research

Effect of Distributed Superficial-Velocity in Deep-Bed Grain Drying

Abstract

This paper deals with influence of velocity field distribution to heat and mass transfer process in deep bed grain dryers. Two-dimensional (2D) models of deep-bed grain dryers were built by considering simultaneously momentum, heat, and mass transfer in the drying air phase. The Navier-Stokes momentum equations are applied to simulate pressure drop and velocity field of the drying airflow. Effect of velocity distribution to the heat and mass transfer coefficient distribution were simulated along the height of grains bed. The dynamic equations are solved numerically by using finite difference method by utilization of alternating direction implicit method, while the momentum equations are solved numerically by utilization of SIMPLE algorithm. The simulation results showed that velocity distribution along the grains bed - 5 cm of bed height - did not so influenced to the heat and mass transfer coefficient. Further, the vector plot of drying air superficial velocity field and contour of pressure distribution along deep bed of grain was simulated

    Similar works