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On Rational-Interpolation Based List-Decoding and
List-Decoding Binary Goppa Codes

Peter Beelen, Tom Høholdt, Fellow, IEEE, Johan S. R. Nielsen, and Yingquan Wu, Senior Member, IEEE

Abstract—We derive the Wu list-decoding algorithm for Gen-
eralised Reed-Solomon (GRS) codes by using Gröbner bases
over modules and the Euclidean algorithm (EA) as the initial
algorithm instead of the Berlekamp-Massey algorithm (BMA).
We present a novel method for constructing the interpolation
polynomial fast. We give a new application of the Wu list decoder
by decoding irreducible binary Goppa codes up to the binary
Johnson radius. Finally, we point out a connection between the
governing equations of the Wu algorithm and the Guruswami-
Sudan algorithm (GSA), immediately leading to equality in the
decoding range and a duality in the choice of parameters needed
for decoding, both in the case of GRS codes and in the case of
Goppa codes.

Index Terms—list decoding, rational interpolation, list size, Reed-
Solomon code, Goppa code, Johnson radius

I. INTRODUCTION

IN [1], Wu presented a decoding algorithm for Generalised
Reed-Solomon (GRS) codes which decodes beyond half the

minimum distance. Just like the Guruswami-Sudan algorithm
(GSA) [2], the decoder might return a list of candidate code-
words, justifying the term list decoder. The two algorithms
share many other properties, most notably the decoding radius:
they can both decode an [n, k, n − k + 1] GRS code up to
n−

√
n(k − 1); the so-called Johnson radius.

The Wu list decoder reuses the output of the Berlekamp-
Massey algorithm (BMA). The BMA has long been used for
solving the Key Equation of GRS codes [3] whenever the
number of errors is less than half the minimum distance.
Wu noted that the result of the BMA still reveals crucial
information about solutions to the Key Equation when more
errors have occurred, and used this for setting up a rational
interpolation problem. This problem can be solved by a
generalisation of the core of the GSA, which solves a similar
problem for polynomials.

The equivalence of the BMA and a special utilisation of the
extended Euclidean algorithm (EA) is well-studied, e.g. [4]–
[6]. Inspired especially by Fitzpatrick [4], we recast the Key
Equation and the first part of the Wu list decoder into the
language of Gröbner bases over certain modules, making it
possible to use the EA; a generally more flexible and algebraic
approach than the BMA.

The rational interpolation problem is attacked by first con-
structing an interpolation polynomial. This can be done
by solving a large linear system of equations, but that is

prohibitively slow. We give a fast method for constructing
the interpolation polynomial which has the same asymptotic
complexity as the fastest known methods for polynomial
interpolation as used in the GSA. This also renders the Wu
list decoder as fast as the fastest variants of the GSA.

The decoding radius and the choice of auxiliary parameters
in the Wu list decoder is governed by having to satisfy a
certain inequality, just as in the GSA; we point out that in
the case of decoding GRS codes, the inequality in the Wu list
decoder becomes the governing inequality by a simple change
of variables, immediately implying that they have the same
decoding radius and always use the same list size.

We show how the Wu list decoder can be adapted to decode
binary Goppa codes. The algorithm is a continuation of
the Patterson decoder [7], and the adaption of the Wu list
decoder to this case is particularly simple due to the use
of the EA instead of the BMA. Similarly to the case of
GRS codes, we point out a connection between the governing
inequality of the decoding parameters and the equation for the
GSA with the Kötter-Vardy multiplicity assignment method
(GSA+KV). This immediately yields that the methods have
the same decoding radii, namely up to the binary Johnson
radius 1

2n −
1
2

√
n(n− 2d), where n is the length and d the

designed minimum distance of the Goppa code. Using our fast
interpolation method, also this algorithm is as fast or faster
than the previously known algorithms with the same decoding
radius.

A. Related Work

The Wu list decoder is fairly recent and not much work
has been done on it yet. In both Trifonov [8], [9] and Ali
and Kuijper [10], an algorithm very closely related to the
Wu list decoder for GRS codes is reached using a Gröbner
basis description. The algorithm, however, revolves around
two polynomials G(x) and R(x), where G(x) is defined as
the polynomial vanishing at the evaluation points of the code
and R(x) is the Langrange polynomial through the received
word coordinates at the evaluation points. These polynomials
are of higher degree than those used by the original Wu list
decoder: the syndrome polynomial and a “modulus” xn−k.
More importantly, they are quite specific to the setting of
decoding GRS codes.

We take a slightly different approach, closer to the original
one by Wu. We essentially show how rational interpolation
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can help in solving Key Equations; that is, equations of the
form

γ(x)q(x) ≡ δ(x) mod p(x)

where p, q are known polynomials, and one seeks γ and δ of
low degree while additionally having certain knowledge on the
evaluations of γ and δ. In the special case of GRS codes, this
is exactly what the Wu list decoder does, but our description
also immediately makes it clear that this can be used for binary
Goppa codes.

The construction of the interpolation polynomial in the GSA
is one of the most computationally expensive parts of that
algorithm. A fast method for this is by Beelen and Brander
[11] which refines one by Lee and O’Sullivan [12]; the main
gain comes from solving the core polynomial-matrix problem
using a faster method by Alekhnovich [13]. There is an even
faster method for this matrix problem by Giorgi et al. [14], and
using this in [11] yields the fastest known way of constructing
the interpolation polynomial. Bernstein uses essentially the
same approach for his GSA variant and achieves the same
speed [15], both for Reed-Solomon codes and alternant codes;
see also below. We show how this approach can be extended
for rational interpolation, which ultimately leads to the Wu list
decoder having the same asymptotic complexity as the GSA.

Binary Goppa codes have long been known to have much
better minimum distances than their underlying GRS codes: if
constructed with Goppa polynomial of degree t, the minimum
distance is at least 2t+ 1, while it’s GRS code has minimum
distance t + 1, see e.g. [16]. Patterson’s classic decoding
algorithm utilises the binary property to decode t errors [7],
but recent advances in list decoding allows decoding up to
the binary Johnson radius J2 = 1

2n−
1
2

√
n(n− 4t− 2) > t,

where n is the length of the code.

Simply list decoding the underlying GRS code only reaches
n−

√
n(n− t− 1) < t, so this is not sufficient. However, by

considering the Goppa code as one constructed with a degree
2t Goppa polynomial by utilising the identity of [17], and
then using the GSA+KV, one reaches J2, see e.g. [18] or [19,
Section 9.6]. Alternatively, one can with the identity of [17]
use Bernstein’s decoder for alternant codes which works in a
manner closely related to the GSA+KV [15].

The Kötter-Vardy method does not directly translate to the Wu
list decoder, so a different approach is required. Our algorithm
continues the original insights by Patterson by rewriting the
Key Equation of the Goppa code into a reduced one of only
half the degrees. This combined with list decoding turns out
to also reach J2.

B. Organisation

The remainder of this article is organised as follows: The
introduction ends with some notation and notes on the modules
that will be considered. In Section II we describe how solutions
to certain Key Equation-like equations can be described using
these modules, and how the EA can find these. In Section

III, we introduce the problem of rational interpolation as well
as a method to solve it for some parameters. We then show
how the solution of the rational interpolation problem can be
computed with low complexity. These two theoretical sections
are then utilised in sections IV and V for decoding GRS
codes and binary Goppa codes respectively. For each of those
code families, we analyse the parameters needed for solving
the associated rational interpolation problem, and we compare
asymptotic running times with previous decoding methods.

C. Notation

Let F be a finite field. Define R ⊂ F[x, y] as all bivariate
polynomials over F with y-degree at most 1. In this article,
we will be considering F[x]-modules that are subsets of R.
Such a module could just as well be regarded as a subset of
F[x] × F[x]; however, using bivariate polynomials does give
certain notational advantages.

We can define term orders as well as Gröbner bases over
such modules. These definitions follow the general intuition
from Gröbner bases over polynomial ideals. For an extensive
presentation, see e.g. [20].

One thing to keep in mind is that term orders over F[x]
sub-modules of R differs slightly from term orders over the
polynomial ring F[x, y]. For instance, the weighted degree
term order giving x weight 1 and y weight 0, as well as
lexicographically ordering x before y, is a valid module term
order for these modules, while it is not valid over F[x, y].

For our discussions on modules and term orders, we define the
following notational short-hands, where < is a module term
order and h(x, y) ∈ R:

• [h1, . . . , ht] ,
{∑t

i=1 ai(x)hi(x, y) | ai(x) ∈ F[x]
}

is
the F[x]-module generated by h1, . . . , ht ∈ F[x, y].

• ∆f , deg f(x) for f(x) ∈ F[x]. Also define ∆f = −∞
when f(x) = 0.

• LT<h is the leading term of h wrt. <.
• ∆x

<(h) , xdeg(LT<h), where xdeg(xiyj) = i.
• ∆y

<(h) , ydeg(LT<h), where ydeg(xiyj) = j.

