parameters with Proposition 5.7 satisfying s ≤ `.

Definition 5.11. LetWs,` ⊂ F[x][y : z]` denote the space of all polynomials passing
through all the points (x1, y1 : z1), . . . , (xn, yn : zn) with multiplicity s.

Our goal is then to find a non-zero Q ∈ Ws,` of lowest possible (1, θ1, θ2)-weighted
degree. Just likeMs,` of Definition 3.21 on page 60, Ws,` is an F[x]-module. The
approach is again first to give an explicit basis forWs,`, and then use the techniques
of Chapter 2 to find a Gröbner basis of an appropriate monomial ordering.

Let us assume without loss of generality that each zi ∈ {0, 1}. Let L = {i | zi = 0}
and L = {i | zi 6= 0}. Introduce now a number of polynomials, generalising what we
needed for Guruswami–Sudan interpolation in Definition 3.22 on page 60:

Ry(x) : ∀i . Ry(xi) = yi G(x) =
n∏
i=1

(x− xi)

Rz(x) : ∀i . Rz(xi) = zi gz(x) =
∏
i∈L

(x− xi) = gcd(G,Rz)

Also degRy < n and degRz < n, making them both unique. Furthermore, by
the definition of gz, there must exist q1, q2 ∈ F[x] such that gz(x) = q1(x)G(x) +
q2(x)Rz(x). Let then hy(x) =

(
q2(x)Ry(x) mod G(x)

)
. Note that hy(xi) = q2(xi)yi

for all i = 1, . . . , n.

Extend the notation Q[t](x) to elements of F[x][y : z]` such that Q[t](x) is the ytz`−t-
coefficient of Q(x, y : z). We begin with a small lemma, similar to Lemma 3.23 on
page 60:

Lemma 5.12. Let Q ∈ Ws,` with degy Q = t. If t < s then ( Ggz )s−t | Q[t](x). If
t > `− s then gz(x)t−(`−s) | Q[t](x).
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Proof. Consider first t < s. By Corollary 5.3, for any i such that zi 6= 0 then Q

interpolates (xi, yi : zi) if and only if Q̃(x, y) = Q(x, y : 1) interpolates (xi, yi/zi)
with multiplicity s. Since degy Q̃ = degy Q = t, then having this zero implies
that (x− xi)s−t divides Q̃[t](x) = Q[t](x), by the proof of Lemma 3.23 on page 60.
Collecting for each such i gives the sought.

For t > `− s, we need to slightly improve the approach of Lemma 3.23. Choose first
i ∈ L so zi = 0. Therefore Q(x+xi, y+ yi : z+ zi) =

∑t
j=0Q[j](x+xi)(y+ yi)jz`−j .

We see that choosing the tth term and multiplying out, Q[t](x+ xi)ytiy0z`−t is the
only term with yz-degree y0z`−t. This can have no monomials of degree less than
s, so if ` − t < s then xs−(`−t) | Q[t](x + xi). This implies the claim similar to
before.

Now for the basis. Recall again the positive function pos(·), see e.g. Appendix A.
Note the easy identity pos(x) − pos(−x) = x. The powers of the terms look com-
plicated, but they are quite simple; see e.g. Figure 5.1 on page 138 for a graphical
depiction, as well as Example 5.17.

Theorem 5.13. The module Ws,` is generated as an F[x]-module by the ` + 1
polynomials P (j) ∈ F[x][y : z]` given for j = 0, . . . , ` by

P (j) = (gzy − hyz)a1(j)(yz −Ryz2)a2(j)(z Ggz )a3(j)ypos(j−s)zpos(`−s−j)

where

a1(j) = pos(j − (`− s)) a2(j) = j − pos(j − (`− s))− pos(j − s)
a3(j) = pos(s− j)

Proof. First, it should be proved that each P (j) is indeed in F[x][y : z]`, i.e. is of
total degree ` in y and z. By summing all the terms’ exponents, counting a2 twice,
and using the identity for pos(·) given above, one sees this is so.

To show that each P (j) is inWs,`, we first show that each of the three terms yz−Ryz2,
z Ggz and gzy − hyz interpolate each (xi, yi : zi) once. In the first case, then

yizi −Ry(xi)z2
i = (yi − yizi)zi

and since zi ∈ {0, 1}, the above is always 0. For z Ggz then either zi = 0 in which
case we obviously get 0, or zi = 1 but then gz(xi) 6= 0 and G(xi) = 0, so we also
get 0. In the third case, we have

gz(xi)yi − hy(xi)zi = (q1(xi)G(xi) + q2(xi)Rz(xi))yi − q2(xi)yizi = 0

Now, for each P (j) to interpolate the points with multiplicity at least s, we need
then only to verify that a1(j) + a2(j) + a3(j) ≥ s; it is quickly seen that equality
holds.

We are then left to show that any Q ∈ Ws,` can be expressed as an F[x]-combination
of the P (j). Not surprisingly when looking at Figure 5.1, the argument is divided
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into two cases: ` − s ≤ s and ` − s > s. We will only show the latter case, and
the former is simpler but follows similarly. So assume ` − s > s. Observe that
degy P (j) = a1(j) + a2(j) + pos(s− j) = j by using the aforementioned identity for
pos(·). The proof now basically follows the multivariate division algorithm on Q

under lexicographical ordering y > z > x; i.e. dividing with the aim of lowering the
y-degree. In the following, for some P ∈ F[x][y : z]`, let us say “leading coefficient”
when we mean P[degy P ](x).

First observe that the leading coefficient of P (`) is gz(x)s. By Lemma 5.12, we can
perform polynomial division of Q by P (`) and get a remainder Q(`−1)(x, y : z) of
y-degree at most ` − 1. As P (`) ∈ Ws,` so is Q(`−1) ∈ Ws,`. We can continue
as such with P (j) for j = ` − 1, ` − 2, . . . , ` − s + 1, as each of these has leading
coefficient gz(x)j−(`−s) and Lemma 5.12 promises that the remainders Q(j) will
also keep having leading coefficient divisible by exactly this. We thus end with a
remainder Q(`−s) with y-degree at most `− s and in Ws,`.

As `−s > s then for j = `−s, . . . , s we have P (j)(x, y : z) = (yz−Ryz2)syj−sz`−s−j .
They all have leading coefficient 1, so we can reduce Q(`−s) with P (`−s), reduce the
remainder of that with P (`−s−1) and so forth, until we arrive at a remainder Q(s−1)

with y-degree at most s− 1.

From j = s − 1 and downwards, the leading coefficient of P (j) is ( Ggz )s−j . But by
Lemma 5.12, Q(s−1) also has leading coefficient G

gz
, so we can reduce it by P (s−1);

the remainder Q(s−2) will have y-degree s − 2, hence leading coefficient ( Ggz )2 by
Lemma 5.12, and so can be reduced by P (s−2), and so on. At last, we find a remainder
Q(0) whose leading coefficient must be divisible by ( Ggz )sz` = P (0).

As in Section 3.2, we can represent the basis of Theorem 5.13 by an (`+ 1)× (`+ 1)
matrix over F[x], whose jth row correspond to P (j) and whose tth column correspond
to the coefficients to ytz`−t in these polynomials. That is:

Ds,` ∈ F[x](`+1)×(`+1) where [Ds,` ]j,t = P
(j)
[t] (x) (5.1)

We will not write out Ds,` explicitly, as in (3.3) on page 61, since the expressions
become rather long and provides little added intuition (also, we would have to
discern the two cases `− s > s and `− s ≤ s), but see Example 5.17 on page 139.

Note that for anyQ =
∑`
t=0Qt(x)ytz`−t then deg1,θ1,θ2 Q = deg Φ1,w̃

(
(Q0, . . . , Q`)

)
,

where w̃ =
(
`θ2, θ1 + (` − 1)θ2, . . . , (` − 1)θ1 + θ2, `θ1

)
and Φν,w are from

Definition 2.11 on page 16. We are thus looking for a vector in the module spanned
by the rows of Ds,` which is minimal under the module monomial ordering �1,w̃.
However, since θ1, θ2 are allowed to be non-integer, so are the entries of w̃, but this is
not supported by the module minimisation methods of Chapter 2. Therefore, notice
that if deg Φ1,w̃

(
(Q0, . . . , Q`)

)
< sτ then also deg Φ1,w

(
(Q0, . . . , Q`)

)
< sτ , where

w =
(
bw1c, . . . , bw`+1c

)
, which means we can use w as weight vector instead.

By Corollary 2.15 on page 18, if Bs,` is a basis of Ws,` in Φ1,w(Bs,`)-weighted weak
Popov form, then the row of Bs,` which orders minimal according to �1,w must
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s ℓ−s ℓ
j

s

ℓ−s

power

gzy−Hz
yz−Ry z

2

zG/gz
y
z

Figure 5.1: Depiction of the powers for the various terms in the elements of the explicit
basis P (0), . . . , P (`), assuming that s < `− s. One can easily verify that the total degree of
y and z must be ` by inspecting these graphs, remembering that each power of (yz−Rzz2)
contributes two in this degree. It is also easy to see that the total power of (gzy − hyz),
(yz −Rzz2) and z G

gz
is s.

exactly be a vector with minimal (1,w)-weighted degree. Thus, we can solve the
problem by applying any of the algorithms in Chapter 2 which can bring Φ1,w(Ds,`)
to weak Popov form.

As usual, we will therefore need some key properties of Ds,` in order to estimate
the complexities of module minimisation. We will not do this as precisely as we did
in Lemma 3.25 on page 61, since this case is more involved, and since it does not
seem bring us an asymptotic benefit.

Lemma 5.14. Let w =
(
b`θ2c, bθ1 + (`− 1)θ2c, . . . , b(`− 1)θ1 + θ2c, b`θ1c

)
, and let

θ̂ = max{θ1, θ2}. Then

maxdeg (Φ1,w(Ds,`)) ≤ sn+ `θ̂

∆(Φ1,w(Ds,`)) ∈ O(s`n+ `2θ̂)

Proof. Each entry of Ds,` is some element in F times a multiple of gz, Ry, G and hy
to a combined power of s; since each of the four polynomials have degree at most n,
the max-degree follows, since each column is weighted by at most x`θ̂ by Φ1,w. For
the orthogonality defect, note that deg(Φ1,w(Ds,`)) ≤ (`+1)maxdeg (Φ1,w(Ds,`)) ≤
(`+ 1)sn+ `(`+ 1)θ̂. This is already within the estimate that we have given, and
deducting the degree of the determinant to get the orthogonality defect can only
decrease this number.

Lemma 5.15. Computing Ds,` can be done in O
(
`P(s2n) + P(n) logn

)
.
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Complexity for finding Q for rational interpolation Theorem 5.4 by minimising Ds,`

Algorithm Complexity Relaxed
Mulders–Storjohann `3s2n2 `3s2n2

Alekhnovich M(`)P(`sn) log(`sn) + `2P(sn) `4sn log(n)2+o(1)

GJV M(`)P(sn) log(`sn)O(1) `3sn log(n)O(1)

Table 5.1: For relaxation, we have used the same rules as in Table 3.1 on page 63.

