11 research outputs found

    Layer-switching cost and optimality in information spreading on multiplex networks

    Full text link
    We study a model of information spreading on multiplex networks, in which agents interact through multiple interaction channels (layers), say online vs.\ offline communication layers, subject to layer-switching cost for transmissions across different interaction layers. The model is characterized by the layer-wise path-dependent transmissibility over a contact, that is dynamically determined dependently on both incoming and outgoing transmission layers. We formulate an analytical framework to deal with such path-dependent transmissibility and demonstrate the nontrivial interplay between the multiplexity and spreading dynamics, including optimality. It is shown that the epidemic threshold and prevalence respond to the layer-switching cost non-monotonically and that the optimal conditions can change in abrupt non-analytic ways, depending also on the densities of network layers and the type of seed infections. Our results elucidate the essential role of multiplexity that its explicit consideration should be crucial for realistic modeling and prediction of spreading phenomena on multiplex social networks in an era of ever-diversifying social interaction layers.Comment: 15 pages, 7 figure

    Epidemic Spreading with Heterogeneous Awareness on Human Networks

    Get PDF
    The spontaneous awareness behavioral responses of individuals have a significant impact on epidemic spreading. In this paper, a modified Susceptible-Alert-Infected-Susceptible (SAIS) epidemic model with heterogeneous awareness is presented to study epidemic spreading in human networks and the impact of heterogeneous awareness on epidemic dynamics. In this model, when susceptible individuals receive awareness information about the presence of epidemic from their infected neighbor nodes, they will become alert individuals with heterogeneous awareness rate. Theoretical analysis and numerical simulations show that heterogeneous awareness can enhance the epidemic threshold with certain conditions and reduce the scale of virus outbreaks compared with no awareness. What is more, for the same awareness parameter, it also shows that heterogeneous awareness can slow effectively the spreading size and does not delay the arrival time of epidemic spreading peak compared with homogeneous awareness

    Cascading Failures in Complex Networks

    Full text link
    Cascading failure is a potentially devastating process that spreads on real-world complex networks and can impact the integrity of wide-ranging infrastructures, natural systems, and societal cohesiveness. One of the essential features that create complex network vulnerability to failure propagation is the dependency among their components, exposing entire systems to significant risks from destabilizing hazards such as human attacks, natural disasters or internal breakdowns. Developing realistic models for cascading failures as well as strategies to halt and mitigate the failure propagation can point to new approaches to restoring and strengthening real-world networks. In this review, we summarize recent progress on models developed based on physics and complex network science to understand the mechanisms, dynamics and overall impact of cascading failures. We present models for cascading failures in single networks and interdependent networks and explain how different dynamic propagation mechanisms can lead to an abrupt collapse and a rich dynamic behavior. Finally, we close the review with novel emerging strategies for containing cascades of failures and discuss open questions that remain to be addressed.Comment: This review has been accepted for publication in the Journal of Complex Networks Published by Oxford University Pres

    Discordant attributes of structural and functional brain connectivity in a two-layer multiplex network.

    Get PDF
    Several studies have suggested that functional connectivity (FC) is constrained by the underlying structural connectivity (SC) and mutually correlated. However, not many studies have focused on differences in the network organization of SC and FC, and on how these differences may inform us about their mutual interaction. To explore this issue, we adopt a multi-layer framework, with SC and FC, constructed using Magnetic Resonance Imaging (MRI) data from the Human Connectome Project, forming a two-layer multiplex network. In particular, we examine node strength assortativity within and between the SC and FC layer. We find that, in general, SC is organized assortatively, indicating brain regions are on average connected to other brain regions with similar node strengths. On the other hand, FC shows disassortative mixing. This discrepancy is apparent also among individual resting-state networks within SC and FC. In addition, these patterns show lateralization, with disassortative mixing within FC subnetworks mainly driven from the left hemisphere. We discuss our findings in the context of robustness to structural failure, and we suggest that discordant and lateralized patterns of associativity in SC and FC may provide clues to understand laterality of some neurological dysfunctions and recovery

    Percolation and reinforcement on complex networks

    Full text link
    Complex networks appear in almost every aspect of our daily life and are widely studied in the fields of physics, mathematics, finance, biology and computer science. This work utilizes percolation theory in statistical physics to explore the percolation properties of complex networks and develops a reinforcement scheme on improving network resilience. This dissertation covers two major parts of my Ph.D. research on complex networks: i) probe—in the context of both traditional percolation and k-core percolation—the resilience of complex networks with tunable degree distributions or directed dependency links under random, localized or targeted attacks; ii) develop and propose a reinforcement scheme to eradicate catastrophic collapses that occur very often in interdependent networks. We first use generating function and probabilistic methods to obtain analytical solutions to percolation properties of interest, such as the giant component size and the critical occupation probability. We study uncorrelated random networks with Poisson, bi-Poisson, power-law, and Kronecker-delta degree distributions and construct those networks which are based on the configuration model. The computer simulation results show remarkable agreement with theoretical predictions. We discover an increase of network robustness as the degree distribution broadens and a decrease of network robustness as directed dependency links come into play under random attacks. We also find that targeted attacks exert the biggest damage to the structure of both single and interdependent networks in k-core percolation. To strengthen the resilience of interdependent networks, we develop and propose a reinforcement strategy and obtain the critical amount of reinforced nodes analytically for interdependent Erdős-Rényi networks and numerically for scale-free and for random regular networks. Our mechanism leads to improvement of network stability of the West U.S. power grid. This dissertation provides us with a deeper understanding of the effects of structural features on network stability and fresher insights into designing resilient interdependent infrastructure networks
    corecore