Note in particular here that the ∆y
<(h) of an h ∈ R is not the

usual y-degree of h, but instead the y-degree of its leading
term. In a sense, it describes the position of the leading term
in h.

II. THE EUCLIDEAN ALGORITHM AND GRÖBNER BASES

Consider the following problem generalised from the Key
Equation of algebraic coding theory: we are given two
polynomials p(x), q(x), and we seek two other polynomials
γ(x), δ(x) of relatively low degrees which satisfy

γ(x)q(x) ≡ δ(x) mod p(x) (1)

This equation alone might not be sufficient to uniquely deter-
mine γ(x) and δ(x), but we would still like to gather as much
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information from the above equation as possible, in a certain
sense.

Consider now the set M = [p(x), y − q(x)] ∈ F[x, y] as a
module over F[x]. We easily see that the polynomial δ(x) −
yγ(x) is in M by using the above congruence:

δ(x)− yγ(x) = (γ(x)q(x)− w(x)p(x))− yγ(x)

= −γ(x)(y − q(x))− w(x)p(x)

for some polynomial w(x). We might therefore study M in
order to get a good description of γ(x) and δ(x); we could, for
example, seek a basis for M in which δ(x)−yγ(x) described
in this basis has coefficients of low degree. As we will see,
this can be given by a Gröbner basis under a certain module
term order.

For a given ordering, we have the following easy condition
for a generating set to be a Gröbner basis for the considered
type of modules:

Proposition 1. Let M = [p(x), y − q(x)] be a module over
F[x] for two polynomials p(x), q(x) and let < be a module
term order. A set G = {h1(x, y), h2(x, y)} is a Gröbner basis
of M under < if and only if [G] = M and ∆y

<(h1) 6= ∆y
<(h2).

Proof: Follows straight-forwardly by applying Buch-
berger’s S-criterion.

For any µ ≥ 0, define now the module term order <µ as
the (1, µ) weighted-degree ordering of (x, y) with x > y. For
example, xµ−1<µ y <µxµ. We can now characterise the form
of a Gröbner basis for M under this module term order, as
well as the form of δ(x) − yγ(x) in this basis, given a limit
on the degree of γ:

Proposition 2. Let G = {h1(x, y), h2(x, y)} be a Gröbner
basis for M = [p(x), y− q(x)] under <µ with ∆y

<µ(h1) = 0.
Then ∆x

<µ(h1) + ∆x
<µ(h2) = ∆p.

Furthermore, if δ(x) − yγ(x) ∈ M , then there exist polyno-
mials f1(x), f2(x) such that

δ(x)− yγ(x) = f1(x)h1(x, y) + f2(x)h2(x, y)

If δ(x) <µ yγ(x) then these polynomials satisfy

∆f1 ≤ ∆γ + µ−∆x
<µ(h1)− 1

∆f2 = ∆γ −∆x
<µ(h2)

If δ(x) >µ yγ(x) then they instead satisfy

∆f1 = ∆δ −∆x
<µ(h1)

∆f2 ≤ ∆δ − µ−∆x
<µ(h2)

Proof: Let us first prove the degree bounds on h1 and h2.
Write h1(x, y) = h10(x) + yh11(x) and h2(x, y) = h20(x) +
yh21(x). Note that h11(x) and h21(x) are coprime since some
linear combination of them gives 1, as y − q(x) ∈ M . Then
f(x) = h21(x)h1(x, y) − h11(x)h2(x, y) ∈ M and does not
contain y, and is the lowest degree polynomial in M to do so;
this must be cp(x) for some c ∈ F, given the definition of M .

Therefore ∆f = ∆p. However, by expanding the expression
for f , we get

∆f = ∆
(
h21(x)h10(x)− h11(x)h20(x)

)
= ∆(h21(x)h10(x))

where we have used ∆y
<µh1 = 0 and ∆y

<µh2 = 1, the latter
implied by Proposition 1.

Now for the statement on δ(x)− yγ(x). It is clear that f1, f2
satisfying the first of the equations exist, but we need to show
the degree bounds. Assume first δ(x) <µ yγ(x). f1, f2 can
be found by the division algorithm, so we consider how this
would run. As δ(x) <µ yγ(x), we know that h2 will be used
as a divisor first, and it will divide so as to cancel the leading
term; this first division therefore determines the degree of f2
to be ∆γ − ∆h21 = ∆γ − ∆x

<µh2. We might then perform
more divisions by h2 until at one point we use h1; by then
the remainder will be reduced to some δ̀(x)−yγ̀(x) with also
δ̀(x) >µ yγ̀(x), and this division then determines the maximal
degree of f1 to ∆δ̀−∆h10. The division algorithm ensures us
that the iterations has “decreased” the remainder, i.e. δ̀(x) −
yγ̀(x) <µ δ(x)− yγ(x) and therefore δ̀(x) <µ yγ(x). As <µ
lexicographically orders x before y, we therefore must have
∆δ̀(x) ≤ ∆γ+µ−1. In all, we get ∆f1 ≤ ∆γ+µ−∆x

<µh1−1.
The case δ(x) >µ yγ(x) runs similarly.

It turns out that the EA, if running on p(x) and q(x), in a
certain manner produces Gröbner bases of the module M
of module term order <µ . To prove this, we first need to
remind of well-known results on the intermediate polynomials
computed by the algorithm. For brevity, we don’t present the
EA algorithm in full, and consequently we can’t prove the
following lemma, but there are many good expositions on
the algorithm which includes these results, e.g. Tilborg [21,
Lemma 4.5.4] or Dornstetter [5].

Consider running the Extended Euclidean Algorithm (EA) on
p(x) and q(x), and denote by si(x) the remainder polyno-
mial computed in each iteration i; that is, s0(x) = p(x),
s1(x) = q(x) and s2(x), s3(x), . . . , sN (x), sN+1(x) will be
the following remainders computed, where we know by the
EA that sN (x) = gcd(p, q) and sN+1 = 0. Then the EA in
each iteration i also computes polynomials ui(x), vi(x) such
that si(x) = ui(x)p(x) + vi(x)q(x). Furthermore, we have
the following lemma, whose proof is easy by induction on the
precise computations of the EA:

Lemma 3. If the EA is run on polynomials p(x), q(x) with
∆p > ∆q, the intermediate polynomials satisfy for each
iteration i = 1, . . . , N + 1:

(i) ∆si is a decreasing function in i.

(ii) (−1)i = ui(x)vi−1(x)− ui−1(x)vi(x)

(iii) si(x) = ui(x)p(x) + vi(x)q(x)

(iv) ∆p = ∆vi + ∆si−1

We are now in a position to show how each iteration of the
EA gives rise to a generating set for M :
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Proposition 4. Let the EA be run on two polynomials
p(x), q(x) with ∆p > ∆q. In each iteration i, let G =
{h1(x, y), h2(x, y)} with

h1(x, y) = si−1(x)− vi−1(x)y

h2(x, y) = si(x)− vi(x)y

Then [G] = M where M = [p(x), y − q(x)].

Proof: Inserting the expression for si(x) and si−1 from
Lemma 3 (iii), we get(

h1(x, y)
h2(x, y)

)
=

(
ui−1(x) −vi−1(x)
ui(x) −vi(x)

)(
p(x)

y − q(x)

)
Now h1(x, y), h2(x, y) and p(x), y−q(x) will be bases for the
same module if and only if the determinant of the 2×2-matrix
is a unit. But this is stated in Lemma 3 (ii).

We can now wrap up and show the main result of this section:

Proposition 5. Let p(x), q(x) be two polynomials with ∆p >
∆q, and let µ ≥ 0 be an integer. If the EA is run on p(x), q(x)
and it is halted on the first iteration i where ∆si < ∆vi + µ,
then G = {h1(x, y), h2(x, y)} is a Gröbner basis of M =
[p(x), y− q(x)] with module term order <µ, where h1, h2 are
chosen as in Proposition 4 for iteration i.

Proof: Clearly there is a first iteration i where ∆si <
∆vi + µ, for ∆sN+1 = −∞ and ∆vN+1 ≥ 0. Thus, at least
the (N+1)st iteration satisfies the requirement. Conversely, the
0’th iteration does not satisfy it as ∆s0 = ∆p and ∆v0 = −∞.
Now to show that G is a Gröbner basis. From Proposition 4
we know that [G] = M , so by Proposition 1 we only need
to show that the leading terms of h1 and h2 have different
y-degree under <µ. But by the choice of i, we have both
∆y
<µ(h1) = 0 and ∆y

<µ(h2) = 1.

III. RATIONAL INTERPOLATION

We will now describe how to solve the problem of finding
rational curves that go through at least some number of
prescribed points. The method is a generalisation of the GSA
[2], and first described by Wu [1]. The formulation of our
main theorem, Theorem 6, avoids some special handling of
points at infinity and is due to Trifonov [9].

