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Discordant attributes of structural 
and functional brain connectivity in 
a two-layer multiplex network
Sol Lim1,6, Filippo Radicchi2, Martijn P. van den Heuvel3,4 & Olaf Sporns   1,5

Several studies have suggested that functional connectivity (FC) is constrained by the underlying 
structural connectivity (SC) and mutually correlated. However, not many studies have focused on 
differences in the network organization of SC and FC, and on how these differences may inform us 
about their mutual interaction. To explore this issue, we adopt a multi-layer framework, with SC and 
FC, constructed using Magnetic Resonance Imaging (MRI) data from the Human Connectome Project, 
forming a two-layer multiplex network. In particular, we examine node strength assortativity within 
and between the SC and FC layer. We find that, in general, SC is organized assortatively, indicating 
brain regions are on average connected to other brain regions with similar node strengths. On the other 
hand, FC shows disassortative mixing. This discrepancy is apparent also among individual resting-state 
networks within SC and FC. In addition, these patterns show lateralization, with disassortative mixing 
within FC subnetworks mainly driven from the left hemisphere. We discuss our findings in the context of 
robustness to structural failure, and we suggest that discordant and lateralized patterns of associativity 
in SC and FC may provide clues to understand laterality of some neurological dysfunctions and recovery.

The relationship between structural connectivity and functional connectivity has attracted much attention in 
recent years1–5. Yet despite numerous empirical4,6 and computational studies1,2 the nature of their interaction 
remains only incompletely understood. Several studies have suggested that functional brain networks are con-
strained by the underlying structural connectivity7, and brain-wide comparisons have supported the idea that 
functional connectivity (FC), measured in the resting state, and structural connectivity (SC) are in general sta-
tistically correlated8. For example, when there is a strong anatomical connection between two areas of the brain, 
the corresponding functional connection is likely to be strong as well, but the inverse is not always the case5,9–14. 
A number of computational models have successfully reproduced some features of empirical functional connec-
tivity, including models based on large-scale dynamics15,16 or graph theory metrics17. While most studies have 
emphasized the statistical association between SC and FC, important differences and discrepancies remain11,14. 
This may be expected given that fMRI and dMRI measure different signals and use different statistical approaches 
for estimating pairwise connections between regions of interest (ROIs). Whereas SC estimates a direct relation-
ship or path between two brain regions, measurements of FC, for instance, estimated by Pearson’s moment cor-
relation coefficients, incorporate both direct and indirect relationships between two nodes influenced by other 
brain areas18,19.

However, not many studies have focused on fundamental topological differences in the network organization 
of SC and FC, and on how these differences may provide insight into their mutual interaction. To explore this 
issue, we adopt a multi-layer framework, with SC and FC forming a multiplex network20–22. What are the funda-
mental topological differences that underpin FC and SC, and are these differences biologically meaningful? Are 
there potential benefits that might arise from topological differences among these two different types of brain 
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networks? As previous studies have shown, SC and FC are intricately (and non-trivially) linked – for example, 
by demonstrating that FC arises from underlying anatomical connections. Thus, if any systematic/consistent 
topological differences exist between these two networks, are they mere by-products of the generative process or 
could they represent biologically meaningful features of multi-layer organization that carry benefit or enhance 
overall functionality?

Specifically, we will examine node strength assortativity within and between the SC and FC layers. Degree 
assortativity has been extensively studied in the context of network robustness23–25. In isolated networks, assor-
tativity stands for correlation among nodes features (e.g., degree) of directly connected nodes23. A network is 
said to be assortative if its connectivity pattern is such that high-degree nodes are frequently attached to other 
high-degree nodes, and low-degree nodes are preferentially connected to other low-degree nodes. Assortative 
networks are generally resilient against the random removal of nodes and edges23,26,27. In multiplex networks, 
correlations among nodes features can be measured both within- and between-layers28,29. The two types of cor-
relations provide different information about the robustness of the interdependent system. In the absence of any 
correlations between layers, it is well known that an interdependent network undergoes a sudden percolation 
transition20. An increased within-layer degree assortativity decreases the robustness of the network in terms of the 
percolation threshold30. On the other hand, positive values of between-layer correlations generally mitigate the 
abrupt nature of the transition, making the system more robust. Examples include degree-degree correlations31, 
edge overlap32–36, clustering and spatial coordinates37–39.