Proof. Computing Ry, Rz and G by Lagrangian interpolation can be done in com-
plexity O(P(n) logn), see e.g. [vzGG03, p. 297]. gz and hy can be computed using the
D&C variant of the Euclidean algorithm, which is a special case of the Alekhnovich
algorithm in O(P(n) logn), see Table 2.4 on page 42. By [vzGG03, Corollary 8.28],
multiplying together two polynomials in F[x, y] of x-degree at most N and y-degree
at most `, costs P(`N); clearly the price is the same for multiplying together poly-
nomials in F[x][y : z]`. Thus, calculating the first s powers of each of (gzy − hyz),
(yz − Rzz2) and z Ggz costs O(sP(s2n)). After this, all the P (j) can be calculated
in O(`P(s2n)). With proper memory management, the at most s non-zero yjz`−j
coefficients of each can be extracted out to Ds,` in total complexity O(`s) using
pointers.

Remark.Note that the above is slightly slower than computingAs,`, see Lemma 3.26
on page 62. I have been unable to find a construction which is as fast, in particular
since some of the entries of Ds,` are sums of terms of the form gµ1

z hµ2
y R

µ3
y ( Ggz )µ4 .♦

Theorem 5.16. For a given instance of the rational interpolation problem with
τ2 > n(θ1 + θ2), and using the parameters of Proposition 5.7 on page 131, we can
find a satisfactory Q in the complexity as given in Table 5.1, for various choices of
module minimisation algorithm.

Proof. By the assumption τ2 > n(θ1 + θ2), it follows that we can employ the
parameter choices of Proposition 5.7. From these it also follows that ` ∈ O(s τθ + 1)
with θ = θ1 + θ2, and so O(`θ) ⊂ O(sτ) ⊂ O(sn). Therefore by Lemma 5.14,
maxdeg (Ds,`) ∈ O(sn) and ∆(Ds,`) ∈ O(`sn), and the result follows from using
Table 2.3 on page 42. Note that by Lemma 5.15, the complexity of constructing Ds,`

is overshadowed by the complexity of minimising it, no matter which minimisation
algorithm we choose.

Remark. Note that in the usual case where both θ1 and θ2 are positive, all entries
of w are positive and so we can normalise the ordering into �1,w◦ where w◦ =
(w1−δ, w2−δ, . . . , w`+1−δ) where δ is the minimal element ofw; this is a completely
equivalent ordering. Clearly this won’t change the orthogonality defect, but it will
decrease the max degree, thus slightly improving the running time (though not
asymptotic). ♦
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Example 5.17. Consider a rational interpolation problem with parameters

n = 250 τ = 105 θ1 = 15 θ2 = 14

We have θ = 29. Proposition 5.7 on page 131 now tells us that (s, `) = (2, 4) can be
used for the rational interpolation problem.

A satisfactory Q should have (1, 15, 14)-weighted degree at most 210. Furthermore,
its coefficients must reside in the row space of the matrix D2,4. Assuming that zi = 0
for exactly 5 values of i, and assuming that degRy = deg hy = n− 1, which is the
generic case, then D2,4 has the form

( Ggz )2 0 0 0 0
− G
gz
Ry

G
gz

0 0 0
R2
y −2Ry 1 0 0

0 hyRy −Rygz − hy gz 0
0 0 h2

y −2hygz g2
z

 E


490 ⊥ ⊥ ⊥ ⊥
494 245 ⊥ ⊥ ⊥
498 249 0 ⊥ ⊥
⊥ 498 254 5 ⊥
⊥ ⊥ 498 254 10


We set w = (56, 57, 58, 59, 60), and are then to minimise the Φ1,w image of Ds,`.
We have

maxdeg (Φ1,w(D2,4)) = 556 ≤ 560 = sn+ `θ̂

deg(Φ1,w(D2,4)) = 2761 ≤ 2800 = (`+ 1)sn+ `(`+ 1)θ̂
∆(Φ1,w(D2,4)) = 1721 ♠

5.2 Decoding GRS codes

Consider once again some [n, k, n−k+1] GRS code, as well as some sent codeword
c = evα,β(f) with deg f < k and some received word r. Recall the definitions of G
and R from Definition 3.22 on page 60. Choosing the simplest ` = 1 in Corollary 4.3
on page 96, we have the Gao key equation:

ΛR ≡ Λf mod G

deg Λ + k > deg(Λf)

As we have seen so many times before, we can solve this key equation using the
methods of Chapter 2: we would be minimising the Φ1,(k,0)-image of the matrix

MWu =
(

1 R

0 G

)
(5.2)

giving us a matrix [g1
g2

] ∈ F[x]2×2 in Φ1,(k,0)-weighted weak Popov form; thus g1, g2
is a Gröbner basis of the row space of MWu with respect to �1,(k,0). Assume in the
following that g1, g2 has been numbered such that LP�1,(k,0)(gi) = i for i = 1, 2.
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As we know from Proposition 4.4 on page 97, if |E| = deg Λ ≤ n−k
2 then g1 =

γ(Λ,Λf) for some γ ∈ F. Whenever more errors occur, (Λ,Λf) will be an F[x]-
linear combination of g1 and g2. Wu’s observation is how to utilise the knowledge
that Λ splits and has roots in {α1, . . . , αn} to find this combination by rational
interpolation faster than brute force search:

Proposition 5.18. If |E| > n−k
2 then let p1, p2 ∈ F[x] be such that (Λ,Λf) =

p1g1 + p2g2. Then

deg p1 = |E| − deg g1,1 deg p2 < |E| − deg g2,2 + k

Furthermore, let (yi : zi) = (g2,1(αi) :−g1,1(αi)) for i = 1, . . . , n. Then for exactly
|E| out of the n choices of i, we have

zip1(αi)− yip2(αi) = 0 (5.3)

Proof. From Proposition 2.14 on page 17, we immediately get the degree bounds,
since deg Λ = |E|. Now, since Λ = p1g1,1 + p2g2,1, then for i ∈ E we have

0 = Λ(αi) = p1(αi)g1,1(αi) + p2(αi)g2,1(αi)

Therefore, p1, p2 must satisfy (5.3) for these i; whenever i /∈ E , then Λ(αi) 6= 0, so
the identity is indeed satisfied exactly |E| times. Note that the (yi : zi) are indeed
projective points: we can’t have g1,1(αi) = 0 and g2,1(αi) = 0 simultaneously, for
g1,1 and g2,1 must be coprime since there exists a linear combination of g1, g2 giving
(1, R).

Remark. Since also Λf evaluates to 0 at all the error positions, we could instead
have used the evaluations of g2,1 and g2,2 to define (yi : zi). This yields exactly the
same: observe that by the structure of MWu, then g1,2 = g1,1R + q1G for some
q1 ∈ F[x], and similarly g2,2 = g2,1R+ q2G. Therefore, for each αi we have(

g1,2(αi) : g2,2(αi)
)

=
(
g1,1(αi)r′i : g2,1(αi)r′i

)
∼
(
g1,1(αi) : g2,1(αi)

)
where the ∼ is the equivalence relation on points in P1(F). ♦

Since the points (yi : zi) can be calculated by the receiver once he has computed
g1, g2, clearly Proposition 5.18 then specifies a rational interpolation problem—
assuming that the value of |E| is known. We should then choose θ1 and θ2 to be
the degree upper bounds on p1 and p2. Momentarily we will show using Lemma 5.8
on page 132 that a Q we construct assuming, say, |E| = τ , will also work when
|E| < τ . So for which values of τ can we find a valid Q? By Proposition 5.7, at least
whenever τ2 > n(θ1 + θ2). But assuming |E| = τ then we would set

θ = θ1 + θ2 = 2τ − (deg g1,1 + deg g2,2) + k − 1 = 2τ − d

since deg g1,1 + deg g2,2 = deg detMWu = n. So we can construct Q whenever
τ2 > n(2τ − d), that is τ < n−

√
n(n− d), i.e. exactly the Johnson bound that we

saw in Proposition 3.8 on page 52!
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The various parts can now be collected into Algorithm 6 on page 143. By “valid
error-locator”, we mean a polynomial which splits and roots only of multiplicity 1
and all from {α1, . . . , αn}. Note that we do not require it to be monic. We then
have:

Theorem 5.19. Algorithm 6 is correct.

Proof. By the discussion in the beginning of this section, if |E| ≤ n−k
2 , then g1,1 = Λ

in Line 3. However, the algorithm needs to return all codewords of distance at
most τ , whence we only break early in Line 3 if we are sure there can be no other
codewords within this radius: since all other codewords must be at least d from c,
i.e. at least d− |E| from r, we can safely break early whenever τ < d− deg g1,1 and
correcting using g1,1 yields a codeword.

If we do not break in Line 3, we go on to construct a Q. Since τ < n−
√
n(n− d)

then τ2 > nθ (see above), so we can use the parameter choices of Proposition 5.7
on page 131 and a Q can indeed be constructed. Note that τ2 > nθ implies θ < τ

so Proposition 5.7 promises parameters satisfying s ≤ `. By Proposition 5.18, if
|E| = τ , it must be the case that p1, p2 are among the p?1, p?1. If |E| < τ , then by
Lemma 5.8 on page 132 this is also the case as long as

min{θ1 − deg p1, θ2 − deg p2} ≥ s
` (τ − |E|)

But θ1−deg p1 = τ −deg g1,1− (|E|−deg g1,1) = τ −|E|, and similarly θ2−deg p2 =
τ − |E|. Therefore, the above is true since s ≤ `. Note that in Line 7, we need
not check the distance of the calculated words to r, since their distance will be
exactly the degree of the respective Λ?; and this can in turn not be greater than
deg p?1,1 + deg g1,1 ≤ τ .

To round off, let us sum up the asymptotic complexity of the method. Not surpris-
ingly, the total cost is completely dominated by module minimisation.

Corollary 5.20. Using the root-finding algorithm of Proposition 5.9, and for vari-
ous choices of module minimisation algorithms for construction ofQ, then Algorithm 6
has the complexity as given in Table 5.2, assuming that q ∈ O(sn) where q is the
size of the field.

Proof. The only step of Algorithm 6 which we have not already addressed is the
checks for “valid error-locator”, finding the error positions, i.e. roots of the error
locators, as well as performing error correction. For a given polynomial λ(x), the
trivial method of determining whether it is a valid error-locator is to evaluate it at
all αi and see if this yields exactly deg λ roots. All these n evaluations can be done
using Fast Fourier transform in O(q log q) where q is the size of the field. Since we
will have one candidate to check in Line 3, and at most ` to check in Line 5, the
total cost will be in O(`q log q).

2In [BHNW13, p.3276], this erroneously read “at most”.
3In [BHNW13, p.3276], these degree bounds erroneously read “less than”.
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Algorithm 6 Wu list decoding GRS codes
Input: The received word r = (r1, . . . , rn). Parameters s, `, τ such that τ < n −√

n(n− d) and E[n,2τ−d]
Wu (s, `, τ) > 0 as well as s ≤ ` for the given code, e.g. by

using Proposition 5.7 on page 131.
Output: A list of all codewords in C within radius τ of r or Fail if there are no

such words.
1 Calculate G and R according to Definition 3.22 on page 60.
2 Compute g1, g2 by module minimising MWu of (5.2), with LP�1,(k,0)(g1) = 1.
3 If g1,1 is a valid error-locator of degree less than2 d− τ , use it to correct r, and
if this yields a word in C, return this one word.

