research

Group homomorphisms as error correcting codes

Abstract

We investigate the minimum distance of the error correcting code formed by the homomorphisms between two finite groups GG and HH. We prove some general structural results on how the distance behaves with respect to natural group operations, such as passing to subgroups and quotients, and taking products. Our main result is a general formula for the distance when GG is solvable or HH is nilpotent, in terms of the normal subgroup structure of GG as well as the prime divisors of G|G| and H|H|. In particular, we show that in the above case, the distance is independent of the subgroup structure of HH. We complement this by showing that, in general, the distance depends on the subgroup structure GG.Comment: 13 page

    Similar works