We are basically interested in a rational expression
f2(x)
f1(x)

with numerator and denominator of low degrees,
which goes through at least some τ out of n points(
(x0, β0), . . . , (xn−1, βn−1)

)
where all xi ∈ F while βi ∈

F ∪ {∞}. To handle the points at infinity, we can instead
consider these as partially projective points (xi, yi : zi) with
yi
zi

= βi whenever βi 6=∞ and (yi, zi) = (1, 0) otherwise.

In this language, the interpolation amounts to finding low-
degree polynomials f1(x) and f2(x) such that for at least τ
values of i, we have yif1(xi) − zif2(xi) = 0. The following
theorem is a paraphrasing of [9, Lemma 3]; we omit the proof
which is a generalisation of the proof of [2, Lemma 4].

First a notational short-hand: For a Q ∈ F[x, y, z], we define

∆(wx,wy,wz)Q(x, y, z) , max{iwx + jwy + hwz

| αxiyjzh is a monomial of Q(x, y, z)}

That is, ∆(wx,wy,wz)Q(x, y, z) is the (wx, wy, wz)-weighted
degree of Q. Now the theorem:

Theorem 6. Let `, s and τ be positive integers, and let
{(x0, y0, z0), . . . , (xn−1, yn−1, zn−1)} be n points in F3

where for all i either yi or zi is non-zero. Assume that
Q(x, y, z) =

∑`
i=0Qi(x)yiz`−i is a non-zero partially homo-

geneous trivariate polynomial such that (xi, yi, zi) are zeroes
of multiplicity s for all i = 0, . . . , n− 1, and ∆(1,w2,w1)Q <
sτ , for two w1, w2 ∈ R+ ∪ {0}. For any two coprime
polynomials f1(x), f2(x) satisfying ∆f1 ≤ w1, ∆f2 ≤ w2,
as well as yif1(xi) + zif2(xi) = 0 for at least τ values of i.
Then (yf1(x) + zf2(x)) | Q(x, y, z).

As with the GSA, such a trivariate polynomial can be con-
structed by setting up and solving a system of linear equations.
Each point to go through with multiplicity s corresponds to
a similar requirement in a bivariate polynomial (see e.g. [9,
Lemma 1]), and therefore gives rise to 1

2s(s+ 1) linear equa-
tions, so the total number of equations is given by 1

2ns(s+1).
The number of coefficients of Q – and therefore variables of
the equation system – is at least

∑`
i=0 sτ − iw2 − (`− i)w1;

it is exactly this whenever all the terms in the sum are non-
negative, but it can actually be more when some of them are
negative. Expanding and collecting, we therefore have that at
least any n, τ, w1, w2, `, s which satisfy:

1
2ns(s+ 1) < sτ(`+ 1)− 1

2`(`+ 1)(w1 + w2) (2)

allow for a construction of a satisfactory Q.

It is easy to see that Q can have at most ` factors of the
form given in the theorem, as its y-degree is `. For this
reason, particularly inspired by its use for decoding and in
concordance with the GSA, it is called the (designed) list size.

We are mostly interested in knowing for which values of
n, τ and w1, w2 we can select s and ` such that the above
is satisfied. For rational interpolation in general, a minimal
selection of s and ` given these parameters is done in [8], so
we will not repeat it here. When we will later use rational
interpolation in the application of decoding in sections IV and
V, we will show a relation between the parameter choices of
the particular instances of rational interpolation and similar
instances of polynomial interpolation using the GSA respec-
tively GSA+KV, and this turns out to immediately give us
bounds on τ as well as values for s and `.

Theorem 6 parallels a result for polynomial interpolation as
used in the GSA, see e.g. [2, Lemma 5]. However, for the
application of decoding, it is not quite enough; when we later
need to solve a rational interpolation problem for decoding,
we seek f1 and f2 which interpolate the error positions, and
therefore an unknown number of points, but their maximal
degrees increase with the number of points they interpolate.
This means that we can’t use Theorem 6 directly: setting τ low
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while the allowed degrees of f1, f2 high would not allow us
to construct Q, while setting τ high would not guarantee that
we found f1 and f2 when only few points were interpolated.
Luckily, we have the following lemma which says that the Q
we construct for high τ will also find f1 and f2 that interpolate
fewer points, as long as their degrees decrease appropriately:

Lemma 7. Let Q(x, y, z) satisfy the requirements of Theorem
6 for some (τ, `, s, w1, w2). Then Q(x, y, z) also satisfies the
requirements for (τ̃ , `, s, w̃1, w̃2) as long as

min{w1 − w̃1 , w2 − w̃2} ≥ s
` (τ − τ̃)

Proof: As the interpolation points and multiplicity as
well as the list size have not changed, we only need to show
∆(1,w̃2,w̃1)Q < sτ̃ We have:

∆(1,w̃2,w̃1)Q ≤ ∆(1,w2,w1)Q

−min{i(w2 − w̃2) + (`− i)(w1 − w̃1) | 0 ≤ i ≤ `}
< sτ − `min{w1 − w̃1, w2 − w̃2}

Therefore Q satisfies the degree constraints whenever

sτ − `min{w1 − w̃1, w2 − w̃2} ≤ sτ̃ ⇐⇒
min{w1 − w̃1, w2 − w̃2} ≥

s

`
(τ − τ̃)

A. Fast interpolation

As mentioned, the interpolation polynomial Q(x, y, z) can
be constructed by setting up and solving a linear system of
equations. However, without more thought, this would have a
cubic running time in the size of the equation system, which
is prohibitively slow. In this section, we describe a fast way to
construct the polynomial, building heavily upon ideas from the
similar problem in the GSA, in particular Lee and O’Sullivan
[12] and the subsequent refinement in Beelen and Brander [11]

In the context of Theorem 6, consider given values of
the parameters. We will assume that ` ≥ s; in later
sections where we apply rational interpolation, this turns
out always to be the case. Consider now the set W ⊂
F[x, y, z] consisting of all polynomials homogeneous of de-
gree ` in y and z, and which interpolate the n points
{(x0, y0, z0), . . . , (xn−1, yn−1, zn−1)}, each with multiplicity
at least s. Our goal is then to find a non-zero Q ∈ W of
lowest possible (1, w2, w1)-weighted degree. It is easy to see
that W is an F[x]-module. The approach is to give an explicit
basis for W , represent this basis as a matrix over F[x] and
then use an off-the-shelf algorithm for finding the “shortest”
vector in that matrix, “short” being defined appropriately. This
will correspond to a satisfactory interpolation polynomial.

Let us assume without loss of generality that each zi ∈ {0, 1}.
Define the following polynomials which will turn out to
play a crucial role: Ry(x) and Rz(x) will be the Lagrange
polynomials interpolating (xi, yi) respectively (xi, zi), i =
0, . . . , n − 1. Define also G(x) =

∏n−1
i=0 (x − xi) as well as

gz(x) = gcd(G,Rz). Now, there must exist λ1(x), λ2(x) ∈
F[x] such that gz(x) = λ1(x)G(x) + λ2(x)Rz(x). Define
Υ(x) =

(
λ2(x)Ry(x) mod G(x)

)
, considered in F[x]. Note

that Υ(xi) = λ2(xi)yi for all i = 0, . . . , n−1. We begin with
a small lemma:

Lemma 8. Let P (x, y, z) ∈ W and P (x, y, z) =∑`
j=0 Pj(x)yjz`−j . Then gz(x)j−(`−s) | Pj(x) for j =

`− s+ 1, . . . , `.

Proof: Let L = {xi|zi = 0} so gz =
∏
i∈L(x − xi).

As P interpolates the points (xi, yi, zi) with multiplicity s,
P (x + xi, y + yi, z + zi) can have no monomials of total
degree (in x, y and z) less than s. For xi ∈ L we have P (x+
xi, y + yi, z + zi) =

∑`
j=0 Pj(x + xi)(y + yi)

jz`−j . All the
terms in the sum have different z-degree, so nothing between
these terms cancels, and so each can have no monomials of
total degree less than s. In particular, since zi = 0 we have
yi 6= 0, so multiplying out the power of y + yi, this implies
that Pj(x+xi)y

j
i z
`−j has no monomials of degree less than s.

But then for j = `−s+1, . . . , ` we get xj−(`−s) | Pj(x+xi).
This implies the sought.

The main result is the basis for W ; it looks complicated, but
the important thing is that it is directly calculable given the
rational interpolation problem. We introduce for any x ∈ R
the function pos(x) := max(x, 0). Note the easy identity
pos(x)−pos(−x) = x. For the proof, we also use the phrase
“leading monomial’ of a trivariate polynomial P (x, y, z) as
the monomial of highest y-degree when P is regarded over
F[x][y, z], and the “leading coefficient” is the F[x]-coefficient
of the leading monomial.