4 Otherwise, set θ1 = τ − deg g1,1 and θ2 = τ − deg g2,2 + k − 1. Construct a
Q(x, y : z) satisfying the requirements of Theorem 5.4 on page 130 using the
points {(αi, g1,1(αi) :−g2,1(αi))}ni=1 and using the parameters s, `, τ .

5 Find all p?1, p?2 such that3 deg p?1 ≤ θ1 and deg p2 ≤ θ2 and Q(x, p?1, p?2) = 0.
Return Fail if no such factors exist.

6 For each such factor, construct Λ?(x) = p?1(x)g1,1(x) + p?2(x)g2,1(x). If it is a
valid error-locator, use it for correcting r. Return Fail if none of the factors yield
error-locators.

7 Return those of the corrected words that are in C. Return Fail if there are no
such words.

Remark. If one is not interested in a list decoder per se, but rather in a maximum-
likelihood list decoder (such as is considered in Section 3.3), then one can safely
break in Line 3 if g1,1 is an error locator and has degree up to d/2; for clearly there
can be no other words within half the minimum distance. ♦

Remark. Consider a GRS code with odd minimum distance d. Choosing τ = d/2,
i.e. exactly one more error than minimum-distance decoding, yields the “+1 decoder”;
this is an important special case since it can decode an additional error in basically
the same complexity as minimum-distance decoding. It was pointed out by Wu
in [Wu08]4.

In this case θ = 0. Consider now that τ errors occurred. We know that (Λ,Λf) =
p1g1 + p2g2, with p1, p2 ∈ F[x] and neither non-zero, so θ1, θ2 ≥ 0. But since
θ1 + θ2 = θ = 0 then also θ1 = θ2 = 0, i.e. deg g1,1 = τ and deg g2,2 = τ + k − 1.
We are therefore actually just looking for constants which “evaluate” to exactly τ
of the (g1,1(αi) :−g2,1(αi)).

Clearly, there is no need for rational interpolation here: we calculate all the points
(g1,1(αi) :−g2,1(αi)), and bundle them into groups if they are equivalent, i.e. two
such points a, b ∈ P2(F) are put in the same group if a ∼ b. Each such group gives
rise to a possible error locator by picking one of the elements and treating this as

4It is possible that ideas similar to these were already used in Berlekamp’s +1 decoder for
soft-decision decoding [Ber96], though I have not studied this paper well enough to be sure.
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Complexity for Wu list decoding GRS codes
Algorithm Complexity Relaxed
Mulders–Storjohann `3s2n2 `3s2n2

Alekhnovich M(`)P(`sn) log(`sn) + `2P(sn) `4sn log(n)2+o(1)

GJV M(`)P(sn) log(`sn)O(1) `3sn log(n)O(1)

Table 5.2: For relaxation, we have used the same rules as in Table 3.1 on page 63.

(p?1 : p?2); we then run Algorithm 6 from Line 5.

Before doing this, we can easily prune the list of candidates in order to minimise
wasted effort: if g1,1 was not an error-locator in Line 3, then we know that |E| > n−k

2
so |E| = τ ; thus we should consider only groups of points containing exactly τ

elements. Even if g1,1 was an error locator, we know that all other valid error
locators must have deg Λ ≥ deg g1,1 as well as deg Λ ≥ d − deg g1,1; thus we can
remove groups not satisfying this.

The complexity of this is just the complexity of Algorithm 6 up to and including
Line 4, followed by the judging of around bnτ c error locators in the worst case. ♦

Example 5.21. Consider again the [250, 70, 181] code of Example 3.5 on page 50,
and we want to decode up to τ = 105 errors. Assume that more than half the
minimum distance errors occurred, i.e. |E| > 90. After Φ1,(k,0)-weighted module
minimisation of MWu, the degrees of g1, g2 would depend on the instance, but in the
usual case we obtain:(

g1,1 g1,2
g2,1 g2,2

)
E

(
90 159
90 160

)
Assuming this, we would calculate θ1 = 15 and θ2 = 14. We confirm that θ =
θ1 + θ2 = 29 = 2τ − d. The resulting rational interpolation problem has exactly
the parameters we explored in Example 5.17; in particular (s, `) = (2, 4). It is
therefore interesting to compare the size of the module minimisation problem with
the one we would solve for Guruswami–Sudan, in either Example 3.28 on page 62
or Example 3.39 on page 74, for this case where the parameters are all the same.
We can see that the metrics of the matrices of Example 3.28 and this example are
very comparable, while that of Example 3.39 on page 74 is somewhat larger. ♠

5.2.1 Using the syndrome key equation

In [Wu08], Wu originally proposed his algorithm using the syndrome key equation.
We will briefly show how this is completely analogous to using the Gao key equation
above. Choosing ` = 1 in Corollary 4.8 on page 102, we have the syndrome key
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equation:

ΛS ≡ Ω mod xn−k

deg Λ > deg Ω

where Ω = Ω(1) and S = (S(1)
• mod xn−k). Again, we would solve this key equation

by minimising the matrix

MS
Wu =

(
1 S

0 xn−k

)
To be clear, we would minimise its Φ1,0-image, but Φ1,0 is the identity function. Let
[ g̃1
g̃2

] be this basis, and such that LP(g̃1) = 1. In the row space of this matrix must
be (Λ,Ω). If |E| ≤ n−k

2 , we even have γ(Λ,Ω) = g̃1 for some γ ∈ F.5

Completely as before, if more errors have occurred we then know that (Λ,Ω) =
p1g̃1 + p2g̃2 for some p1, p2 ∈ F[x]. We also get analogous degree constraints on p1
and p2, and using that Λ must be zero on the inverse of all the error positions, we
can thus set up a rational interpolation problem for which p1, p2 is a solution. All
parameters θ, τ, s, ` for the rational interpolation problem would be as before, and
therefore also the complexity of the rational interpolation would be unchanged.

5.2.2 Relation to Guruswami–Sudan in choice of parameters

The parameter choices for the rational interpolation problem in the Wu list de-
coder were given in Proposition 5.7 on page 131 and found by remarking that
E

[n,θ]
Wu (s, `, τ) = E

[n,θ+1]
GS (s, `, n−τ), and then using the parameters of Proposition 3.11

on page 53.

In the case of GRS decoding we have yet another, more direct, duality. Here we
have θ = 2τ − d, and by insertion, one sees that

E
[n,2τ−d]
Wu (s, `, τ) = E

[n,k]
GS (`− s, `, τ) (5.4)

Written out in words, and elaborated upon, one can then very directly compare the
list sizes and multiplicities which are possible in the Guruswami–Sudan with those
in Wu’s algorithm:

Proposition 5.22. For a given code, and some decoding radius τ ≥ n−k+1
2 , then

s and ` are valid choices for the parameters for the Wu list decoder if and only if `
and sGS = `− s are valid choices for the Guruswami–Sudan.

Furthermore, for a given `, let s be minimal such that E[n,2τ−d]
Wu (s, `, τ) > 0, and

sGS minimal such that E[n,k]
GS (sGS, `, τ) > 0. If τ < n/2 then s ≤ sGS, otherwise,

s ≥ sGS.
5This easily follows from classical views on the key equation, e.g. [Dor87,SKHN75]. However,

in our exposition it follows from Proposition 4.10 on page 103 since we proved in Proposition 4.4
on page 97 that Power Gao always succeeds when |E| ≤ n−k

2 ; also when ` = 1.
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Proof. Clearly, the first claim follows directly from (5.4). For the second claim,
consider E[n,2τ−d]

Wu (s, `, τ) = (`+ 1)sτ −
(
`+1

2
)
(2τ − d)−

(
s+1

2
)
n. For given τ and `

then requiring this to be positive gives a second degree equation in s; rearranging
and solving we get that s must be chosen from the interval centred at `T and with
length 2`D̃1/2, where T = τ

n+ τ−n/2
n` and the precise expression of D̃ is not important

for us. Due to (5.4), then the corresponding interval for valid sGS must be centred
at `(1− T ) and also has length 2`D̃1/2. In addition to residing in these respective
intervals, we only require of s and sGS that they are positive integers less than or
equal to `. Therefore, whenever τ < n/2 we have T < 1

2 , so the smallest possible
choice of s in the former interval must be at most the smallest possible in the latter
interval; oppositely for the case τ ≥ n/2.

Remark. The above fits almost comically well with a general intuition: in the
Guruswami–Sudan, we are performing an interpolation on the true positions since
we are guessing f(x). In Wu’s list decoder, on the other hand, we are interpolating
the error positions, since we are essentially guessing Λ(x). The above proposition
says that as long as there are more true positions than error positions, then it is
“cheaper” to locate the latter and vice versa! And by “cheaper”, we just mean that
the multiplicity is lower.

In general, medium to high-rate codes are used more often than very low-rate ones,
which means that we are usually correcting far fewer errors than n/2. What is also
revealed from the above proof is that the ratio sGS/s increase with the rate, so the
benefit, when considering only this measure, of using the Wu list decoder in place
of the Guruswami–Sudan increases for higher rate codes. ♦

Example 5.23. Consider again the [2480, 1489, 992] code of Example 3.16 on
page 58. Decoding up to τ = 558 errors, we can use ` = 280, s = 63 and sGS = 217;
these are what Proposition 3.11 on page 53 and Proposition 5.7 on page 131 evaluate
to, and also the minimal possible. These parameters might still be too large for
practical use, but it demonstrates that the saving in multiplicity for Wu’s list decoder
is significant compared to the Guruswami–Sudan, even for medium to low-rate codes.

♠

Example 5.24. Consider a quite high-rate [2047, 1800, 248] GRS code. Minimum-
distance decoding is 124, while dn−

√
n(n− d)−1e = 128 is the list-decoding radius.

Decoding up to τ = 127, we can use ` = 62, s = 3 while sGS = 59; these are the
minimal possible, and are also obtained from Proposition 5.7 as well as the duality;
using Proposition 3.11, however, gives ` = 63 and sGS = 60. Thus for such high-rate
codes the saving is quite substantial. ♠

Remark. The duality of (5.4) could also be used to obtain closed expression for
the parameters for Wu list decoding GRS codes from those for Guruswam–Sudan
in Proposition 3.11 on page 53. The two are not exactly the same, and as we see
above they do not in all cases give exactly the same result. ♦
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5.3 Wu list decoding binary Goppa codes

In this section we will show how binary Goppa codes can be list decoded very
well using the Wu approach. Goppa codes are a beautiful class of algebraic codes,
first described in [Gop70]; especially in the binary case, the codes have very good
minimum distance (for not too long codes). Sugiyama et al. [SKHN75] gave a key
equation for q-ary Goppa codes and described how to use the extended Euclidean
algorithm to solve this; Patterson [Pat75] rewrote this into one “modulo xN” in
order to let it be solvable by the Berlekamp–Massey algorithm, and in the same
publication gave an important rewriting of the key equation in the case of binary
Goppa codes to take full advantage of the better minimum distance. We will use
the same rewriting here. For a wholesome description, along with proofs of some of
the basic facts on Goppa codes used below, see e.g. [MS77].

Consider an irreducible polynomial G(x) ∈ F2m [x] as well as n distinct elements
of F2m , L = (α1, . . . , αn). Then the irreducible binary Goppa code Γ(G,L) with
Goppa polynomial G over L is the set

C =
{

(c1, . . . , cn) ∈ Fn2

∣∣∣∣∣
n∑
i=1

ci
x− αi

≡ 0 mod G(x)
}

It can be shown that this code has parameters [n, ≥ n−m deg g, ≥ 2 deg g + 1].