Robustness is an important feature of brain networks40–42. In many cases, FC network patterns appear to main-
tain large-scale patterns and functionality even in the face of serious disruptions or disturbance of underlying 
SC43,44. Can a multi-layer model shed light on the network basis for these observations? Here, we investigate if 
these findings from theoretical investigations and non-biological networks carry over to human brain networks 
derived from Magnetic Resonance Imaging (MRI) data from the Human Connectome Project45. SC was con-
structed based on diffusion MRI and tractography and FC was estimated using regularized partial correlation 
coefficients with the elastic net. The two layers (SC and FC) are coupled by creating links on pairs of correspond-
ing nodes in the two layers, thus creating a multiplex network. We examine assortative mixing by strength both 
within SC and FC and between the two layers. We divided FC and SC into 7 subnetworks according to a canonical 
resting-state partition46. We find that coupled structural and functional human brain networks exhibit a combina-
tion of similarities and differences. In addition, we find heterogeneous node strength correlations across the two 
layers and within FC and SC subnetworks, as well as interesting contrast between the left and right hemispheres. 
Our findings may ultimately provide clues to understand why some brain networks are more vulnerable to or 
more resilient against functional disruption due to brain disorders or injuries.

Methods and Materials
Data and data processing.  The dataset was provided by the Human Connectome Project (HCP; http://
www.humanconnectome.org) from the Washington University-University of Minnesota (WUMinn) consor-
tium45, acquired using a modified 3T Siemens Skyra scanner with a 32-channel head coil. Resting-state fMRI 
data in an eyes-open condition were collected for approximately 14 min (1,200 time points) with TR = 720 ms, 
TE = 33.1 ms, flip angle = 52, voxel size = 2 mm isotropic, and FOV = 208 × 180 mm2 and 72 slices. The data 
were acquired with opposing phase encoding directions, left-to-right (LR) in one run and right-to-left (RL) 
in the other run. Scanning parameters of a T1-weighted structural image were TR = 2,400 ms, TE = 2.14 ms, 
flip angle = 8, voxel size = 0.7 mm isotropic, FOV = 224 × 224 mm2 and 320 slices. Diffusion-weighted images 
(DWI) were acquired with 270 gradient directions with b-values 1000, 2000, 3000 s/mm2, two repeats, and in 
a total of 36 b0 scans: TR = 5520 ms, TE = 89.5 ms, flip angle = 78, FOV = 210 × 180 mm2, 111 slices, and voxel 
size = 1.25 mm isotropic. A T1-weighted structural image was acquired with TR = 2400 ms, TE = 2.14 ms, flip 
angle = 8, FOV = 224 × 224 mm2, 320 slices, and voxel size = 0.7 mm isotropic. From the minimally preprocessed 
DWI data, white matter fibers were reconstructed using generalized q - sampling imaging47 and a modified deter-
ministic streamline tractography48 using DSI studio (http://dsi-studio.labsolver.org)49–52. Resting-state fMRI Data 
were realigned and co-registered to the T1-weighted structural image using FSL53. Linear trends and first order 
drifts with global effects were removed by regressing out the white matter, ventricle, global mean signals, together 
with 6 motion parameters using Matlab R2016b (Mathworks Inc., Natick, MA). White matter and ventricle voxels 
were determined based on the T1 FreeSurfer segmentations54. Next, time-series were band-pass filtered with a 
Butterworth filter (0.01–0.1 Hz)55,56. Motion scrubbing was used to remove scan frames when significant move-
ment was detected in the individual time series56,57. Our study included 484 participants in total from the Q4 
release of HCP data.

Structural connectivity (SC) and functional connectivity (FC).  Both structural networks and func-
tional networks consisted of 219 cortical nodes using a subdivision parcellation58 of the Desikan-Killiany atlas59 
excluding subcortical areas. For the structural networks, the edge weights were defined by the streamline count 
between two ROIs derived from diffusion MRI tractography and the edge weights for the functional networks 
were estimated as regularized partial correlation coefficients for each individual (see Section 2.6 for details). For 
both SC and FC, networks were constructed for each individual resulting in 484 FC and 484 SC networks and 
these individual networks were used for subsequent analyses.

Interdependent relationship between SC and FC.  We model the interdependency of SC and FC using 
a multi-layer network approach22,60. SC and FC form two separate layers that are linked by multiplex coupling, 
such that a node (ROI) in one layer is connected to the same node in the other layer in a one-to-one correspond-
ence (Fig. 1, left). Building on previous work that has shown significant interactions between SC and FC1–5, the 
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multi-layer approach is designed to consider SC and FC as interdependent networks with a one-to-one corre-
spondence. In this study, we consider a two-layer multiplex network with unweighted dependency links between 
layers for simplicity with a minimal set of assumptions; however, one could extend the model to represent a more 
general multi-layer network framework for future studies.

