2,679 research outputs found

    Low cost solar array project. Cell and module formation research area. Process research of non-CZ silicon material

    Get PDF
    Liquid diffusion masks and liquid dopants to replace the more expensive CVD SiO2 mask and gaseous diffusion processes were investigated. Silicon pellets were prepared in the silicon shot tower; and solar cells were fabricated using web grown where the pellets were used as a replenishment material. Verification runs were made using the boron dopant and liquid diffusion mask materials. The average of cells produced in these runs was 13%. The relationship of sheet resistivity, temperature, gas flows, and gas composition for the diffusion of the P-8 liquid phosphorus solution was investigated. Solar cells processed from web grown from Si shot material were evaluated, and results qualified the use of the material produced in the shot tower for web furnace feed stock

    Process research of non-cz silicon material. Low cost solar array project, cell and module formation research area

    Get PDF
    Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated

    Modeling Multicomponent Fuel Droplet Vaporization with Finite Liquid Diffusivity Using Coupled Algebraic-Dqmom with Delumping

    Get PDF
    Multicomponent fuel droplet vaporization models for use in combustion CFD codes often prioritize computational efficiency over model complexity. This leads to oversimplifying assumptions such as single component droplets or infinite liquid diffusivity. The previously developed Direct Quadrature Method of Moments (DQMoM) with delumping model demonstrated a computationally efficient and accurate approach to solve for every discrete species in a well-mixed vaporizing multicomponent droplet. To expand the method to less restrictive cases, a new solution technique is presented called the Coupled Algebraic-Direct Quadrature Method of Moments (CA-DQMoM). In contrast to previous moment methods for droplet vaporization, CA-DQMoM solves for the evolution of two liquid distributions by coupling a monovariate, homogeneous DQMoM approach with additional algebraic moment equations, allowing for a more complex droplet vaporization model with finite rates of liquid diffusion to be solved with computational efficiency. To further decrease computational expense, an approximation that employs the same nodes for both distributions can be used in certain cases. Finally, a delumping technique is adapted to the finite diffusivity model to reconstruct discrete species information at minimal computational cost. The model is proven to be accurate relative to a full discrete component model for both a kerosene droplet comprised of 36 species and a multicomponent droplet of 200 species while maintaining the computational efficiency of continuous thermodynamics models. The combined accuracy and computational efficiency demonstrated by the CA-DQMoM with delumping model for a multicomponent fuel droplet with finite liquid diffusivity makes it ideal for incorporation into CFD models for complex combustion process

    Spontaneous Formation of Stable Capillary Bridges for Firming Compact Colloidal Microstructures in Phase Separating Liquids: A Computational Study

    Full text link
    Computer modeling and simulations are performed to investigate capillary bridges spontaneously formed between closely packed colloidal particles in phase separating liquids. The simulations reveal a self-stabilization mechanism that operates through diffusive equilibrium of two-phase liquid morphologies. Such mechanism renders desired microstructural stability and uniformity to the capillary bridges that are spontaneously formed during liquid solution phase separation. This self-stabilization behavior is in contrast to conventional coarsening processes during phase separation. The volume fraction limit of the separated liquid phases as well as the adhesion strength and thermodynamic stability of the capillary bridges are discussed. Capillary bridge formations in various compact colloid assemblies are considered. The study sheds light on a promising route to in-situ (in-liquid) firming of fragile colloidal crystals and other compact colloidal microstructures via capillary bridges

    Effect of Distributed Superficial-Velocity in Deep-Bed Grain Drying

    Get PDF
    This paper deals with influence of velocity field distribution to heat and mass transfer process in deep bed grain dryers. Two-dimensional (2D) models of deep-bed grain dryers were built by considering simultaneously momentum, heat, and mass transfer in the drying air phase. The Navier-Stokes momentum equations are applied to simulate pressure drop and velocity field of the drying airflow. Effect of velocity distribution to the heat and mass transfer coefficient distribution were simulated along the height of grains bed. The dynamic equations are solved numerically by using finite difference method by utilization of alternating direction implicit method, while the momentum equations are solved numerically by utilization of SIMPLE algorithm. The simulation results showed that velocity distribution along the grains bed - 5 cm of bed height - did not so influenced to the heat and mass transfer coefficient. Further, the vector plot of drying air superficial velocity field and contour of pressure distribution along deep bed of grain was simulated

    Absorption accompanied with chemical reaction in trickle-bed reactors.

    Get PDF
    A new development in the field of internals in packed columns is the use of structured packing types. Recently, a new structured packing type coated with a thin alumina layer (KATAPAKTM) has been developed. In this report, the results of an experimental and theoretical study concerning the possible applicability of this new packing material for hydrogenation processes in a trickle-bed reactor is presented. The palladium catalyzed hydrogenation of α-methylstryrene is used as a model reaction to study hydrodynamics and mass transfer characteristics in a trickle-bed reactor under reactive conditions. Converstions at several process conditions are measured in a pilot plant in which 3 mm spheres as well KATAPAKTM is applied as packing materials. A comparison of the results of some physical absorption experiments with the results of hydrogenation experiments showed that the resistance in series model—in which the total resistance against mass transfer is calculated from the separate resistances—is not valid in systems where heterogeneous reactions at the solid surface can enhance the mass transfer-rate at the gas-liquid interphase. With the aid of a developed trickle-bed reactor model, based on liquid diffusion, simultaneous reaction at the solid surface and zero volume mixing points, the mass transfer phenomena in trickle-bed reactors in conditions where the resistance in series model fails can be explained and described. The numerically solved model calculates the hydrogen profiles in the liquid films of the reactor and over all single pass conversions at several process conditions. These conclusions are confirmed by the results of the simulation of a model reactor, i.e. the laminar film reactor with a catalytically active wall. From the results of the measurements it could be concluded that in trickle-flow conditions, the application of KATAPAKTM does not significantly improved on the overall performance of trickle-bed reactors. The increase of the physical absorption rate due to better mass transfer characteristics of structured packings compared to dumped packing types—as reported in literature—will be eliminated to a certain extent in reactive systems due to the enhancement effect of heterogeneous reactions in trickle-flow operation
    • …
    corecore