As usual, consider a sent word c ∈ C and a received r = c+e, and let E = {i | ei 6= 0}.
For Goppa codes, a natural definition of a syndrome polynomial is then

S(x) =
(

n∑
i=1

ri
x− αi

mod G(x)
)

=
(

n∑
i=1

ei
x− αi

mod G(x)
)

It is then quite natural to introduce an error-locator and error-evaluator:

Λ(x) =
∏
i∈E

(x− αi) Ω(x) =
∑
i∈E

∏
j∈E\{i}

(x− αj)

Notice that we again have gcd(Λ,Ω) = 1.

Proposition 5.25. Λ(x)S(x) ≡ Ω(x) mod G(x)

Proof. By insertion.

Note that for a binary code, the receiver can decode immediately upon having
calculated the error locator, even without the error evaluator since ei 6= 0 =⇒ ei =
1.

Now we could proceed exactly as in the case of GRS codes in Section 5.2, and we
would arrive at a list decoder correcting up to J(n, degG+1) = n−

√
n(n− degG− 1)

errors. However, this radius is much less than degG which is promised by the mini-
mum distance of the binary Goppa code, and which can be corrected by Patterson’s
decoder [Pat75]; see Figure 5.2 on page 148.
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Figure 5.2: Depiction of various decoding radii for the range of binary Goppa codes with
n = 10 000 and various degG. Our decoder decodes to J2(n, 2 degG + 1), i.e. the best,
while unique decoding with Patterson is up to degG. J(n,degG+ 1) is achieved by just
using Guruswami–Sudan on the GRS code surrounding the Goppa code, or by applying
the Wu method on the initial key equation Proposition 5.25, while degG/2 is achieved
by minimum distance decoding the surrounding GRS code. The last, J(n, 2 degG + 1)
can be achieved by methods discussed in Section 5.3.2 and Section 5.4: by applying the
Guruswami–Sudan on the GRS code Γ(G2, L), or by employing Bernstein’s (first) decoder.
Be wary of this picture: a priori, a binary Goppa code with Goppa polynomial degG
usually has dimension n −mdegG where m = dlog2 ne = 14 in this example. Thus for
any random G with degG > 714, the code most likely has dimension 0.

Therefore, we proceed first with Patterson’s rewrite of the key equation.

Lemma 5.26. Assume |E| < 2 degG + 1. If S−1(x) ≡ x mod G(x) and 0 ∈ L,
then Λ(x) = x. Otherwise, let a, b ∈ F[x] be such that Λ = a2 +xb2. Then a, b satisfy
deg a ≤ bE2 c and deg b ≤ bE−1

2 c, as well as

b(x)S̃(x) ≡ a(x) mod G(x) (5.5)

where S̃ is the unique polynomial such that S̃2 ≡ x+S−1 mod G and deg S̃ < degG.

Proof. The a and b are simply formed by collecting even and odd terms of Λ and
clearly exist as well as satisfy the degree constraints. Furthermore, since we are
working over F2, note that Ω equals the formal derivative of Λ, which means Ω(x) =
b2(x). The key equation thus becomes

(a2(x) + xb2(x))S(x) ≡ b2(x) mod G(x) ⇐⇒
b2(x)(x+ S−1(x)) ≡ a2(x) mod G(x) (5.6)

Note here that calculating the inverse of S(x) modulo G(x) is possible since degS <
degG and G(x) is irreducible.
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It might now be that S−1(x) ≡ x mod G(x) in which case a2(x) ≡ 0 mod G(x).
As G(x) is irreducible, a must then be a multiple of G, which means that a = 0 as
deg a ≤ E/2 < degG. This implies Λ = xb2, but since Λ is squarefree, then this is a
legal error locator only when 0 ∈ L ∩ E and b(x) = 1.

Having taken care of the case S−1(x) ≡ x mod G(x), let us now assume that this
is not the case and continue. As G(x) is irreducible, F2m [x]/〈G(x)〉 is a finite field
of characteristic 2, so we can compute a square-root; in particular, the described
S̃(x) can be calculated. Inserting S̃(x) in (5.6), we get

b2(x)S̃2(x) ≡ a2(x) mod G(x) ⇐⇒
b(x)S̃(x) ≡ a(x) mod G(x)

finishing the proof

We are therefore in the case of a new key equation, where the degrees of the unknown
polynomials are halved! Note that S̃ is directly computable by the receiver after
having computed S. Proposition 5.25 tells us that (a, b) is in the F[x] rowspan of
the matrix

MΓ
Wu =

(
1 S̃

0 G

)
(5.7)

For any w ∈ N2, we can perform Φ1,w-weighted module minimisation of MΓ
Wu and

find a Gröbner basis with respect to �1,w. Optimal decoding radius turns out to
be obtained by choosing w = 0. Since it is neither a nor b we know has a lot of
zeroes among the αi, but Λ constructed by them, the road to a rational interpolation
problem in this case has an additional turn compared to the case for GRS decoding.
The analogue of Proposition 5.18 on page 141 becomes:

Proposition 5.27. Let a, b be as in Lemma 5.26. Let [g1
g2

] be a basis in weak Popov
form of the row space of MΓ

Wu, having LP(g1) = 1.

If |E| ≤ degG then (a, b) = γg1 or (a, b) = γg2 for some γ ∈ F2m .

If instead degG < |E| < 2 degG + 1 then let p1, p2 ∈ F[x] be such that (a, b) =
p1g1 + p2g2. Then p1 and p2 are coprime and:

deg p1 = |E|
2 − deg g1,1 deg p2 ≤ |E|2 − 1− deg g2,2 if |E| is even

deg p1 ≤ |E|−1
2 − deg g1,1 deg p2 = |E|−1

2 − deg g2,2 if |E| is odd

Furthermore, let h1(x) = g2
1,1 + xg2

1,2 and h2(x) = g2
2,1 + xg2

2,2 and define (yi : zi) =(√
h1(αi) :−

√
h2(αi)

)
for i = 1, . . . , n. Then for exactly |E| out of the n choices of

i, we have

zip1(αi)− yip2(αi) = 0 (5.8)
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Proof. We first show the degree bounds on p1 and p2. Assume first that |E| is even;
then deg a = |E|/2 and deg b ≤ |E|/2−1 so LP(a, b) = 1. Therefore Proposition 2.14
on page 17 states exactly the given degree bounds. Similarly, if |E| is odd, then
deg a ≤ |E − 1|/2 and deg b = (|E| − 1)/2, so LP(a, b) = 2 and employing the lemma
again gives the sought.

Now if |E| ≤ degG and since deg g1,1 + deg g2,2 = degG then deg p1 + deg p2 < 0 by
the above, which implies that p1 = 0 or p2 = 0. It must therefore be so that (a, b) =
pigi for i being 1 or 2, and p3−i = 0. We know that Λ = a2 + xb2, so if gcd(a, b) > 1
then gcd(a, b)2 | Λ; but Λ by definition is square-free. Thus gcd(a, b) = 1 implying
that deg pi = 0.

Assume now that |E| > degG. Since we just argued that gcd(a, b) = 1, then clearly
gcd(p1, p2) = 1. Now

Λ(x) = a2 + xb2 = (p1g1,1 + p2g2,1)2 + x(p1g1,2 + p2g2,2)2

= p2
1(g2

1,1 + xg2
1,2) + p2

2(g2
2,1 + xg2

2,2)

For each i ∈ E we therefore have

0 = Λ(αi) = p1(αi)2h1(αi) + p2
2h2(αi)

But again, since we are in characteristic 2, the square root exists and distributes
over addition, so:

p1(αi)
√
h1(αi) + p2(αi)

√
h2(αi) = 0

As before, for all i /∈ E , Λ evaluates non-zero, which is still left non-zero after drawing
square-roots, so the above equation will not hold. Therefore, it is indeed exactly |E|
of the defined points that p1, p2 interpolates.

The last step is to show that the defined points are indeed projective, i.e. h1 and h2
do not have a common zero in L. There must be some U ∈ F[x]2×2 with determinant
1 such that [g1

g2
] = UMG

Wu. Squaring is a linear operation in F2m [x], so we also get(
g2

1,1 g2
1,2

g2
2,1 g2

2,2

)
= U (2)

(
1 S̃2

0 G2

)
where U (2) is the component-wise square of U . Note that we still have detU (2) = 1.
Therefore(

h1
h2

)
=
(
g2

1,1 g2
1,2

g2
2,1 g2

2,2

)(
1
x

)
= U (2)

(
1 S̃2

0 G2

)(
1
x

)
= U (2)

(
1 + xS̃2

xG2

)
Since detU (2) = 1, then h1, h2 can only have a common root if 1 + xS̃2 and xG2

have the same common root. But clearly 0 is not a root of 1 + xS̃2, and xG2 can
have no other roots in F2m .



5.3 Wu list decoding binary Goppa codes 151

The case |E| ≤ degG is exactly Patterson’s decoder using the language of module
minimisation. For |E| > degG, we then have a rational interpolation problem if we
knew the value of |E| in advance. Since we do not, we will again rely on Lemma 5.8
on page 132, allowing us to choose the parameters of the interpolation problem
based on a worst case |E| = τ , while still ensuring that solutions will be found for
|E| < τ . The parameter choices are complicated by the distinction between an even
and an odd number of errors. For using Lemma 5.8, we are forced to choosing θ1 and
θ2 such that the distance from the degree upper bounds on p1, p2 increase gradually
with a decreasing number of errors; hence:

θ1 = τ
2 − deg g1,1 θ2 = τ−1

2 − deg g2,2 and so θ = τ − 1
2 − degG

since deg g1,1 + deg g2,2 = deg detMG
Wu = degG. Note that either θ1 or θ2 as well

as θ are not integers. With these choices, how high can we then choose τ? By
Proposition 5.7 on page 131, our only restriction is τ2 > nθ, i.e.

τ2 > n(τ − 1
2 − degG) ⇐⇒ τ < 1

2n−
1
2

√
n(n− 4 degG− 2)

This upper bound is exactly J2(n, 2 degG+ 1), i.e. the binary Johnson bound for
the designed minimum distance 2 degG+ 1, which was discussed in Section 3.6.

Collecting the steps of the decoder yields Algorithm 7. We have

Theorem 5.28. Algorithm 7 is correct.

Proof. The algorithm is very close to Algorithm 6 on page 143, so the proof of
correctness is as well. In Line 3 we break if the module minimisation finds an error
locator and the minimum distance of the code, 2 degG+ 1, dictates that there can
be no other words within τ .

Constructability of Q in Line 4 follows from the above discussion and that suitable
parameter choices exists by Proposition 5.7 on page 131. Note that by that propo-
sition we can indeed choose s and ` such that 2s ≤ ` since τ

θ = τ
τ−1/2−degG which

is at least 2 whenever τ < 2 degG+ 1.