Theorem 9. Let for j = 0, . . . , `

B(j) = (gzy −Υz)pos(s−j)(yz −Ryz2)j−pos(j−(`−s))−pos(j−s)

(z Ggz )pos(j−(`−s))ypos(`−s−j)zpos(j−s)

Then W =
[
B(0), . . . , B(`)].

Proof: First, it should be proved that each B(j) are of total
degree ` in y and z. By summing all the terms’ exponents,
counting each yz − Ryz

2 twice, and using the identity for
pos(·) given above, one sees this is so.

To show that each the B(j) are in W , note first that yz−Ryz2
interpolate all (xi, yi, zi). This is also true for z Ggz and gzy−
Υz, since either zi = 0, whereby they obviously both evaluate
to 0, or xi /∈ L which gives G(x)

gz(x)
|x=xi = 0 as well as

gz(xi)yi −Υ(xi)zi = (λ1(xi)G(xi) + λ2(xi))yi − λ2(xi)yi

= 0

For each B(j) to interpolate the points with multiplicity at
least s, we need only to verify that the sum of the exponents
of the three terms gzy−Υz, yz −Ryz2 and z Ggz is at least s
for all generators; this is quickly seen to be true.

We need then only to show that any P ∈W can be expressed
as an F[x]-combination of the B(j). There are two cases to
consider, ` − s ≤ s and ` − s > s. We will only show the
latter case, and the former follows similarly. So assume `−s >
s. Observe that B(j) has y-degree exactly ` − j. The proof
now basically follows the multivariate division algorithm on
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P under lexicographical ordering y > z > x; i.e. dividing
with the aim of lowering the y-degree.

First observe that the leading coefficient of B(0) is gz(x)s.
By Lemma 8, we can perform polynomial division of P by
B(0) and get a remainder P (1)(x, y, z) of y-degree at most
`−1. As B(0) ∈W so is P (1) ∈W . We can continue as such
with B(j) for j = 1, 2, . . . , s − 1, as each of these B(j) has
leading coefficient gz(x)s−j and Lemma 8 promises that the
remainders will keep having leading term divisible by exactly
this. We thus end with a remainder P (s) with y-degree at most
`− s and in W .

As `−s > s then for j = s, . . . , `−s we have B(j)(x, y, z) =
(yz−Ryz2)sy`−s−jzj−s. They all have leading coefficient 1,
so we can reduce P (s) with B(s), reduce the remainder of
that with B(s+1) and so forth, until we arrive at a remainder
P (`−s+1) with y-degree at most s− 1.

Still we have P (`−s+1) ∈ W so the (xi, yi, zi) are all zeroes
with multiplicity s. Therefore P (`−s+1)(x+xi, y+ yi, z+ zi)
has no monomials of degree less than s. Let L = {xi|zi 6= 0}
and let P (`−s+1)(x, y, z) =

∑s−1
j=0 P

(`−s+1)
j (x)yjz`−j . For

xi ∈ L, we see by expanding the powers of both y + yi
and z + zi that P (`−s+1)(x + xi, y + yi, z + zi) has a
monomial P (`−s+1)

s−1 (x + xi)y
s−1z`−si which does not cancel

with any other term. Therefore, x | P (`−s+1)
s−1 (x + xi) ⇐⇒

(x − xi) | P (`−s+1)
s−1 . Collecting for all xi ∈ L, we get

G
gz
| P (`−s+1)

s−1 . Note that, as `− s > s, then B(`−s+1)(x) has
leading coefficient G

gz
. Thus, we can divide P (`−s+1)(x, y, z)

by B(`−s+1)(x) and get remainder P (`−s+2) of y-degree at
most s− 2.

Now, the exact same argument as above can be repeated for
P (`−s+2), but one finds that (x−xi)2 must divide the leading
coefficient for each xi ∈ L. Therefore, we can divide by
B(`−s+2) whose leading coefficient is ( Ggz )2. We can continue
this way with all the remaining B(j), until we find that the
last remainder P (`) must be divisible by ( Ggz )sz` = B(`).

With a concrete basis for W in hand, we wish to find
an element in W with lowest possible (1, w2, w1)-weighted
degree. Write the B(j) of Theorem 9 as B(j)(x, y, z) =∑`
i=0B

(j)
i (x)yiz`−i. Construct now the matrix Π ∈

F[x](`+1)×(`+1) where the (j, i)’th entry is B
(j)
i (x). The

B(j)(x, y, z) thus constitute the rows of Π. In this manner,
we can represent any basis of W as an (` + 1) × (` + 1)
matrix, and any P ∈W can be represented as a vector in the
row span of such a basis matrix.

Consider a vector V in the row-span of Π, and denote by
|V | := maxVj 6=0{∆Vj + jw2 + (` − j)w1} where Vj is
the j’th component of V . A shortest vector in Π under this
metric will correspond to a polynomial in W which has the
lowest possible (1, w2, w1)-degree. Any algorithm which can
compute a shortest vector in the row-span of an F[x]-matrix
under this metric will therefore be usable to solve our problem.

The usual approach of such algorithms is to compute a so-

called row reduced basis matrix, where the sum of the basis
elements’ lengths is minimal. It is well known that the shortest
vector in the row space will be present in this reduced matrix,
see e.g. [13], [22]. This problem is widely studied and it has
several different guises and names: Gröbner basis reductions
over free F[x]-modules [12], row reduction of F[x]-matrices
[14], and basis reduction of F[x]-lattices [23].

The fastest method in the literature for our purposes is due
to Giorgi et al. in [14]. If θ is the highest degree of any
polynomial in the initial basis matrix, and the basis matrix is
ν×ν, then the algorithm has complexity O(νωθ logO(1)(νθ)),
where O(νω) is the complexity for multiplying two ν × ν
matrices with elements in F. Trivially ω ≤ 3 but methods exist
with ω < 2.4 [24]. To bound the running time of applying the
algorithm on our problem, we have the following:

Lemma 10. In the context of Theorem 9 and the discussion
above, the entries of Π all have degree at most sn.

Proof: The entries of Π are all of the form
βgj1z Υj2Rj3y ( Ggz )j4 where β ∈ F and j1, j2, j3, j4 are non-
negative integers summing to at most s. The lemma follows
as the four base polynomials are each of degree at most n.

The algorithm in [14] does not directly support the different
“column weights” that our vector metric demands, but this can
be amended by first multiplying the j’th column of Π with
xjw2+(`−j)w1 and then finding the usual row reduced basis.
The powers of x can then be divided out from the resulting
reduced basis afterwards. This does not change the complexity
of the algorithm whenever w1, w2 ∈ O(n), which follows if
we assume τ2 > n(w1 +w2); an assumption which turns out
to be true for our applications in later sections. One should
also note that for finite fields F, the algorithm might need to
calculate over an extension field, though without affecting the
asymptotic running time, as pointed out by Bernstein [15].
This entire discussion can be distilled into the following:

Lemma 11. For given values of the parameters of Theorem
6 where ` ≥ s and τ2 > n(w1 + w2), an algorithm exists
to find a satisfactory interpolation polynomial in complexity
O(`ωsn logO(1)(`n)).

Proof: As soon as one has constructed Π, the result
follows from Lemma 10 and the complexity of the algorithm
in [14], so we just need to show that we can compute Π
in the given speed. Let M(θ) be the complexity of multi-
plying two polynomials of degree θ. Computing Ry, Rz and
G by Lagrangian interpolation can be done in complexity
O(M(n) log n), see e.g. [25, p. 235]. Υ and gz can be
computed using the Euclidean algorithm in O(n log2 n). For
a polynomial of degree n, computing all the first s different
powers of it can be done iteratively in O(sM(sn)). Each entry
in Π is a multiple of gz, Ry, Ggz and Υ to a combined power of
s, so after each of their s powers have been computed, each of
the O(`2) entries in Π can be computed in O(M(sn)). Using
Schönhage-Strassen, we can set M(θ) = O(θ log θ log log θ),
see e.g. [25, Theorem 8.23], and inserting this into the
above, we see that Π can be computed in O(`2M(sn)) ⊂
O(`2sn logO(1)(`n)).
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Remark: Another algorithm that can be used to handle
the interpolation problem is the row-reduction method of
Alekhnovich [13], which also has been used in the interpola-
tion method by Beelen and Brander. [11]. This method could
also be used here but would yield the slightly worse running
time O(`4s log2+o(1)(`n)).

