21 research outputs found

    List decoding Reed-Muller codes over small fields

    Full text link
    The list decoding problem for a code asks for the maximal radius up to which any ball of that radius contains only a constant number of codewords. The list decoding radius is not well understood even for well studied codes, like Reed-Solomon or Reed-Muller codes. Fix a finite field F\mathbb{F}. The Reed-Muller code RMF(n,d)\mathrm{RM}_{\mathbb{F}}(n,d) is defined by nn-variate degree-dd polynomials over F\mathbb{F}. In this work, we study the list decoding radius of Reed-Muller codes over a constant prime field F=Fp\mathbb{F}=\mathbb{F}_p, constant degree dd and large nn. We show that the list decoding radius is equal to the minimal distance of the code. That is, if we denote by δ(d)\delta(d) the normalized minimal distance of RMF(n,d)\mathrm{RM}_{\mathbb{F}}(n,d), then the number of codewords in any ball of radius δ(d)ε\delta(d)-\varepsilon is bounded by c=c(p,d,ε)c=c(p,d,\varepsilon) independent of nn. This resolves a conjecture of Gopalan-Klivans-Zuckerman [STOC 2008], who among other results proved it in the special case of F=F2\mathbb{F}=\mathbb{F}_2; and extends the work of Gopalan [FOCS 2010] who proved the conjecture in the case of d=2d=2. We also analyse the number of codewords in balls of radius exceeding the minimal distance of the code. For ede \leq d, we show that the number of codewords of RMF(n,d)\mathrm{RM}_{\mathbb{F}}(n,d) in a ball of radius δ(e)ε\delta(e) - \varepsilon is bounded by exp(cnde)\exp(c \cdot n^{d-e}), where c=c(p,d,ε)c=c(p,d,\varepsilon) is independent of nn. The dependence on nn is tight. This extends the work of Kaufman-Lovett-Porat [IEEE Inf. Theory 2012] who proved similar bounds over F2\mathbb{F}_2. The proof relies on several new ingredients: an extension of the Frieze-Kannan weak regularity to general function spaces, higher-order Fourier analysis, and an extension of the Schwartz-Zippel lemma to compositions of polynomials.Comment: fixed a bug in the proof of claim 5.6 (now lemma 5.5

    List-decoding reed-muller codes over small fields

    Full text link
    We present the first local list-decoding algorithm for the rth order Reed-Muller code RM(r,m) over F2 for r ≥ 2. Given an oracle for a received word R: Fm2 → F2, our random-ized local list-decoding algorithm produces a list containing all degree r polynomials within relative distance (2−r − ε) from R for any ε> 0 in time poly(mr, ε−r). The list size could be exponential in m at radius 2−r, so our bound is op-timal in the local setting. Since RM(r,m) has relative dis-tance 2−r, our algorithm beats the Johnson bound for r ≥ 2. In the setting where we are allowed running-time polyno-mial in the block-length, we show that list-decoding is pos-sible up to even larger radii, beyond the minimum distance. We give a deterministic list-decoder that works at error rate below J(21−r), where J(δ) denotes the Johnson radius for minimum distance δ. This shows that RM(2,m) codes are list-decodable up to radius η for any constant η < 1 2 in time polynomial in the block-length. Over small fields Fq, we present list-decoding algorithms in both the global and local settings that work up to the list-decoding radius. We conjecture that the list-decoding radius approaches the minimum distance (like over F2), and prove this holds true when the degree is divisible by q − 1

    List decoding group homomorphisms between supersolvable groups

    Get PDF
    We show that the set of homomorphisms between two supersolvable groups can be locally list decoded up to the minimum distance of the code, extending the results of Dinur et al who studied the case where the groups are abelian. Moreover, when specialized to the abelian case, our proof is more streamlined and gives a better constant in the exponent of the list size. The constant is improved from about 3.5 million to 105.Comment: 11 page

    Bias vs structure of polynomials in large fields, and applications in effective algebraic geometry and coding theory