By Proposition 5.27 on page 149 it must therefore be the case that when |E| = τ ,
we find p1, p2 among the p?1, p?2, and that Λ is therefore found in Line 6. Whenever
|E| < τ , this will also be the case by Lemma 5.8 on page 132 as long as

min{θ1 − deg p1, θ2 − deg p2} ≥ s
` (τ − |E|)

But deg p1 ≤ |E|2 − deg g1,1 and deg p2 ≤ |E|−1
2 − deg g2,2 by Proposition 5.27, and

so θ1 − deg p1 ≥ τ
2 −

|E|
2 , and similarly θ2 − deg p2 ≥ τ

2 −
|E|
2 . Since s

` ≤ 2 the
requirement is therefore satisfied.

The asymptotic complexity of Algorithm 7 is clearly dominated by the solving the
rational interpolation problem; thus the complexities of Table 5.2 on page 144 are
carried over unchanged.

6In [BHNW13, p.3278], these degree bounds erroneously read “less than”.
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Algorithm 7 Wu list decoding binary Goppa codes
Input: The received word r = (r1, . . . , rn). Parameters s, `, τ such that τ < 1

2n−
1
2
√
n(n− 4 degG− 2) and E[n,τ−1/2−degG]

Wu (s, `, τ) > 0 as well as 2s ≤ ` for the
given code, e.g. by using Proposition 5.7 on page 131.

Output: A list of all codewords in C within radius τ of r or Fail if there are no
such.

1 Calculate the syndrome S(x) from r according to (5.5) on page 147. If S−1(x) =
x and 0 ∈ L, then flip the corresponding bit of r and return that word. If
S−1(x) = x and 0 /∈ L, return Fail. Otherwise, calculate S̃(x) satisfying deg S̃ <
degG and S̃2(x) ≡ x+ S−1(x) mod G(x).

2 Compute [g1
g2

] by module minimisingMG
Wu of (5.7) on page 149, with LP(g1) = 1.

3 If either g1,1 or g2,1 is a valid error-locator of degree at most 2 degG− τ , use it
to correct r, and if this yields a word in C, return this one word.

4 Otherwise, set θ1 = τ
2 − deg g1,1 and θ2 = τ−1

2 − deg g2,2. Construct a
Q(x, y : z) satisfying the requirements of Theorem 5.4 on page 130 using the
points

{(
αi,
√
h1(αi) :−

√
h2(αi)

)}n−1
i=0 , where h1, h2 are as in Proposition 5.27

on page 149, and using the parameters τ, s, `.
5 Find all p?1, p?2 such that6 deg p?1 ≤ θ1 and deg p2 ≤ θ2 and Q(x, p?1 : p?2) = 0.
Return Fail if no such factors exist.

6 For each such factor, construct Λ?(x) = p?1
2h1+p?22h2. If it is a valid error-locator,

use it for correcting r. Return Fail if none of the factors yield error-locators.
7 Return those of the corrected words that are in C. Return Fail if there are no
such words.

Example 5.29. Consider a binary Goppa code of length n = 128 over F128 with
degG = 14, i.e. dimension at least n − 7 degG = 30. This has minimum dis-
tance at least 29, so Patterson’s decoder can correct 14 errors. Using the Wu list
decoder, we can correct up to 16 errors, so set τ = 16. This gives θ = 3/2 and from
Proposition 5.7 on page 131 we can choose (s, `) = (3, 26); this is also the minimal
possible. The resulting matrix to module minimise is therefore 27 × 27; assuming
zi = 0 for 5 values of i then in a typical run the weighted matrix D to be minimised
would have maxdegD = 405, degD = 10746 and ∆(D) = 9458. ♠

Remark. Similar to the case with GRS codes, remarked upon on page 143, if we
are decoding a single error beyond degG then we will have θ = 1

2 , and the rational
interpolation step will degenerate and can be performed much faster: since then both
deg p1 < 1 and deg p2 < 1, we are, in effect, searching for constants p1, p2 ∈ F2m ,
and this means that all the (yi : zi) for i ∈ E are equivalent. We therefore simply
group all the (yi : zi) into equivalence classes, and each such group gives rise to a
possible error locator. We can prune this list and remove all the small groups in the
same manner as we did for GRS codes, so we will be considering only around bnτ c
error locators in the worst case. ♦

Remark. It is important to keep in mind the asymptotics for the case of binary
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Goppa codes. The degree of the extension field m must satisfy m ≥ log2 n. To be
sure that we do not end up with a trivial code, we a priori need to choose G such that
mdegG < n, and therefore, we cannot keep degG/n a constant, as we can d/n for
GRS codes. Our decoding radius 1

2n−
1
2
√
n(n− 4 degG− 2) for large n therefore

becomes at most 1
2n(1−

√
1− log2 n

n ) ∈ o(n). So we are claiming a polynomial time
decoder in n which decodes sub-linearly many errors; with n growing, the “relative
expense” of decoding errors therefore increases. Aside from the calculation of the
syndrome, the complexity of Patterson’s minimum distance decoder (i.e. minimising
MΓ

Wu, (5.7) on page 149) is linear in degG, the decoding radius; it would be nice if
it was similarly possible to bound the list decoding complexity by degG.

A more concrete observation is that often, and for useful parameters of Goppa codes,
J2(n, 2 degG+1) is only one or two errors beyond degG. Since the necessary values
of s and ` can become rather large when decoding close to the bound, and since our
field is F2, it might in concrete cases be a much faster strategy to chase these few
extra errors: i.e. randomly guess a few error positions, flip these, and use a shorter-
range decoder afterwards. If that fails, guess different positions. In combination with
the plus-one decoder remarked upon above, one could for certain code lengths easily
imagine that this could decode e.g. two errors beyond degG cheaper than using
the full list decoder. Especially in hardware, this is intriguing, since chasing is easy
to implement, while the full module minimisation and root-finding step requires
comparatively large amounts of logic and memory. More in-depth simulation, and
possibly analysis using asymptotic expansion of the leading term, is required to say
more on for which parameters this strategy is better. See also the next section. ♦

5.3.1 Parallel decoding beyond the binary Johnson bound

One can actually easily do slightly better, and decode just beyond the binary Johnson
bound, by noting a sub-optimality in the choice of θ above, and by allowing two
parallel runs of the rational interpolation procedure. The key lies in treating two
cases depending on the parity of |E|, just like the upper bounds on the degrees of
p1 and p2 do in Proposition 5.27 on page 149. Specifically:

Lemma 5.30. In the context of Proposition 5.27 for the case |E| > degG, let τ (0)

be an even number. Choose

θ
(0)
1 = τ(0)

2 − deg g1,1 θ
(0)
2 = τ(0)

2 − 1− deg g2,2

If |E| ≤ τ (0) and is even, and if (τ (0))2 > n(θ(0)
1 + θ

(0)
2 ), then there exists parameters

s, ` with 2s ≤ ` and such that any Q ∈ F[x][y : z]` satisfying the requirements of
Theorem 5.4 on page 130 will also satisfy Q(x, p1(x), p2(x)) = 0.

Similarly, let τ (1) be an odd number. Choose

θ
(1)
1 = τ(1)−1

2 − deg g1,1 θ
(1)
2 = τ(1)−1

2 − deg g2,2
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If |E| ≤ τ (1) and is odd, and if (τ (1))2 > n(θ(1)
1 + θ

(1)
2 ), then the same statement

holds.

Proof. Consider first τ (0). Then let θ(0) = θ
(0)
1 + θ

(0)
2 = τ (0) − 1 − degG since

deg g1,1 + deg g2,2 = deg detMG
Wu = degG. As τ (0) < 2 degG + 1 then we see

τ(0)

θ(0) ≥ 2, so if (τ (0))2 > nθ(0) then by Proposition 5.7 on page 131, we can choose
parameters such thatEWu(s, `, τ (0)) > 0 and 2s ≤ `. Thus, if |E| = τ (0), Theorem 5.4
immediately implies that Q(x, p1(x) : p2(x)) = 0. As usual, for |E| < τ (0), we employ
Lemma 5.8 on page 132. By this, Q(x, p1(x) : p2(x)) = 0 as long as

min{θ(0)
1 − deg p1, θ

(0)
2 − deg p2} ≥ s

` (τ − |E|)

But if |E| is even, then by Proposition 5.27, we have θ(0)
1 −deg p1 = τ(0)

2 −deg g1,1−
( |E|2 − deg g1,1) = τ(0)−|E|

2 , and similarly, θ(0)
2 − deg p2 ≥ τ(0)−|E|

2 . Since s
` ≤

1
2 , the

requirement is satisfied. The same series of arguments proves the case for τ (1).

The important observation is now that in both the even and odd case above, θ(i) =
τi − 1− degG, i.e. 1

2 less than in the previous section. This leads to

Proposition 5.31. We can modify Algorithm 7 such that in Line 4, we instead
construct two interpolation polynomials, Q(0) and Q(1), corresponding to the choices
of θ(i)

1 , θ
(i)
2 given in Lemma 5.30 for τ (0), τ (1) chosen as the greatest integer at most

τ which is even, respectively odd. The parameters s, ` are chosen individually for the
two runs according to θ(i). In Line 5, we then instead find all p?1, p?2 which satisfy
either Q(0)(x, p?1 : p?2) = 0 or Q(1)(x, p?1 : p?2) = 0.

The algorithm is still correct and allows to choose any τ < 1
2n−

1
2
√
n(n− 4 degG− 4).

Proof. From Lemma 5.30 follows all the claims except the upper bound on the choice
of τ . Since in both the construction of Q0 and Q1, we have θ(i) = τi − 1 − degG,
for i = 0, 1 both τ (0) and τ (1) are bounded by having to satisfy

τ2
i > n(τi − 1− degG) ⇐⇒ τi <

1
2n−

1
2

√
n(n− 4 degG− 4)

Thus, choosing any τ less than the above, and then τi ≤ τ for i = 0, 1 must be
satisfactory.

Obviously, the asymptotic running time of this algorithm is intact, since we are
simply running two instances of rational interpolation instead of one. Thus again,
the computational complexities from Table 5.2 on page 144 are carried over.