Estimation of functional connectivity from resting-state fMRI.  Here, we use ROI-based FC in order 
to make a direct connection between SC and FC, in particular, we use regularized partial correlation coefficients 
based on a regression approach61. In the following sections, we elaborate on why we chose to use regularized 
partial correlation coefficients. Many different measures have been used to estimate or construct functional brain 
networks62–64. Among them, the Pearson’s moment correlation coefficient has been the most popular choice 
among brain researchers, and, despite its simplicity, it has provided valuable information regarding the intrinsic 
functional organization of the brain65. However, other measures for estimating pairwise functional connectiv-
ity do exist, and they probe different aspects of dynamic interactions. Alternative choices include partial corre-
lation coefficients, coherence measures that estimate linear relationships considering direct/indirect coupling 
effects in either the time domain or in the frequency domain, or non-linear measures such as mutual informa-
tion, second-order maximum entropy or generalized synchronization65,66. In addition to the aforementioned 
ROI-based definition for functional networks, spatial ICA-based functional networks are also widely used67–69. 
Importantly, network properties of FC may differ depending on which dependency/synchrony measure one 
chooses as each measure captures different aspects of the functional network65. Spatial ICA and seed-based FC 
have shown to be similar in certain cases70 and both have advantages and disadvantages (for more quantitative 
comparison between the two methods, see71). Importantly, network properties of FC may differ depending on 
which dependency/synchrony measure or which type of derived FC one chooses to construct as each method 
captures different aspects of the functional network19,65,66,72,73.

Full correlation versus partial correlation.  The utility of a partial correlation approach to functional 
brain networks derives from the capacity to remove indirect effects due to remote linear effects propagated from 
other regions74–79. However, using partial correlation coefficients entails some other issues, such as requiring 
number of observations larger than the number of ROIs, potential overfitting and less stable estimation61,76,80–87. 
On the positive side, partial correlation coefficients could estimate connection strengths between two brain 
regions that are conditionally independent with a small coefficient, reducing or removing indirect connections 
(often referred to as spurious connections) (Fig. 1, left). Nonetheless, when the underlying structure happens 
to involve conditional dependence, in other words, ‘explaining away’ phenomenon in the Bayesian modelling 
literature (probabilistic graphical models)88, estimating partial correlation coefficients can cause Berkson’s para-
dox, inducing a ‘spurious’ connection, which will not happen when we use full correlation coefficient estimation 
(Fig. 1B, right)89. This can be partially solved by using regularized partial correlation coefficients81.

Regularized partial correlation coefficients using elastic net.  Regularized partial correlation coef-
ficient estimation has been proposed for constructing functional networks based on resting-state fMRI to over-
come the limitation of partial correlation coefficient estimation, while measuring direct relationships between two 
brain areas61,76,80–87 and, more commonly, for constructing gene association networks61. Estimation of regularized 
partial correlation coefficients has been carried out by applying regularization on Gaussian Graphical Models 
(GGMs), which can be represented as a graph with edges estimating conditional dependence between nodes61,90. 