    Full text link
    Let ff be a polynomial of degree dd in nn variables over a finite field F\mathbb{F}. The polynomial is said to be unbiased if the distribution of f(x)f(x) for a uniform input xFnx \in \mathbb{F}^n is close to the uniform distribution over F\mathbb{F}, and is called biased otherwise. The polynomial is said to have low rank if it can be expressed as a composition of a few lower degree polynomials. Green and Tao [Contrib. Discrete Math 2009] and Kaufman and Lovett [FOCS 2008] showed that bias implies low rank for fixed degree polynomials over fixed prime fields. This lies at the heart of many tools in higher order Fourier analysis. In this work, we extend this result to all prime fields (of size possibly growing with nn). We also provide a generalization to nonprime fields in the large characteristic case. However, we state all our applications in the prime field setting for the sake of simplicity of presentation. As an immediate application, we obtain improved bounds for a suite of problems in effective algebraic geometry, including Hilbert nullstellensatz, radical membership and counting rational points in low degree varieties. Using the above generalization to large fields as a starting point, we are also able to settle the list decoding radius of fixed degree Reed-Muller codes over growing fields. The case of fixed size fields was solved by Bhowmick and Lovett [STOC 2015], which resolved a conjecture of Gopalan-Klivans-Zuckerman [STOC 2008]. Here, we show that the list decoding radius is equal the minimum distance of the code for all fixed degrees, even when the field size is possibly growing with nn

    Group homomorphisms as error correcting codes

    Get PDF
    We investigate the minimum distance of the error correcting code formed by the homomorphisms between two finite groups GG and HH. We prove some general structural results on how the distance behaves with respect to natural group operations, such as passing to subgroups and quotients, and taking products. Our main result is a general formula for the distance when GG is solvable or HH is nilpotent, in terms of the normal subgroup structure of GG as well as the prime divisors of G|G| and H|H|. In particular, we show that in the above case, the distance is independent of the subgroup structure of HH. We complement this by showing that, in general, the distance depends on the subgroup structure GG.Comment: 13 page

    Efficiently decoding Reed-Muller codes from random errors

    Full text link
    Reed-Muller codes encode an mm-variate polynomial of degree rr by evaluating it on all points in {0,1}m\{0,1\}^m. We denote this code by RM(m,r)RM(m,r). The minimal distance of RM(m,r)RM(m,r) is 2mr2^{m-r} and so it cannot correct more than half that number of errors in the worst case. For random errors one may hope for a better result. In this work we give an efficient algorithm (in the block length n=2mn=2^m) for decoding random errors in Reed-Muller codes far beyond the minimal distance. Specifically, for low rate codes (of degree r=o(m)r=o(\sqrt{m})) we can correct a random set of (1/2o(1))n(1/2-o(1))n errors with high probability. For high rate codes (of degree mrm-r for r=o(m/logm)r=o(\sqrt{m/\log m})), we can correct roughly mr/2m^{r/2} errors. More generally, for any integer rr, our algorithm can correct any error pattern in RM(m,m(2r+2))RM(m,m-(2r+2)) for which the same erasure pattern can be corrected in RM(m,m(r+1))RM(m,m-(r+1)). The results above are obtained by applying recent results of Abbe, Shpilka and Wigderson (STOC, 2015), Kumar and Pfister (2015) and Kudekar et al. (2015) regarding the ability of Reed-Muller codes to correct random erasures. The algorithm is based on solving a carefully defined set of linear equations and thus it is significantly different than other algorithms for decoding Reed-Muller codes that are based on the recursive structure of the code. It can be seen as a more explicit proof of a result of Abbe et al. that shows a reduction from correcting erasures to correcting errors, and it also bares some similarities with the famous Berlekamp-Welch algorithm for decoding Reed-Solomon codes.Comment: 18 pages, 2 figure

    Efficient Multi-Point Local Decoding of Reed-Muller Codes via Interleaved Codex

    Get PDF
    Reed-Muller codes are among the most important classes of locally correctable codes. Currently local decoding of Reed-Muller codes is based on decoding on lines or quadratic curves to recover one single coordinate. To recover multiple coordinates simultaneously, the naive way is to repeat the local decoding for recovery of a single coordinate. This decoding algorithm might be more expensive, i.e., require higher query complexity. In this paper, we focus on Reed-Muller codes with usual parameter regime, namely, the total degree of evaluation polynomials is d=Θ(q)d=\Theta({q}), where qq is the code alphabet size (in fact, dd can be as big as q/4q/4 in our setting). By introducing a novel variation of codex, i.e., interleaved codex (the concept of codex has been used for arithmetic secret sharing \cite{C11,CCX12}), we are able to locally recover arbitrarily large number kk of coordinates of a Reed-Muller code simultaneously at the cost of querying O(q2k)O(q^2k) coordinates. It turns out that our local decoding of Reed-Muller codes shows ({\it perhaps surprisingly}) that accessing kk locations is in fact cheaper than repeating the procedure for accessing a single location for kk times. Our estimation of success error probability is based on error probability bound for tt-wise linearly independent variables given in \cite{BR94}
    corecore