Example 5.32. Consider the [128, ≥30, ≥29] code from Example 5.29. Using the
parallel decoder, we can decode this up to τ = τ (1) = 17 errors with τ (0) = 16. This
gives θ(0) = 1 and θ(1) = 2, which leads to us choosing parameters (s(0), `(0)) = (1, 12)
and (s(1), `(1)) = (7, 56) by using Proposition 5.7 on page 131. As expected, correcting
only the even errors up to 16 is quite a lot cheaper than correcting the odd ones up
to 17.
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The method can, however, also be an advantage even though we do not decode further
than the binary Johnson bound. In the same example, we could choose to decode up to
the binary Johnson bound and choose τ = τ (0) = 16 leading to τ (1) = 15. This gives
θ(0) = 1 and θ(1) = 0, which leads us to choosing parameters (s(0), `(0)) = (1, 12) and
(s(1), `(1)) = (1, 8). Minimising the two resulting matrices and root-finding in the
two found Q-polynomials should be much faster than performing only one pass with
the higher parameters (s, `) = (3, 26) which were necessary in Example 5.29. Even
better, since θ(1) = 0, we can in the odd errors-pass use the degenerate version of
rational interpolation remarked upon on page 152 and therefore perform this rational
interpolation very quickly. ♠

Remark. 1
2n−

1
2
√
n(n− 4 degG− 4) is not much bigger than J2(n, 2 degG+ 1) =

1
2n −

1
2
√
n(n− 4 degG− 2) and asymptotically not at all. However, it is a few

errors more, and for rather short codes—and the designed minimum distance of
binary Goppa codes are only really good when the codes are not too long—this is
not insignificant. As the above example shows, it can also significantly reduce the
complexity of the decoding up to the binary Johnson bound. One should also again
keep in mind the remark on asymptotic behaviour from page 152. ♦

5.3.2 Relation to Guruswami–Sudan decoding of Alternant
codes

As mentioned in Section 3.6, Kötter and Vardy described how the Guruswami–Sudan
algorithm can be made to decode any Alternant code up to the small-field Johnson
bound. More precisely, an Alternant code over Fq is a sub-field sub-code of some
GRS code over, say, Fqm . Therefore, the Guruswami–Sudan algorithm can trivially
be applied to decode the Alternant code up to J(n, d), i.e. the Johnson bound of
the GRS code’s minimum distance d. However, this can be improved by integrating
into the method, through a clever choice of multiplicities, that we are searching for
a codeword in Fq and not Fqm : instead of choosing just one multiplicity s for all
(αi, r′i), one additionally chooses a lower multiplicity ŝ for each of the points (αi, γ)
for γ ∈ Fq \ {r′i}. Choosing all s, ŝ, ` in the right way, this turns out to increase the
decoding radius to Jq(n, d), i.e. the q-ary Johnson bound mentioned in Section 3.6.
We’ll call this method GS+KV; this was circulated in a preprint of [KV03a] but
removed in the published version; it is described by Roth [Rot06, Section 9.6]
and for the extension to Goppa codes mentioned below by Augot, Barbier and
Couvreur [ABC10].

Any Goppa code is also an Alternant code, see e.g. [MS77], so we can use the above to
decode up to Jq(n, d). However, sometimes we know that the Goppa code has better
minimum distance than d, in particular for binary Goppa codes. This good minimum
distance is usually a consequence of an elegant result by Sugiyama et al. [SKHN76],
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which equates Goppa codes defined by two different Goppa polynomials:

Γ
(∏

i

Gaii , L
)

= Γ
(∏

i

Gai+bii , L
)

bi =
{

1 if ai ≡ q − 1 mod q

0 otherwise

Here, the Gi are distinct, irreducible polynomials, and q is the size of the field.
In particular, if q = 2 and G is square-free then Γ(G,L) = Γ(G2, L). Using the
right-hand side code, we are told that the left-hand side code has basically twice
the minimum distance we would expect from looking at its surrounding GRS code.
This fact is what we stated in the beginning of Section 5.3 when we claimed that
the minimum distance was 2 degG+ 1 (and not degG+ 1)7.

Naturally, we are interesting in decoding such a Goppa code up to J2(n, 2 degG+ 1)
and not just J2(n, degG + 1). This we saw how to do using Wu list decoding in
Section 5.3, but using the above identity on Goppa codes, we have another method:
just use the GS+KV on the GRS code surrounding the Goppa code Γ(G2, L)!

Intriguingly, it turns out that the parameters of this method are related to the
parameters of the Wu method in a manner analogous to the relation of Section 5.2.2.
Specifically, it is easy to show in the same manner as in Proposition 3.4, that the
parameters s, ŝ, `, τ are valid choices for the GS+KV whenever E[n,k]

GS+KV(s, ŝ, `, τ) >
0 where

E
[n,k]
GS+KV(s, ŝ, `, τ) = (`+1)(s(n−τ)+ ŝτ)−

(
`+1

2
)
(k−1)−

(
s+1

2
)
n−

(
ŝ+1

2
)
n(q−1)

We then have

Proposition 5.33. E[n,n−2 degG]
GS+KV (`−s, s, `, τ) = 2E[n,τ−1/2−degG]

Wu (s, `, τ) when q =
2.

Proof. By insertion into Definition 5.5 on page 130 of E[n,θ]
Wu and some rewriting.

Thus, if we can Wu list decode τ errors in a binary Goppa code with Goppa
polynomial G, then we can GS+KV list decode τ errors in a binary Alternant
code with minimum distance 2 degG+ 1. Incidentally, Γ(G2, L) is exactly such an
Alternant code. This also immediately leads to lower bounding the decoding radius
of the GS+KV in the binary case:

Corollary 5.34. The GS+KV can decode an [n, ≥n − m(d − 1), d] Alternant
code over F2 with designed minimum distance d and n ≤ 2m up to J2(n, d) =
1
2n−

1
2
√
n(n− 2d).

Since the relation of Proposition 5.33 restricts the parameters of GS+KV to s+ŝ = `,
we cannot from this vantage point be sure that there are not better choices of s, ŝ, `
leading to greater decoding radii; it turns out one cannot do better, but for that
we need to analyse E[n,k]

GS+KV directly, see e.g. [Rot06, Section 9.6 and Problem 9.9].
7This high minimum distance of course also follows from Patterson’s rewrite: we could not

perform unique decoding with (5.5) on page 148 up to degG errors if the minimum distance was
not at least 2 degG+ 1.
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Of course, the relation also does not prove that the decoding radius of GS+KV for
q > 2 is Jq(n, d), but this is shown in the same reference.

Proposition 5.33 also implies closed form expressions for the parameters of the
GS+KV for achieving this decoding radius, through the parameters of Proposition 5.7
on page 131. Again, since we are restricting ourselves to s+ ŝ = `, we can’t imme-
diately be sure that the near optimality of the parameter choices of Proposition 5.7
on page 131 carries over, since other relative choices of s, ŝ, ` might be smaller.

Example 5.35. From Proposition 5.33, it follows that the [128, ≥30, ≥29] code
from Example 5.29 on page 152 can be GS+KV decoded up to 16 errors, and that
we can choose (s, ŝ, `) = (23, 3, 26). As discussed in Section 3.6, Lee and O’Sullivan
[LO06] gave a method to compute a basis for a module in which resides a satisfactory
interpolation polynomial, but I have not looked deeply into how this basis turns out
and how its key properties are, so unfortunately I can not compare with the module
we had to minimise for Example 5.29, described in Example 5.17 on page 139. As
an alternative, we can compare the size of the linear system of equations which would
have to be solved, if we were to use Gaussian elimination for finding Q, by picking out
the relevant terms of E[n,τ−1/2−degG]

Wu (s, `, τ) respectively E[n,n−2 degG]
GS+KV (s, ŝ, `, τ): for

Wu list decoding, we would get 768 equations in 770 unknowns, while for GS+KV we
would get 36 096 equations in 36 099 unknowns. Note that the number of unknowns
is the number of coefficients in the respective Q polynomials, so the size of this also
plays a role in the root-finding step. ♠

5.4 Related work

The Wu list decoder is relatively recent, so the amount of related work is limited.
The decoder was proposed for GRS and binary BCH codes in [Wu08], but the first
preprint of the article already circulated in early 2007. It is still essentially the only
alternative to Guruswami–Sudan for decoding GRS codes up to J(n, d).

Wu developed the algorithm as an extension to the Berlekamp–Massey algorithm
applied to the syndrome key equation. For us in Section 5.2, it was easy to continue
after the analogous computation of the module minimisation, since we had a Gröbner
basis; however, Wu basically has to show all the properties such a basis entails, in a
less transparent setting, for the Berlekamp–Massey. My own master’s thesis [Nie10]
was a more verbose exposition of this approach, and for full, clear proofs of all
necessary properties, the algorithm explained from end to end becomes lengthy and
very detailed; indeed, one gets the feeling that had a single detail in the underlying
algebra been different, the algorithm could not work. I hope that the exposition
given here does not invoke the same feeling.

Trifonov was the first to bring in the less fragile, more flexible language of Gröbner
bases [Tri10a]. Instead of using a key equation, he develops the algorithm from
the Welch–Berlekamp (see e.g. Section 4.3.1); the resulting module to minimise is
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still MΓ
Wu of (5.2) on page 140, however. Trifonov also described Q as a trivariate

polynomial, where Wu had originally used a less algebraically transparent language
of bivariate polynomials whose second variable is allowed to take the value ∞.
This allowed Trifonov to extend his binary exponentiation interpolation algorithm
discussed in Section 3.6 to handle the rational interpolation case. That discussion
carries over to this extended version, in particular with regards to the complexity.
Trifonov also performed an analysis of the parameter choices for the rational in-
terpolation; in [Tri10a], however, there was a mistake in that he requested one to
pick ` from an interval which was not guaranteed to hold any integers. This was
corrected in the, otherwise almost equivalent, journal version [TL12] after having
been pointed out by a reviewer. The resulting choice of parameters is equivalent to
ours in Proposition 5.7 on page 131.

About a year later than Trifonov’s conference contribution, Ali and Kuijper published
a journal article [AK11] containing some of the same ideas; in particular obtaining
a Gröbner basis for the Welch–Berlekamp module and continuing the Wu approach
on this. This article has a number of issues I feel obliged to point out:

• They completely disregard that there might be points at infinity, so their descrip-
tion of the rational interpolation step is not sound. They do not use the trivariate
polynomials of Trifonov.

• They consider their algorithm a “minimal list decoder” since it, like our multi-
trial decoder in Section 3.3, only finds the list of nearest codewords; however,
they turn the usual Wu list decoder into one such in a trivial manner: begin by
half-the-minimum distance decoding and expand the decoding radius gradually,
running the whole decoding algorithm each iteration. The only computation they
save from one iteration to the next is the computation of a Gröbner basis ofMWu;
however, the price for this computation is completely overshadowed by that of
just a single instance of rational interpolation. But in their complexity analysis,
at the very end of the paper, they forget the factor τ −d/2 for running that many
instances of the interpolation algorithm!

• They analyse the parameter choices and find a minimal s for which there exists
a valid choice of ` (finding the same as we in Proposition 5.7, though specialised
for decoding of GRS codes), but instead of choosing the minimal accompanying
`, they search for one which minimises the quantity `T , where T is the number
of coefficients in Q. The rationale is that this measure `T is dominating in the
memory complexity of the Kötter interpolation method, which they use (that
algorithm was also discussed in Section 3.6). However, that memory complexity
estimate is strictly asymptotic, and since their found `T is not asymptotically
better than e.g. from choosing our ` (apparently), it is completely unclear whether
there is benefit or penalty memory-wise in seeking minimal `T instead of minimal
`, and furthermore what impact this has on the computational complexity.

It should also be mentioned that neither Trifonov nor Ali and Kuijper recognises
the need for Lemma 5.8 on page 132: i.e. that it is not immediately clear that in a
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decoding instance where fewer than τ errors have occurred, the rational interpolation
procedure still finds the sought coefficient polynomials p1, p2. This is an important
complication: indeed, this was the root of the surprising non-integer choice of θ1, θ2
in the Wu list decoder for binary Goppa codes in Section 5.3.

Wu himself proposed closed expressions for choosing s, ` in [Wu08], and analysed
how these compared to that of the GS. The widespread belief that “Wu’s list decoder
needs lower multiplicity than Guruswami–Sudan” comes from this comparison. How-
ever, this comparison is quite unfair: it compares the asymptotically satisfactory,
but clearly suboptimal, parameters described by Guruswami and Sudan in [GS99]
with those of Wu; but Wu had simply analysed the governing equation for his list
decoder a bit more tightly and then easily came out on top in this comparison. The
true comparison is as we showed in Section 5.2.2: ` can always be chosen the same,
and the multiplicities are reflected around `/2; for τ < n/2, Wu requires the lower
s, while it requires the higher s for τ > n/2. This is also usually in the Wu list
decoder’s favour, since practical applications are rarely working over channels that
corrupt more than half the signal!

