1,881 research outputs found

    A Survey of Green Networking Research

    Full text link
    Reduction of unnecessary energy consumption is becoming a major concern in wired networking, because of the potential economical benefits and of its expected environmental impact. These issues, usually referred to as "green networking", relate to embedding energy-awareness in the design, in the devices and in the protocols of networks. In this work, we first formulate a more precise definition of the "green" attribute. We furthermore identify a few paradigms that are the key enablers of energy-aware networking research. We then overview the current state of the art and provide a taxonomy of the relevant work, with a special focus on wired networking. At a high level, we identify four branches of green networking research that stem from different observations on the root causes of energy waste, namely (i) Adaptive Link Rate, (ii) Interface proxying, (iii) Energy-aware infrastructures and (iv) Energy-aware applications. In this work, we do not only explore specific proposals pertaining to each of the above branches, but also offer a perspective for research.Comment: Index Terms: Green Networking; Wired Networks; Adaptive Link Rate; Interface Proxying; Energy-aware Infrastructures; Energy-aware Applications. 18 pages, 6 figures, 2 table

    Post-peak ICT: graceful degradation for communication networks in an energy constrained future

    Get PDF
    In recent years, rising energy prices and increasing environmental concerns have boosted research in the so called green ICT and green networking research tracks, aimed at improving the energy efficiency of communications while still offering maximal functionality. In this article we explore a future scenario in which low power networking is no longer optional, but instead becomes a necessity due to fluctuating energy availability. The contribution of this work is twofold. First, we argue why a so called post-peak future scenario, in which we can no longer rely on fossil fuels as our main resource for electricity production, is not unlikely, and what it might entail. Second, we explore the consequences of such a scenario for ICT: How well can current and future infrastructures cope with temporary energy limitations? As an illustration, we present a case study showing the impact of reduced energy availability on a wireless access network

    Energy management in communication networks: a journey through modelling and optimization glasses

    Full text link
    The widespread proliferation of Internet and wireless applications has produced a significant increase of ICT energy footprint. As a response, in the last five years, significant efforts have been undertaken to include energy-awareness into network management. Several green networking frameworks have been proposed by carefully managing the network routing and the power state of network devices. Even though approaches proposed differ based on network technologies and sleep modes of nodes and interfaces, they all aim at tailoring the active network resources to the varying traffic needs in order to minimize energy consumption. From a modeling point of view, this has several commonalities with classical network design and routing problems, even if with different objectives and in a dynamic context. With most researchers focused on addressing the complex and crucial technological aspects of green networking schemes, there has been so far little attention on understanding the modeling similarities and differences of proposed solutions. This paper fills the gap surveying the literature with optimization modeling glasses, following a tutorial approach that guides through the different components of the models with a unified symbolism. A detailed classification of the previous work based on the modeling issues included is also proposed

    Novel Resource and Energy Management for 5G Integrated Backhaul/Fronthaul (5G-Crosshaul)

    Get PDF
    The integration of both fronthaul and backhaul into a single transport network (namely, 5G-Crosshaul) is envisioned for the future 5G transport networks. This requires a fully integrated and unified management of the fronthaul and backhaul resources in a cost-efficient, scalable and flexible way through the deployment of an SDN/NFV control framework. This paper presents the designed 5G-Crosshaul architecture, two selected SDN/NFV applications targeting for cost-efficient resource and energy usage: the Resource Management Application (RMA) and the Energy Management and Monitoring Application (EMMA). The former manages 5G-Crosshaul resources (network, computing and storage resources). The latter is a special version of RMA with the focus on the objectives of optimizing the energy consumption and minimizing the energy footprint of the 5G-Crosshaul infrastructure. Besides, EMMA is applied to the mmWave mesh network and the high speed train scenarios. In particular, we present the key application design with their main components and the interactions with each other and with the control plane, and then we present the proposed application optimization algorithms along with initial results. The first results demonstrate that the proposed RMA is able to cost-efficiently utilize the Crosshaul resources of heterogeneous technologies, while EMMA can achieve significant energy savings through energy-efficient routing of traffic flows. For experiments in real system, we also set up Proof of Concepts (PoCs) for both applications in order to perform real trials in the field.© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Managing the Future Internet through Intelligent In-Network Substrates

    Get PDF
    The current Internet has been founded on the architectural premise of a simple network service used to interconnect relatively intelligent end systems. While this simplicity allowed it to reach an impressive scale, the predictive manner in which ISP networks are currently planned and configured through external management systems and the uniform treatment of all traffic are hampering its use as a unifying multi-service network. The future Internet will need to be more intelligent and adaptive, optimizing continuously the use of its resources and recovering from transient problems, faults and attacks without any impact on the demanding services and applications running over it. This article describes an architecture that allows intelligence to be introduced within the network to support sophisticated self-management functionality in a coordinated and controllable manner. The presented approach, based on intelligent substrates, can potentially make the Internet more adaptable, agile, sustainable, and dependable given the requirements of emerging services with highly demanding traffic and rapidly changing locations. We discuss how the proposed framework can be applied to three representative emerging scenarios: dynamic traffic engineering (load balancing across multiple paths); energy efficiency in ISP network infrastructures; and cache management in content-centric networks
    corecore