After having computed the interpolation polynomial
Q(x, y, z), one needs to find factors of the form
yf1(x) + zf2(x) with f1, f2 ∈ F[x]. Any such factor except
z will also occur as an F(x) factor in the dehomogenised
version of Q. Thus, any fast algorithm for computing
this will suffice. In [1], Wu describes an extension to the
root-finding method of Roth and Ruckenstein (RRR) [26]
for finding F(x) roots of a F[x][y] polynomial: he remarks
that simply applying the original RRR will find the truncated
power series of each F(x) root; retrieving a long enough
such series and applying a Padé approximation method like
the BMA or the EA will retrieve the polynomial fraction.
A divide-and-conquer speed-up of the RRR described by
Alekhnovich in [13, Appendix] applies just as well to this
extension1. We arrive at the following

Lemma 12. In the context of Theorem 6, there exists an
algorithm which finds all factors of Q(x, y, z) of the form
yf1(x) + zf2(x) in complexity O

(
`2sn log(`n)2+o(1)

)
, where

q is the cardinality of F and assuming q ∈ O(n).

Proof: The root-finding algorithm described in [1] will
have the complexity of running the RRR followed by at most
` applications of the EA, each on a truncated power series
of degree O(τ) ∈ O(n). The EA applications will have
complexity O(`n log n) which is in the complexity of the
lemma.

For running the RRR, Alekhnovich reports a complexity
of O(`O(1)θ log θ), where θ is the x-degree of Q(x, y, z);
however, his analysis can be improved: in the context of his
proof, choose a fast factoring method over F[y], e.g. from
[25, Theorem 14.14], and so set f(1, `) = O(`M(`) log(q`)).
The non-recursive cost of f(θ, `), i.e. the term `O(1)θ, can be
improved to `2M(θ), as an upper bound cost of the ` different
calculations of the shifts Q(x, yi + xdi ŷ). Now the recursive
bound has the improved solution f(θ, `) ∈ O(`2M(θ) log θ+
θ`M(`) log(q`)). We have θ ∈ O(sn) and assume q ∈ O(n)
and thus arrive at the complexity of the lemma.

An alternative factorisation method with roughly the same
complexity is proposed by Bernstein in [15] by accommodat-
ing a more classical root finding method in Z[x] by Zassen-
haus; see also [25, Chapter 15].

IV. WU LIST DECODING FOR REED-SOLOMON CODES

We can now derive the Wu list decoder in a succinct manner
using the Euclidean algorithm instead of the Berlekamp-
Massey algorithm (BMA). This derivation is inspired by

1We are grateful to the anonymous reviewer for pointing out the extension
of Alekhnovich to us as well as the improvement to its running time analysis.

Trifonov’s derivation [9], though ours is slightly more general
and uses shorter polynomials in the computations.

A. The codes

An [n, k, d] Generalised Reed-Solomon (GRS) code over a
finite field Fq is the set{(

v0η(α0), . . . , vn−1η(αn−1)
)
| η ∈ Fq[x] ∧∆η < k

}
for some n distinct non-zero α0, . . . , αn−1 ∈ Fq as well as
n non-zero v0, . . . , vn−1 ∈ Fq . The αi are called evaluation
points and the vi column multipliers. It is easy to show that
d = n − k + 1 and the code is therefore MDS. See e.g. [19]
for a comprehensive introduction to GRS codes.

Consider a sent codeword c = (c0, . . . , cn−1) and a cor-
responding received word r = (r0, . . . , rn−1). Then the
syndrome polynomial is computable by the receiver and can
be defined as

S(x) =

n−k−1∑
i=0

xi
n−1∑
j=0

rjwjα
d−2−i
j (3)

where wj = (vj
∏
h6=j(αj − αh))−1. If we denote the set of

error locations by E, that is, E = {i | ci 6= ri}, we can define
the error-locator and error-evaluator polynomials respectively,
as follows2:

Λ(x) =
∏
i∈E

(x− αi)

Ω(x) = −
∑
i∈E

(ri − ci)αd−1i wi
∏

j∈E\{i}

(x− αj)

Clearly, the receiver can quickly retrieve c from r if he
constructs Λ and Ω, as the error locations are the roots of Λ,
and the error values are the evaluations of Ω in the respective
error location (up to a calculable scalar). Note that therefore
gcd(Λ,Ω) = 1 as the elements of E are all the zeroes of Λ
but definitely not zeroes of Ω. The three defined polynomials
are related by the famous Key Equation (see e.g. [19] or [27]):

Λ(x)S(x) ≡ Ω(x) mod xd−1 (4)

Many decoding algorithms solve this equation for Λ and Ω,
and construct c from r using these. That is also what our list
decoder will do.

2The reader familiar with the three polynomials might notice our slightly
unorthodox definition of them; many sources use an error-locator which
reveals the inverse error positions, i.e. Λ(α−1

i ) = 0 iff the i’th position is
in error. This also yields a slightly simpler syndrome polynomial. However,
in the case of Goppa codes, the above definition of the error locator is more
natural, and we have opted for consistency in this article by also using that
here.
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B. The list-decoding algorithm

Using the Key Equation and the results of Section III, we can
construct a list decoder. By (4) as well as (1) on page 2 and
the paragraphs following it, we know that Ω(x) − yΛ(x) ∈
M = [xd−1, y − S(x)]. If we run the EA on xd−1 and S, by
Proposition 5, we get a Gröbner basis G = {h1, h2} of M
of module term order <µ for any integer µ ≥ 0. We choose
µ = 0.

Let ε = |E| be the number of errors, unknown to the receiver.
Then ∆Ω < ∆Λ = ε. As ∆Λ > ∆Ω, then yΛ(x) >0 Ω(x).
Assume now that ∆y

<0
h2 = 1 (and therefore ∆y

<0
h1 = 0).

Therefore, by Proposition 2, we know there exist polynomials
f1, f2 ∈ F[x] such that

Ω(x)− yΛ(x) = f1(x)h1(x, y) + f2(x)h2(x, y)

∆f1 ≤ ε− d+ ∆x
<0

(h2) (5)
∆f2 = ε−∆x

<0
(h2)

We see that whenever ε ≤ bn−k2 c, either the degree bound
for f1 or that for f2 will be negative, and that one will then
be zero. Therefore Ω(x)− yΛ(x) will be a multiple of either
h1 or h2. As ∆y

<0
(Ω(x)− yΛ(x)) = 1, it must be a multiple

of h2. However, as Λ and Ω are coprime, that multiple must
be the constant that normalises h2 to have leading coefficient
1, just as Λ(x). This corresponds to the Sugiyama decoding
algorithm [28].

In case neither h1 nor h2 is valid as Ω(x)− yΛ(x), we know
that f1 and f2 are non-zero, so there are more errors than half
the minimum distance; then we proceed exactly like regular
Wu list decoding using BMA. We know that for at least ε
values of x0 ∈ {α0, . . . , αn−1}, we have Λ(x0) = 0, namely
the error locations. Therefore, by (5), for at least those ε values
of x0, we have f1(x0)h11(x0)+f2(x0)h21(x0) = 0. Thus, for
this to be a rational interpolation problem as in Section III, we
just need to ascertain two properties: 1) that h11(x) and h21(x)
never simultaneously evaluate to zero since they are coprime,
as a linear combination of h1 and h2 equals y − S(x) ∈ M .
2) that f1 and f2 are coprime since Λ and Ω are.

From the results developed in Section III, we can therefore
solve this rational interpolation problem for certain values of
` as well as the parameters n and d: we construct a partially
homogeneous interpolation polynomial Q(x, y, z) which has
zero at all the points (αi, h11(αi), h21(αi)) for i = 0, . . . , n−
1. Under certain constraints on the degrees of Q(x, y, z), then
yf1(x) + zf2(x) will be a factor of Q(x, y, z). The following
subsection looks closer at the possible choice of parameters
to derive the upper bound on τ . The complete list decoder is
listed in Algorithm 1.

Remark: There is a duality between the GSA and the Wu list
decoder: in list decoding GRS codes with the GSA, one sets
up an interpolation problem where the sought solution – the
information word – will pass through those of the prescribed
points that correspond to the error-free positions. Oppositely,
here we seek f1, f2 that pass through those of the prescribed
points that correspond to the errors positions.

C. Analysis of the parameters

It is clear that in Theorem 6, we should set w1, w2 equal
to the bounds on ∆f1,∆f2 in (5) for the case ε = τ ; so
w = w1 + w2 = 2τ − d. Note therefore that in this instance,
w is always an integer. The main question is then for which
τ we can select ` and s such that (2) is satisfied. Inserting the
value for w and rearranging, (2) becomes

τ

n
<

1

(`+ 1)(`− s)

((
`+ 1

2

)
d

n
−
(
s+ 1

2

))
(6)

Replacing s by ` − s this is exactly the equation governing
the choice of parameters s, ` and τ in the GSA for the same
values of n and d, see e.g. [19, Lemma 9.5]. This means that
for all parameters of the GSA where the multiplicity is less
than `, this substitution applies, giving valid parameters for
Algorithm 1.3 We arrive at the following two lemmas:

Lemma 13. Algorithm 1 can list decode for any τ < n −√
n(n− d).