Wu also described in [Wu08] how to use his paradigm to list decode BCH codes up
to J2(n, d) = 1

2
(
n −

√
n(n− 2d)

)
, i.e. the binary Johnson bound for the designed

minimum distance d. The method utilises a simple relation in the syndrome polyno-
mials of BCH codes, enabling one to construct a syndrome polynomial of basically
twice the degree. I have not in depth examined how this translates to the Gröbner
basis description of the key equation, but I expect no conceptual difficulties with
such an adaption.

Bernstein [Ber11b] seem to have described an algorithm almost identical to the
Wu list decoder applied to binary Goppa codes, but coming from the Coppersmith–
Howgrave-Graham language (see Section 3.6). He also explains how Λ can be ob-
tained as a small linear combination of the rows of a minimised MΓ

Wu (from (5.7)
on page 149), and he then uses the function field analogue of Coppersmith and
Howgrave-Graham’s technique to obtain this linear combination. However, for some
reason he does not obtain the same list decoding radius, but only J(n, 2 degG+1) =
n−

√
n(n− 2 degG− 2); this is the same radius one achieves if decoding the GRS

code surrounding Γ(G2, L) using the Guruswami–Sudan (and not using the Kötter–
Vardy multiplicity assignment). See e.g. Figure 5.2 on page 148. I have not studied
the paper well enough to be certain why his decoding radius is inferior, but it seems
to be due to the setup: in the way he invokes Coppersmith–Howgrave-Graham, he
is in effect looking for g2

1,1/g
2
2,1, and not, as we g1,1/g2,1. It is possible he is simply

missing the straightforward square-rooting that we performed towards the end of
the proof of Proposition 5.27 on page 149.

Shortly afterwards, Bernstein published another decoding method [Ber11a]; this
was already mentioned in Section 3.6 since it is essentially the GS+KV, where Q
is found by module minimisation of an explicit basis. Again, he is coming from
the Coppersmith–Howgrave-Graham language. As Bernstein himself points out,
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and by the discussion in Section 5.3.2, this can decode a binary Goppa code up to
J2(n, 2 degG+ 1).



Chapter 6

Conclusion

The possibility of decoding algebraic codes, and in particular GRS codes, beyond
half the minimum distance is one of the great advancement in the field within the
last two decades. For practical applications in the traditional coding setting, there
are still some stumbling blocks, primarily the increased computational complexity
of executing them compared to classical key equation decoding.

In this thesis, we have investigated how three decoding paradigms—the Guruswami–
Sudan, Power decoding and the Wu algorithm—at their computational core need to
solve certain F[x]-linear problems, and how this can be accomplished using module
minimisation. The main conclusions are that using the fastest techniques in the
literature for module minimisation, we can meet or improve the fastest, previously
known realisations of each of the decoding paradigms. Moreover, it seems that many
previous approaches are computationally equivalent to ours when applying the
Mulders–Storjohann or Alekhnovich module minimisation algorithms. This work
therefore unifies and provides a better foothold of a long history of algebraic decoding
algorithms, encompassing key equation solving by Berlekamp [Ber68] up to Gröbner
basis approaches to decoding Hermitian codes [LO09], along with several completely
new decoders in between.

As we have seen, module minimisation is a powerful technique, and it has been
applied throughout this thesis with repetitive simplicity. The divide between the
modelling of the decoding problem and the computational algebra for performing
the module minimisation makes the methods conceptually easy to understand, and
has proven to be highly effective in attaining the best known complexities. However,
there are limitations to module minimisation; in particular, there are good reasons to
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believe that the worst-case complexity of the Giorgi–Jeannerod–Villard algorithm
in the pure setting, and with n � m can not really be improved, since module
minimisation can not be performed faster than computing the determinant [GJV03].
Therefore, if we wish to further improve the worst-case complexity of any of the
three studied decoding paradigms, we need to seek outside the realm of algorithms
which are roughly equivalent to module minimisation; in particular, I believe this
includes more or less all known generalisations of the Berlekamp–Massey and the
Euclidean algorithm. This is a key insight: the often intricate and complicated
generalisations of these two classical algorithms seem in all cases I have studied to
be closely describable as one of the module minimisation algorithms presented here;
so whenever the urge arise to create yet another generalisation of either of these,
one should first be convinced that the problem is not easily solvable by module
minimisation, in which case an asymptotic benefit is likely not attainable. Sakata’s
algorithm is possibly a prominent exception to this, see the discussion in the next
section.

The thesis has also touched upon many other theoretical and practical aspects of
algebraic coding, in particular generalisations of the paradigms to other codes. We
will close the thesis with a discussion of many extensions of the work which it could
be interesting to pursue.

6.1 Future directions

The following discussion is divided into three subsections, roughly based on how
difficult the extensions would be to carry out. Many of these have already been
mentioned earlier in the thesis in remarks or in the Related work sections.

Polishing the results

These are a few obvious improvements to the results which could easily have been
part of this thesis, but which I, primarily due to lack of time, did not complete.

• For a 2D key equation with σ = 1, ν = 1 and Gj = xnj for some nj ∈ N0,
then Roth and Ruckenstein’s generalisation the Berlekamp–Massey [RR00] can
be applied, and its complexity estimate is significantly better than that of the
Demand–Driven algorithm; see discussion in Section 2.7. I am quite certain that
the two methods here are computationally, step-for-step equivalent, which means
that it is our analysis of the Demand–Driven algorithm which is lacking. A similar
discrepancy is present for higher σ between the Zeh–Gentner–Augot algorithm
and the Demand–Driven.

• It would be elegant if we can prove that in the step-wise interpolation method
of Section 3.3, we can always choose the optimal path; see Section 3.3.1.
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• Study the performance of the module minimisation algorithms in the Guruswami–
Sudan where we use different multiplicities for different points. This variant of
Guruswami–Sudan is used in soft-decision decoding [KV03a] or decoding of Alter-
nant codes, see Section 3.6 and Section 5.3.2. Lee and O’Sullivan gave a simple
algorithm for producing a basis [LO06], but did not write the basis explicitly,
which makes analysis on the orthogonality defect more difficult; it does not seem
difficult, however, to extend the arguments of Theorem 3.24 on page 60 to en-
compass varying multiplicities. As we have seen, the module minimisation of Lee
and O’Sullivan is not the fastest, which means that pointing out that one should
use the Alekhnovich or the GJV algorithm will lead to improved complexity.

• There are several things which needs to be investigated in our Power Gao de-
coding of Hermitian codes. Most prominently, the relation of Power Gao to
Power Syndromes, in particular extending Proposition 4.10 on page 103; extend-
ing Proposition 4.7 on page 101; and how to incorporate majority voting, see
discussion in Section 4.5.

• The interpolation algorithm for Hermitian codes of Section 3.5 should be readily
generalisable to a larger class of AG codes; in particular, the simple Cab curves,
also handled by Brander in [Bra10]. The same goes for the Power Gao decoder
for Hermitian codes.

Improving the results

These are slightly larger projects which would complement and improve understand-
ing of this thesis’ results.

• The asymptotic analyses we have performed for the range of different decoding
approaches reveal an interesting fact: they are basically all equally fast! This is of
course in an asymptotic setting, and is also disregarding certain important details
such as the Wu decoder using different parameters than the Guruswami–Sudan,
but it is still an important observation. To evaluate which method will perform
best for concrete parameter choices, we need to improve our analysis, e.g. by
re-analysing the methods using asymptotic expansion (i.e. retaining the constant
factor of the leading term of the asymptotic expression throughout).

• We have in this thesis exclusively focused on the worst-case running time. Of
greater import, at least on software platforms, is the average running time, and
it would therefore be interesting to examine how the module minimisation al-
gorithms perform in this metric. In particular, informal (and incomplete) ex-
periments I have performed with Codinglib [Nie13a] seem to indicate that the
number of row reductions performed by Mulders–Storjohann is usually close
to the bound, but that the degrees of the matrices multiplied together by the
Alekhnovich algorithm when “merging” its computation trees are of much lower
degree than expected. These merges dominate the complexity, and my conjecture
is that the average running time of the Alekhnovich algorithm is therefore much
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better. Of course, it is necessary to specify, in one way or another, from which
distribution the input comes, and this might be difficult to do in a formal way
with the matrices coming from decoding instances.

• This thesis opens up two new approaches for upper bounding the failure prob-
ability of Power decoding: by examining Power Gao decoding, or by examining
Coppersmith–Sudan. Either of these seem to be more amenable to analysis than
the original Power Syndromes, so it is my hope that such an analysis would be
successful.

• We saw how to Wu list decode binary Goppa codes up to the binary Johnson
bound, and the obvious question is if it is possible to decode q-ary Goppa codes,
or even q-ary Alternant codes, up to the q-ary Johnson bound with the Wu
paradigm. In the Goppa case, the obvious idea is to do a q-ary decomposition of
Λ, similar to the decomposition in a(x) and b(x) that we did; however, it is not
clear how this relates to the error evaluator, and how to get key equations which
could be Wu list decoded afterwards.

• It would be very interesting to understand Sakata’s algorithm [Sak90] in light of
module minimisation. This algorithm works over N dimensions, so forcing the
problem down into a matrix problem over F[x] might imply explosively large
matrices; on the other hand, Sakata’s algorithm itself needs a large number
of “auxiliary polynomials”, which would likely correspond to rows of this big
matrix. The question probably boils down to whether the seemingly dynamic
and lazy-evaluated nature of Sakata’s algorithm can be captured by a statically
sized F[x] matrix. In the case of classical key equation decoding Hermitian codes,
i.e. the ` = 1 in Section 4.4, module minimisation was at least as fast as Sakata’s
algorithm, which sets N = 2 in this case. In case such a thing is tractable in
general, it is possible that the notion of 2D key equation is not powerful enough to
encompass what Sakata’s algorithm can handle so we might need a generalisation.
One should then also look at generalising the Demand–Driven algorithm, and
this generalisation might even lead to an algorithm closely related to Sakata’s.

• Kötter proposed a parallel variant of the Berlekamp–Massey extension to AG
codes in [Köt98], providing a significant speedup in hardware or on multi-processor
software architectures. It would be interesting to investigate whether a similar
parallelism is possible in Mulders–Storjohann or the Demand–Driven algorithm;
especially the latter is very close to the Berlekamp–Massey algorithm, so this
might well be possible. The D&C variants are less amenable, since they seem to
need the entire problem when “merging” computation trees using fast multipli-
cation techniques.

• As discussed in Section 3.6, Lee and O’Sullivan’s approach for finding Q for
Guruswami–Sudan decoding of Hermitian codes has been generalised to a larger
class of AG codes [GMR12]. It would be interesting to see whether the faster
D&C module minimisation techniques apply to in this work as well.
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Extending the results

These are ideas for more vague extensions and generalisations; I am not sure how
precisely they should be done or if they are even possible.