Proof: For any given n, k, τ with τ less than the given
bound, there exists a valid list size ` and multiplicity sG such
that the equation of the GSA is satisfied, and furthermore sG ≤
`, see e.g. [19, Lemma 9.5]. Except in the case sG = `, the
above duality applies and we are done, so assume sG = `.
As the governing equation of the GSA is satisfied, this means
τ
n < 1

(`+1)`

(
`+1
2

)
d
n so τ < d

2 , but in this case we are within
minimum-distance decoding. Thus, Algorithm 1 will succeed
in Step 3.

Thus we have established that for any given τ less than the
given bound, we can select values of s and ` such that the
sought f1, f2 can be found using Theorem 6 whenever ε = τ .
Now, to be guaranteed to find them also whenever ε < τ ,
we also need to employ Lemma 7. This can be used if it is
satisfied that

min{w1 −∆f1, w2 −∆f2} ≥ s
` (τ − ε)

Note that w1 − ∆f1 ≥ τ − ε using (5). The same holds for
w2 −∆f2. Therefore, the above is true at least if we satisfy

τ − ε ≥ s
` (τ − ε) ⇐⇒ s ≤ `

Thus, Lemma 7 guarantees that as long as s ≤ `, then the
Q(x, y, z) we would construct satisfying the requirements of
Theorem 6 will contain yf1(x) + zf2(x) as a factor whenever
ε ≤ τ . But s ≤ ` is satisfied as sG < ` in all considered cases
of the GSA and s = `− sG by the duality.

Remark: This decoding radius – the so-called Johnson bound
– is not the best one can achieve for a given GRS code: using
the GSA+KV one can decode slightly further, namely up to
the q-ary Johnson bound q−1

q

(
n −

√
n(n− q

q−1d)
)
, see e.g.

[18] or [19, Section 9.6].

Lemma 14. For given n, k and τ with τ ≥ n−k+1
2 , then `

and s are valid choices for the parameters for Algorithm 1 if

3We are grateful to the anonymous reviewer for pointing out this relation
to us.
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and only if ` and sG = ` − s are valid choices for the GSA.
Furthermore, for any given `, let s be the lowest possible
choice of multiplicity for Algorithm 1 and sG the lowest
possible choice of multiplicity for the GSA; if τ < n/2 then
s ≤ sG, otherwise, s ≥ sG.

Proof: Only the last claim does not directly follow from
the duality in parameter choice. Consider (6) governing the
possible choice of s for Algorithm 1: rearranging to a second-
degree equation in s and solving, we get that s/` must be
chosen from the interval [T −

√
D; T +

√
D], where T =

τ
n + τ−n/2

n` and D a discriminant whose precise expression is
not important for us. Due to the duality between Algorithm
1 and the GSA, the corresponding interval for valid sG/` for
the GSA will be [1 − T −

√
D; 1 − T +

√
D]. In addition

to residing in these respective intervals, we only require of
s/` and sG/` that s and sG are positive integers less than `.
Therefore, whenever τ < n/2 we have T > 1

2 , so the lowest
possible choice of s in the former interval must be at most the
lowest possible in the latter interval; oppositely for the case
τ ≥ n/2.

To concretely choose ` and s given n, k and τ , we can—due
to the above lemma—use closed expressions designed for the
GSA; e.g. [29, Eqs.(43-45)]. Alternatively, Trifonov and Lee
give a simple analysis and expressions directly for the Wu list
decoder in [8].

Algorithm 1 Wu list decoding GRS codes
Input: A GRS code C over Fq with parameters n, k, d =

n − k + 1 and evaluation points α0, . . . , αn−1, decoding
radius τ < n−

√
n(n− d), and received word r ∈ Fnq .

Output: A list of all codewords in C within radius τ of r or
Fail if there are no such words.

1: Calculate the syndrome S(x) from r according to (3).
2: Run the EA on xd−1, S(x) and halt when ∆si < ∆vi,

reusing the notation of Section II. Define h̃1(x) =
−vi−1(x) and h̃2(x) = −vi(x).

3: If h̃2 is a valid error-locator of degree at most d− τ , use
it to correct r, and if this yields a word in C, return this
one word.

4: Otherwise, we seek f1, f2 according to (5). Set w1, w2

to the degree bounds of f1 and f2 for the case ε = τ ,
and calculate ` and s to satisfy (6). Construct a Q(x, y, z)
satisfying the requirements of Theorem 6 using the points
{(αi, h̃1(αi), h̃2(αi))}n−1i=0 .

5: Find all factors of Q(x, y, z) of the form yf?1 (x)+zf?2 (x)
where f?1 and f?2 have degree less than w1 and w2

respectively. Return Fail if no such factors exist.
6: For each such factor, construct Λ?(x) = f?1 (x)h̃1(x) +
f?2 (x)h̃2(x). If it is a valid error-locator, use it for cor-
recting r. Return Fail if none of the factors yield error-
locators

7: Return those of the corrected words that are in C. Return
Fail if there are no such words.

D. Complexity analysis

The complexity of the totality of Algorithm 1 is easily found
using the results of Section III-A; note that τ2 > nw
whenever τ < n −

√
n− d so we can use Lemma 11. For

simplicity, we will assume that q ∈ O(n) where q is the
cardinality of F. In that case, as ` ≥ s, steps 4 and 5 can
be computed in O(`ω+1n logO(1)(`n)). The remaining steps
are of lower order: calculating S(x) in step 1 can be done in
O(n log n) using fast Fourier methods, and the EA in step 2
has complexity O(n log2 n). Checking whether a polynomial
is a valid error-locator takes at most O(q), and in step 3 we
check 2 such, while in step 6 we check at most ` such. Thus
we have the following

Lemma 15. If q ∈ O(n) then Algorithm 1 has complexity
O(`ωsn logO(1)(`n)).

Using Lemma 14 we can compare running times with those
for variants of the GSA. In this light, the above estimate
is fast as the fastest GRS list-decoders based on the GSA.
The bottle-neck is – as it is here – the construction of an
interpolation polynomial. Beelen and Brander gave in [11]
an algorithm for computing the interpolation polynomial in
the GSA with complexity O(`5n log2 n log log n), using an
approach very close to the one here, and using a row reduction
algorithm on an appropriate polynomial matrix. However, had
they used the one by Giorgi et al. [14] instead of the slightly
slower by Alekhnovich [13], they would have reached the
same complexity as in Lemma 15, but using the value of s
needed for the GSA.

It would therefore seem that, when the multiplicity for Al-
gorithm 1 is smaller than the multiplicity for the GSA,
Algorithm 1 would be faster than the GSA, though as we
have only presented asymptotic analysis, one would need
implementations to properly verify this. From Lemma 14 and
its proof, we know that the multiplicity for Algorithm 1 is
smallest whenever τ < n/2 and that the difference to the
multiplicity of the GSA increases with τ

n .

Bernstein also gives a decoding algorithm in [15] with the
same complexity, but his is a variant of the GSA+KV, and
it can thus decode a GRS code to the slightly higher q-ary
Johnson radius: q−1

q

(
n −

√
n(n− q

q−1d)
)
; see also Section

V-D.

V. WU LIST DECODING BINARY GOPPA CODES

A. The codes

Consider an irreducible polynomial g(x) ∈ F2m [x] as well
as n distinct elements of F2m , L = (α0, . . . , αn−1). Then the
irreducible binary Goppa code Γ(g, L) with Goppa polynomial
g over L is the set{

(c1, . . . , cn) ∈ Fn2

∣∣∣∣∣
n−1∑
i=0

ci
x− αi

≡ 0 mod g(x)

}
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This code has parameters [n, ≥ n − m∆g, ≥ 2∆g + 1].
A binary Goppa code Γ(g, L) is a subfield subcode of an
[n, n−∆g, ∆g+1] GRS code over F2m . It is also an alternant
code. See e.g. [16] for a more complete description.

Consider a sent codeword c = (c0, . . . , cn−1) and a corre-
sponding received word r = (r0, . . . , rn−1). For these codes,
a natural definition of a syndrome polynomial is then

S(x) =

(
n−1∑
i=0

ri
x− αi

mod g(x)

)
(7)

Like in the preceding section, we also define E, the error-
locator and error-evaluator, the last being slightly simpler due
to the binary field:

E = {i | ci 6= ri}
Λ(x) =

∏
i∈E

(x− αi)

Ω(x) =
∑
i∈E

∏
j∈E\{i}

(x− αj)

Introduce also ε = |E| as the number of errors. We have
again that gcd(Λ,Ω) = 1. It also turns out that the introduced
polynomials satisfy a Key Equation [7]:

Λ(x)S(x) ≡ Ω(x) mod g(x) (8)

Note that for a binary code, the receiver can decode imme-
diately upon having calculated the error locator, even without
the error evaluator; the error value is always 1.

B. The list-decoding algorithm

Now we could proceed exactly as in Section IV-B, and
we would arrive at a list decoder correcting up to n −√
n(n−∆g − 1) errors. This is the same decoding radius

reached by simply decoding the enveloping GRS code with
the GSA or the Wu decoder. However, this radius is much less
than ∆g which is promised by the minimum distance of the
binary Goppa code, and which can be corrected by Patterson’s
decoder [7].

Therefore, we proceed to rewrite the Key Equation in the
same way as Patterson. In the following, it will be useful to
assume ε < 2∆g as an initial and reasonable bound on our list
decoder. Then, collecting even and odd terms, we can intro-
duce polynomials a(x), b(x) such that Λ(x) = a2(x)+xb2(x)
and satisfying ∆a ≤ b ε2c and ∆b ≤ b ε−12 c. Now, note from
the definition of the polynomials that Ω(x) equals the formal
derivative of Λ(x), so we get Ω(x) = b2(x) in this field of
characteristic 2. The Key Equation thus becomes

(a2(x) + xb2(x))S(x) ≡ b2(x) mod g(x) ⇐⇒
b2(x)(x+ S−1(x)) ≡ a2(x) mod g(x) (9)

Note here that calculating the inverse of S(x) modulo g(x) is
possible since ∆S < ∆g and g(x) is irreducible.

It might now be that S−1(x) ≡ x mod g(x) in which case
a2(x) ≡ 0 mod g(x). As g(x) is irreducible, a(x) must be a

multiple of g(x), which means that a(x) = 0 as ε < 2∆g. This
implies Λ(x) = xb2(x), which is only a legal error locator if
0 ∈ L and b(x) = 1. So in that case, Λ(x) = x is the only
valid solution to the Key Equation, resulting in one error to
be corrected.

Having taken care of the case S−1(x) ≡ x mod g(x), let us
now assume that this is not the case and continue. As g(x)
is irreducible, F2m [x]/〈g(x)〉 is a finite field of characteristic
2, so we can compute a square-root; in particular, we can
find an S̃(x) such that S̃2(x) ≡ x + S−1(x) mod g(x) and
∆S̃ < ∆g. This value is directly computable by the receiver
after having computed S(x). Inserting S̃(x) in (9), we get

b2(x)S̃2(x) ≡ a2(x) mod g(x) ⇐⇒
b(x)S̃(x) ≡ a(x) mod g(x) (10)

Now we are in the case of a new Key Equation, where
the degrees of the unknown polynomials are halved! We
proceed in a manner resembling that of the GRS codes
from the preceding section. The above equation tells us that
a(x) − yb(x) ∈ M = [g(x), y − S̃(x)]. If we run the EA
on g(x) and S̃(x), by Proposition 5, we get a Gröbner basis
G = {h1, h2} of M of module term order <µ for any integer
µ ≥ 0; for reasons becoming apparent momentarily, we choose
µ = 1.

By Proposition 2, we know there exist polynomials f1, f2 ∈
F[x] such that

a(x)− yb(x) = f1(x)h1(x, y) + f2(x)h2(x, y) (11)

Remembering Proposition 1, assume that ∆y
<1
h2 = 1 and

therefore that ∆y
<1
h1 = 0. Now, the case here is slightly more

complicated than that of the GRS codes, as we do not know
a priori which of a(x) and b(x) has the largest degree. If ε is
even then ∆a = ε

2 and ∆b ≤ ε
2 − 1 whereby a(x) >1 yb(x).

From Proposition 2 we then get

∆f1 = ∆a−∆x
<1

(h1) = ε
2 −∆g + ∆x

<1
(h2)

∆f2 ≤ ∆a− 1−∆x
<1

(h2) = ε
2 − 1−∆x

<1
(h2) (12)

In a similar manner, when ε is odd we get a(x) <1 yb(x) and

∆f1 ≤ ∆b+ 1−∆x
<1

(h1)− 1 = ε−1
2 −∆g + ∆x

<1
(h2)

∆f2 = ∆b−∆x
<1

(h2) = ε−1
2 −∆x

<1
(h2) (13)

In either of the above cases, we see that if ε ≤ ∆g, one of the
bounds for ∆f1 and ∆f2 will be negative, in which case either
f1 or f2 will be zero. This in turn means that a(x)−yb(x) will
be a multiple of either h1 or h2, namely the one which has the
same y-degree as a(x)− yb(x) under <1. As Λ(x) is square-
free, a(x) and b(x) must be relatively prime, so this multiple
must be a constant. This corresponds to Patterson’s decoder
[7], except that there the BMA is used instead of the EA to
solve (10). This requires an initial transformation of (10), and
an “inverse” transformation on the output of the BMA.

In case f1 and f2 are both non-zero, spurred on by the success
of the last section, we would like to be able to find them using
rational interpolation. However, in the last section, we knew
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that the evaluation of the target polynomial Λ(x) would be
0 in at least ε positions; for neither a(x) nor b(x) do we
have such information. We therefore first need to re-enter (11)
into their defining expression: Λ(x) = a2(x) + xb2(x). Let
first h1(x, y) = h10(x) + yh11(x) and h2(x, y) = h20(x) +
yh21(x). Then using (11), we get

Λ(x) = (f1(x)h10(x) + f2(x)h20(x))2

+x(f1(x)h11(x) + f2(x)h21(x))2

= f21 (x)(h210(x) + xh211(x)) + f22 (x)(h220(x) + xh221(x))

Similarly to the preceding section, for at least ε values of
x0 ∈ L, we now know that Λ(x0) = 0. For these ε values of
x0, by the above, we therefore have

f1(x0)

√
ĥ1(x0) + f2(x0)

√
ĥ2(x0) = 0

where ĥ1(x) = h210(x) + xh211(x) and ĥ2(x) = h220(x) +
xh221(x). For us to be able to use Theorem 6, we have then
only to certify that f1 and f2 are coprime, and that ĥ1 and
ĥ2 will never simultaneously evaluate to zero. But the former
is true since a and b are coprime which is due to Λ being
square-free, and the latter is true since h1(x, y) and h2(x, y)
are coprime. We have therefore finally arrived at a rational
interpolation problem.

We will again use the results of Section III to solve this
problem for some values of ε, n,∆g. The next section is
concerned with that analysis. The complete list decoder is
shown in Algorithm 2.

Remark: As mentioned, Patterson’s original algorithm [7]
solves (10) using the BMA. One could possibly also extend
this for list decoding using rational interpolation. However, a
transformation is needed for letting the BMA solve (10), and
this makes the details for rational interpolation less straight-
forward. One should also note that the BMA and the EA in
their straightforward implementations have the same asymp-
totic running time O(θ2) (see e.g. [5]), and that both admit
a recursive version with asymptotic running time O(θ log2 θ),
where θ is the degree of the ingoing polynomials (see e.g. [30,
Chapter 11.7] respectively [31, Chapter 8.9]).

C. Analysis of the parameters

For a given decoding radius τ , we want to know whether we
can construct a Q(x, y, z) such that whenever ε ≤ τ , we can
find f1 and f2 in the manner specified in Theorem 6, and we
want values for the parameters of ` and s.

We should set w1, w2 inspired by (12) and (13), but we need
just one set of values which will cover both the even and odd
cases. Therefore, we use for both f1 and f2 the larger of the
degree bounds:

w1 = τ
2 −∆g + ∆x

<1
(h2)

w2 = τ−1
2 −∆x

<1
(h2) (14)

Now define w = w1 + w2 = τ − ∆g − 1
2 . Note that w and

either w1 or w2 will not be integer. Inserting the value for w
and rearranging, (2) becomes

τ

n
<

1

(`+ 1)(`− 2s)

((
`+ 1

2

)
∆g + 1

2

n
− 2

(
s+ 1

2

))
(15)

if we assume that ` > 2s. Just as we before found that the
governing equation for Algorithm 1 is parallel to that of the
GSA, the above equation is parallel to the governing equation
of the GSA+KV: using e.g. [19, Lemma 9.7] and setting the
two multiplicities as r = ` − s and r̄ = s we achieve the
same equation. This means that Algorithm 2 has the same
decoding radius as the GSA+KV when the choice of the two
multiplicities are restricted thusly. From [19, Problem 9.9],
the choice r̄ = ` − r exactly maximises the decoding radius
which is then given in [19, Problem 9.10]. We also get r̄ < r
so r̄ < `/2 and hence in our case ` > 2s; this is also what we
assumed at (15) which means we can indeed reuse the analysis
from the GSA+KV.

Lemma 16. Algorithm 2 can list decode for any τ < 1
2n −

1
2

√
n(n− 4∆g − 2).

Proof: With the above duality, we have already estab-
lished that for any given τ less than the given decoding radius
we can select values of s and ` such that the sought f1 and
f2 can be found whenever ε = τ . We again have to employ
Lemma 7 in order to guarantee that f1 and f2 will be found
when ε < τ . The lemma promises this if we can satisfy

min{w1 −∆f1, w2 −∆f2} ≥ s
` (τ − ε)

Using (12), (13) and (14), we see that w1−∆f1 ≥ τ
2 −b

ε
2c ≥

1
2 (τ−ε), both when ε is even and when it’s odd. Similarly for
w2−∆f2. The condition of Lemma 7 is then always satisfied
as long as ` > 2s. This we already assumed at (15).