• The Wu paradigm can be seen as a way to solve a simple key equation, i.e. σ =
ρ = 1, when one has certain knowledge on the zeroes of the sought polynomials.
If it was possible to extend this for σ > 1, then that would have immediate
applications in extending Power decoding (performing this Multi-Wu after failed
Power decoding), and in other areas where Multi-LFSR solving has been useful,
e.g. Interleaved Reed–Solomon codes and decoding cyclic codes. Something like
this also seems necessary to formulate a Wu list decoder for AG codes.

The first step holds completely analogous when σ > 1, i.e. by Proposition 2.14 on
page 17 the sought solution is a small F[x]-linear combination of the found weak
Popov form. The next step is more difficult, that is, we should perform a kind of
multi-dimensional interpolation through at least τ of n points from F× P`−1(F).
The generalisation from Guruswami–Sudan to rational interpolation is a small
one, since it just moves from F×F to F×P1(F), and we are therefore here talking
about a conceptually broader generalisation.

• As we have discussed, Power decoding has strong ties to Sudan decoding, that
is Guruswami–Sudan when s = 1. It is quite obvious to seek a Power decoding
with multiplicities, i.e. s > 1, and many people have tried. Inspired by the Q-
finding approaches of Chapter 3, it seems clear that such a generalisation should
incorporate G(x) to higher powers; however, I have failed in finding a key equation
relation for such higher G, and perhaps the necessary relation will not take this
form. A possibly fruitful approach is to study the Power decoding↔ Coppersmith–
Sudan relation of Section 4.3.2: the latter algorithm already supports s > 1, and
it might be possible to generalise the relation, thereby arriving by a back door
at a Power decoding with multiplicities.

• There is a number of clear connections between the Guruswami–Sudan list decoder
for GRS codes and the Wu decoder; notably of course the decoding radius, but
also the duality in parameter choice given in Section 5.2.2. It feels like there
should be a closer algebraic connection which could more satisfactorily explain
these agreements, just as we explained a closer algebraic connection between
Power decoding and Sudan decoding in Section 4.3.

• It would be very interesting to generalise the multi-trial decoding algorithm of
Section 3.3 for the soft-decision Kötter–Vardy algorithm with varying multiplici-
ties. If this was possible, the result could very well be a soft-decision list decoder,
with fast enough average case complexity for practical use on e.g. software plat-
forms.
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Appendix A

List of symbols and notation

This is a short description of most of the “globally defined” symbols and operators
used throughout the thesis; in particular, they contain the ones that we might use
far from their original definition.

Note that in a few sections, some of the symbols are redefined and used in an
analogous but different manner; for instance, many code-pertaining symbols are
redefined for Hermitian codes in Section 4.4. Only the common definition is given
here.
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F Some given finite field.
C The current code in question, usually a GRS code.
n The length of the codewords in C.
k The dimension of C. For GRS codes, all codewords are obtained by eval-

uating (with evα,β) a polynomial of degree at most k − 1.
d The minimum distance of the code. For GRS codes d = n− k + 1.
evα,β The evaluation function for producing codewords in the GRS code C: for

f ∈ F[x] then evα,β(f) =
(
β1f(α1), . . . , βnf(αn)

)
.

c = (c1, . . . , cn). The sent codeword.
r = (r1, . . . , rn) = c+ e. The received codeword.
f(x) The evaluated information word; i.e. c = evα,β(f).
α The evaluation points for the GRS code C. n distinct elements of F.
β The column multipliers for the GRS code C. n non-zero elements of F.
r′ = (r1/β1, . . . , rn/βn). Short-hand.
e = (e1, . . . , en). The error vector.
E = {i | ei 6= 0}. The error positions.

τ Usually a decoding radius. Also as a function τ(s, `) meaning the greatest
integer such that E[n,k]

GS (s, `, τ) > 0. In Section 5.1, the number of points
through which a solution to the rational interpolation problem should at
least pass.

s The “multiplicity” when performing Guruswami–Sudan decoding or Wu
decoding.

` The “list size” when performing Guruswami–Sudan decoding or Wu de-
coding.

E
[n,k]
GS Guruswami–Sudan satisfiability function for the parameters; a Q polyno-

mial exists for the parameters if E[n,k]
GS (s, `, τ) > 0 for the given code C.

Definition 3.3 on page 49.
E

[n,θ]
Wu Wu satisfiability function, similar to E

[n,k]
GS , but dependent on the ra-

tional interpolation problem. For decoding a GRS code, θ = 2τ − d.
Definition 3.3 on page 49.

J(n, d) = n−
√
n(n− d). The asymptotic Johnson radius. An upper bound on

the decoding radius of both the Guruswami–Sudan and Wu list decoders.
Section 3.6.

Jq(n, d) = q−1
q (n −

√
n(n− q

q−1d)). The q-ary Johnson radius. The decoding
radius of the Wu list decoder for binary Goppa codes, where d = 2 degG+
1. Section 3.6 and Section 5.4.
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G(x) =
∏n
i=1(x− αi). Definition 3.22 on page 60.

R(x) The Lagrangian through {(αi, r′i)}. Definition 3.22 on page 60.
R(t)(x) The Lagrangian through {(αi, r′ti )}. (4.1) on page 95.
Λ(x) =

∏
i∈E(x− αi). The error locator. Definition 4.1 on page 95.

Ω(t)(x) =
∑
j∈E ζje

(t)
j

Λ(x)
x−αj . The powered error evaluator. Definition 4.1 on

page 95.
ζi =

∏
j 6=i(αi − αj)−1. See page 95.

S
(a,b)
◦ (x) = R(x)aR/G(x)aG . Power series related to “powered” syndromes. (3.9)

on page 72.
S

(a)
• (x) = R

(a)(x)/G(x). “Powered” syndromes power series. (4.4) on page 102,
but see also Proposition 4.11 on page 104.

∇Qt An upper bound on the x-degree of Q[t](x) for polynomial or rational
interpolation. ∇Qt = s(n − τ) − t(k − 1) for Guruswami–Sudan, while
∇Qt = sτ − tθ1 − (`− t)θ2 for rational interpolation.
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Operators

deg v If v ∈ F[x]m then deg v = maxi{deg vi}.
deg V If V ∈ F [x]m×n then deg V =

∑
i deg vi, i.e. it’s ’‘summed row-

degree”.
maxdeg V If V ∈ F[x]m×n then maxdeg V = maxi,j{deg vi,j}.
LP(v) = max{j | deg vj = deg v}, v ∈ F[x]m. Note that if more than one

entry in v has degree deg v, it is the right-most entry which is the
leading position.

LP≤(v) The index i such that viei ≥ vjej for j 6= i, where v ∈ F[x]m and ≤
is a module monomial ordering. Section 2.1.2.

LT(v) = vLP(v), v ∈ F[x]m. Also LT≤(v) = vLP≤(v).
ψ(v) = m deg v + LP(v), where v ∈ F[x]m. Definition 2.20 on page 19.
deg(w1,...,wκ) If p = α

∏
xθii ∈ F[x1, . . . , xκ] then deg(w1,...,wκ) p =

∑κ
i=1 wiθj,i.

If p is a sum of such monomials with distinct exponent lists, then
deg(w1,...,wκ) p is the maximal of each monomial’s weighted degree.

deg p If p(x) ∈ F[x], then just the usual degree. If p ∈ F[x1, . . . , xκ], then
deg p = deg(1,...,1) p.

degxi p = deg(0,...,0,1,0,...,0) where the 1 is on the ith position.
LC(p) If p(x) =

∑
i pix

i ∈ F[x] then LC(p) = pdeg p.
Q[t] If Q =

∑
iQi(x)yi ∈ F[x, y] then Q[t] = Qi(x). If Q =∑

iQi(x)yiz`−i ∈ F[x][y : z]` then Q[t] = Qi. See also below for its
meaning in the Hermitian codes sections.

Φν,w The weight-embedding function, Definition 2.11 on page 16:
Φν,w(v) =

(
xw1v1(xν), . . . , xwmvm(xν)

)
�ν,w Weighted module monomial ordering. Definition 2.9 on page 15.
E Used to depict degree upper bounds on vectors and matrices contain-

ing polynomials. If p ∈ F[x] then p E n for any n ≥ deg p. E is then
extended element-wise to vectors and matrices.

[d]p For p ∈ F[x] with deg p ≤ d then [d]p = xdp(x−1). We often simply
write p when d as an upper bound on the degree of p is implied.

pos(x) = x for x > 0 and pos(x) = 0 for x ≤ 0.

Complexity analysis

P(t) Complexity of multiplying together two polynomials of degree up to
t. We relax it as P(t) = O(t log t log log t).

M(m) Complexity of multiplying together two matrices of Fm×m. We relax it
as the trivial M(m) = O(m3). Note that one can multiply together two
matrices of F[x]m×m, each of max-degree at most t, in time M(m)P(t).

See also the description in Section 1.2.



171

Hermitian codes

q The Hermitian code is defined over Fq2 and has length up to q3.
H(X,Y ) = Y q + Y −Xq+1; the Hermitian curve equation.
F = Fq2(x, y) where x, y satisfy H(x, y) = 0. The Hermitian function field.
g = 1

2q(q − 1); the genus of the Hermitian curve.
Pi The rational points of the Hermitian curve; for i =∞, the point at infinity.
Pα,j The rational points grouped together. α ∈ Fq2 , and Pα,j are the points

lying above the zero of x − α for j = 1, . . . , q. Thus (x − α) =
L(−

∑q
j=1 Pα,j + qP∞); Proposition 3.44 on page 79.

P = {P1, . . . , Pn, P∞}.
P? = {P1, . . . , Pn}.
Я = Fq2 [x, y] = L(∞P∞).
m Maximal pole order at P∞ of functions evaluated to construct the Her-

mitian code; Definition 3.48 on page 80.
G =

∏n/q
i=1(x− αi) ∈ Я; Definition 3.54 on page 83.

R Non-zero element of Я satisfying R(Pi) = ri for i = 1, . . . , n;
Definition 3.54 on page 83.

R(t) Non-zero elements of Я satisfying R(t)(Pi) = rti for i = 1, . . . , n and
t ∈ N0; (4.7) on page 113.

Λ The error locator: the non-zero polynomial in L(−
∑
i∈E Pi+∞P∞) with

minimal degH and LCH(Λ) = 1; Definition 4.18 on page 113

degH : Я 7→ N0 ∪ {−∞} by degH p = −vP∞(p) or equivalently degH(xiyj) =
qi+ (q − 1)j if j < q; Definition 3.45 on page 79.

degH,w If Q ∈ Я[z] with Q(z) =
∑degz Q
t=0 Qt(x, y)zt, then degH,wQ =

max{degHQt + tw}.
Q[t] If Q ∈ Я[z] with Q(z) =

∑degz Q
t=0 Qt(x, y)zt, then Q[t] = Qt.

g(·) : Я 7→ Fq2 [x]q by g(
∑q−1
i=0 y

igi(x)) =
(
g0, . . . , gq−1

)
; page 84.

gz(·) : Я[z]` 7→ Fq2 [x](`+1)q, where Я[z]` are elements of Я[z] of degree at most
`, by gz(

∑`
t=0Qtz

t) =
(
g(Q0) | . . . | g(Q`)

)
; page 84.

q(·) : Я 7→ Fq×(2q−2)
q2 is the multiplication matrix of (3.14) on page 84.

Ξ The H reduction matrix of (3.15) on page 84.
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