Remark: It is the necessity of having to use Lemma 7 that
adds the peculiar complication on the setting of w1 and w2. If
we choose a τ , we will know its parity, so we could choose w2

and w2 from (12) or (13), according to that parity. This would
allow us to decode exactly τ errors; analysis shows that in that
case one could choose any τ < 1

2n−
1
2

√
n(n− 4∆g − 4), i.e.

slightly greater than the binary Johnson radius. However, the
condition of Lemma 7 would then not always be true so we
would not always be able to correct fewer errors. This is the
reason of having to set w1 and w2 as in (14).

Interestingly, if we allow two runs of the rational interpolation
procedure instead of just one, we can achieve the decoding
radius τ < 1

2n −
1
2

√
n(n− 4∆g − 4) and still also decode

fewer than τ errors: let the first run be responsible for finding
those error locators corresponding to even number of errors,
and the second run for the odd number of errors. For each run
we then only need a looser version of Lemma 7, where only a
number of points with the right parity need to be interpolated
as well. Then we can set w1, w2 according to (12) in the even-
parity run, and similarly w1, w2 from (13) in the odd-parity
run. This yields the mentioned decoding radius.
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Lemma 17. For given n, ∆g and τ , then ` and s are valid
choices for the parameters for Algorithm 2 if and only if `,
r = ` − s and r̄ = s are valid parameters for the GSA+KV
as described in [19, §9.6].

For closed expressions for valid values of the parameters `
and s, one can use the analysis of Trifonov and Lee [8] which
works for any application of the rational interpolation method.

Algorithm 2 Wu list decoding binary Goppa codes
Input: A binary Goppa code C with Goppa polynomial

g(x) ∈ F2m [x] and evaluation points α0, . . . , αn−1, a
decoding radius τ < 1

2n −
1
2

√
n− 4∆g − 2, and a

received word r ∈ Fn2 .
Output: A list of all codewords in C within radius τ of r or

Fail if there are no such words.

1: Calculate the syndrome S(x) from r according to (7). If
S−1(x) = x and 0 ∈ L, then flip the corresponding bit of
r and return that word. If S−1(x) = x and 0 /∈ L, return
Fail. Otherwise, calculate S̃(x) satisfying ∆S̃ < ∆g and
S̃2(x) ≡ x+ S−1(x) mod g(x).

2: Run the EA on g(x), S̃(x) and halt when ∆si < ∆vi+1,
reusing the notation of Section II. Define ĥ1(x) =
s2i−1(x) + xv2i−1(x) and ĥ2(x) = s2i (x) + xv2i (x).

3: If either ĥ1(x) or ĥ2(x) are valid error-locators of degree
at most 2∆g − τ , use that to decode, and if this yields a
word in C, return this one word.

4: Otherwise, we seek f1, f2 according to (11). Set w1, w2 as
in (14), and calculate ` and s to satisfy (15). Construct a
Q(x, y, z) satisfying the requirements of Theorem 6 using

the points
{(
αi,

√
ĥ1(αi),

√
ĥ2(αi)

)}n−1
i=0

.
5: Find all factors of Q(x, y, z) of the form yf?1 (x)+zf?2 (x)

where f?1 and f?2 have degree less than w1 and w2

respectively. Return Fail if no such factors exist.
6: For each such factor, construct Λ?(x) = f?1

2(x)ĥ1(x) +
f?2

2(x)ĥ2(x). If it is a valid error-locator, use it for
decoding r. Return Fail if none of the factors yield error-
locators

7: Return those of the decoded words that are in C. Return
Fail if there are no such words.

D. Complexity Analysis

Again, the complexity of Algorithm 2 is easily found using
the results of Section III-A. For simplicity, we will assume
that 2m ∈ O(n). In that case, as ` ≥ s, steps 4 and 5 can be
computed in O(`ωsn logO(1)(`n)). The remaining steps are of
lower order, seen using arguments similar to those in Section
IV-D.

Lemma 18. If 2m ∈ O(n) then Algorithm 2 has complexity
O(`ωsn logO(1)(`n)).

The GSA+KV can decode binary Goppa codes – in fact any
alternant code – up to the small-field Johnson bound. Also
here, the bottle-neck of the complexity is the construction
of the interpolation polynomial. Bernstein in [15] gives an

algorithm for constructing this fast, and in terms of ` and n
and relaxing s, r and r̄ to `, it has the same complexity as the
above.

However, similarly to Section IV-D, one should note that s =
r̄ < `/2 and r = ` − r̄ > `/2, and the difference between
s and r increases with the rate of the code. From this view,
one would therefore expect that Algorithm 2 outperforms the
GSA+KV, though the asymptotic analysis we have performed
here is too crude to say for certain.

VI. CONCLUSION

In this article, we have reinvestigated the Wu list decoder
of [1]. Originally formulated in tight integration with the
Berlekamp-Massey algorithm, we have shown how the ex-
tended Euclidean algorithm can be used instead, enabling one
to solve more general equations than the original Key Equation
for Generalised Reed-Solomon codes.

At its core, the Wu list decoder solves a rational interpolation
problem in a manner mirroring the polynomial interpolation of
the Guruswami-Sudan algorithm (GSA). We have pointed out
how this equation becomes the one of the GSA by a change
of variables, implying that their decoding radii and list sizes
are the same, as well as connecting the multiplicities.

The most expensive part of solving the rational interpolation
problem is the construction of an interpolation polynomial.
We have shown how to extend methods used in the GSA for
constructing this polynomial fast. The result is that the Wu
list decoder can be made to run in the same complexity as the
fastest variants of the GSA.

The decoupling of the Key Equation-solving and rational
interpolation from the actual decoding results in a short
derivation of the list decoder for GRS codes. Moreover, it
makes it clear that the approach also can be used to extend
the Patterson decoder for binary Goppa codes, list decoding
up to the binary Johnson radius. Also here, a connection to
the governing equation of the GSA with the Kötter-Vardy
multiplicity assignment method is pointed out.

VII. ACKNOWLEDGEMENTS

The authors are very grateful for the insightful comments and
suggestions made by the anonymous reviewers. The authors
gratefully acknowledge the support from the Danish National
Research Foundation and the National Science Foundation of
China (Grant No.11061130539) for the Danish-Chinese Center
for Applications of Algebraic Geometry in Coding Theory and
Cryptography.

REFERENCES

[1] Y. Wu, “New List Decoding Algorithms for Reed-Solomon and BCH
Codes,” IEEE Transactions on Information Theory, vol. 54, no. 8, pp.
3611–3630, 2008.



13

[2] V. Guruswami and M. Sudan, “Improved Decoding of Reed-Solomon
Codes and Algebraic Geometry Codes,” IEEE Transactions on Informa-
tion Theory, vol. 45, no. 6, pp. 1757–1767, 1999.

[3] E. R. Berlekamp, Algebraic Coding Theory. Aegean Park Press, 1968.
[4] P. Fitzpatrick, “On the Key Equation,” IEEE Transactions on Information

Theory, vol. 41, no. 5, pp. 1290–1302, 1995.
[5] J. Dornstetter, “On the Equivalence Between Berlekamp’s and Euclid’s

Algorithms,” IEEE Transactions on Information Theory, vol. 33, no. 3,
pp. 428–431, 1987.

[6] A. E. Heydtmann and J. M. Jensen, “On the Equivalence of the
Berlekamp-Massey and the Euclidean Algorithms for Decoding,” IEEE
Transactions on Information Theory, vol. 46, no. 7, pp. 2614–2624,
2000.

[7] N. Patterson, “The Algebraic Decoding of Goppa Codes,” IEEE Trans-
actions on Information Theory, vol. 21, no. 2, pp. 203–207, 1975.

[8] P. Trifonov and M. Lee, “Efficient Interpolation in the Wu List Decoding
Algorithm,” IEEE Transactions on Information Theory, vol. 58, no. 9,
pp. 5963–5971, 2012.

[9] P. V. Trifonov, “Another Derivation of Wu List Decoding Algorithm and
Interpolation in Rational Curve Fitting,” in Proc. of IEEE R8 SIBIRCON,
2010, pp. 59–64.

[10] M. Ali and M. Kuijper, “A Parametric Approach to List Decoding
of Reed-Solomon Codes Using Interpolation,” IEEE Transactions on
Information Theory, vol. 57, no. 10, pp. 6718–6728, 2011.

[11] P. Beelen and K. Brander, “Key-equations for list decoding of Reed-
Solomon codes and how to solve them,” Journal of Symbolic Computa-
tion, vol. 45, no. 7, pp. 773–786, 2010.

[12] K. Lee and M. E. O’Sullivan, “List Decoding of Reed-Solomon Codes
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