Figure 1.  (A) A schematic representation of a brain multiplex network, where the networks of functional 
connectivity (FC) and structural connectivity (SC) are coupled via one-to-one match between corresponding 
region of interests; hub nodes in the SC (denoted as bigger circles) may not coincide with high-degree nodes 
in the FC; nodes linked in SC may not co-activate strongly, resulting in the absence of the edge in FC. (B) 
Limitations of Pearson’s correlation and partial correlation. Depending on the underlying neuronal circuits 
both approaches can result in undesirable connection weights in the functional graph. (Left) A case where 
Pearson’s correlation coefficient fails to disregard a non-existent connection between node A and C. The 
visualization stands for the underlying probabilistic graphical model among the variables A, B, and C, with 
connections standing for dependencies among pairs of variables. The two matrices contain the coefficients 
of Pearson’s correlation and partial correlation coefficients, respectively. Rows and columns of the matrices 
refer to alphabetically ordered pairs of variable. Given their symmetry, we show only the upper-triangle of the 
matrices. (Right) A case where the partial correlation coefficient counter-intuitively imposes a high weight on 
the connection between node A and B due to the dependence on C. (Adapted from Nie 201581).
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Of those regularized models, the elastic net has been shown to be a good model to estimate resting-state func-
tional connectivity76. Although providing sparser solutions which do not require further statistical thresholding, 
L1-norm regularization can only identify the number of functional connections that is less than or equal to the 
number of observations (time points) and can detect only a subset of connections when the time series are highly 
correlated91. On the other hand, L2-norm regularization does not shrink small values of coefficients to zero, and 
hence we may not achieve the desirable level of sparseness of the network91. We can overcome these limitations 
by using the elastic net regression, which uses penalization of both L1 and L2 norms, or a linear combination of L1 
and L2 norm regularization by solving the following problem92.
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where l is the negative log-likelihood function and wi is the contribution of it for an observation xi. While trying 
to minimize our objective function (equation (1)), we need to optimize our parameters λ and α. λ controls the 
overall penalization of the model and α determines how much we would put weight on L1-regularization com-
pared to L2 regularization. For example, if α is 1, our model becomes LASSO or L1 regularization model, which 
will give us the sparsest graph. There are several methods to identify optimal parameter values such as grid search, 
which is slow and unstable because grid density affects the accuracy and depends on heuristic choices for parame-
ter ranges. Alternatively, one could also use a stability selection method, which aims to control the false discovery 
rate86 to determine the proper amount of regularization. Here, we made use of the interval search EPSGO algo-
rithm to tune our parameters λ and α based on 10-fold cross-validation. This algorithm learns a Gaussian process 
model of the loss function surface in parameter space and samples at points where the expected improvement 
criterion is maximal93–95. After calculating regularized βs (coefficients of predictors) with the optimized regulari-
zation parameters, we obtain partial correlation coefficients from βs61,90. All estimation and optimization are done 
for each individual network.
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 is the regularized estimate of βs between brain region i and the rest of the brain regions except the 
region i, which ensures the partial correlation coefficients are well-defined and in the interval [−1, 1].

Assortativity mixing within and between layers.  Assortativity quantifies the tendency for nodes to 
connect to other nodes that are similar in some way23,25. For example, modularity Q23,96 is an assortativity-based 
measure which expresses the actual connection density of nodes within the same community compared to the 
value of the connection density expected in a suitably defined null model. We can also measure the tendency of 
‘similar’ nodes being connected to each other (actual vs. expected) based on some scalar nodal attribute such as 
degree, or betweenness. One of the most common cases where we define assortative mixing according to a scalar 
quantity is assortativity mixing by degree; positive degree assortativity implies that high-degree nodes are prefer-
entially connected to high-degree nodes on average and low-degree nodes mainly connect to low-degree nodes 
on average. Since FC edges can carry either positive or negative weights, we considered a version of assortativity 
that takes into account node strengths, called node strength assortativity. The strength of a node is defined by the 
sum of its all weights97. In FC a node’s strength is close to zero when its neighbors maintain positive and negative 
weights that nearly balance out. In this study, high values of the assortativity for the FC layer reflect a connectivity 
pattern where nodes with high strength are tendentially connected, through positively valued edges, to nodes 
with high strength. We did not weight the connection strength between two nodes, rather we measured the 
strength correlation between two nodes. In other words, we calculated Pearson’s correlation coefficient between 
a pair of nodes based on their strengths:
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is is the average over edges rather than over all vertices. Then the covariance of si and sj over edges is the 
following.
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To normalize this, we devide equation (5) by the following equation (6) where all edges connect two nodes 
with the equal values of si. When we replace sj with si, we have
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Thus, our node strength assortativity is r = coʋ(si, sj)/ʋar(si), which is equation (4)98. We measure the coeffi-
cient r within the SC and FC layers. Furthermore, we subdivide our networks into Yeo’s 7 networks46 (See Fig. S1) 
and investigated strength assortativity within each subnetwork for FC and SC as well as the strength assortativity 
between FC and SC for each network. In addition, we compared the left and the right hemispheres for each 
subnetwork.

Statistical analysis.  Paired permutation test was used to compare the left and right hemisphere median 
differences for each subnetwork99 by approximating the exact conditional distribution using conditional Monte 
Carlo procedures (10000 permutations) and corrected by Bonferroni method100. A two-tailed test was used 
with alpha level 0.05 and adjusted p-values were reported based on Bonferroni correction. All statistical tests 
and calculations were performed using Matlab R2016b (Mathworks Inc., Natick, MA) with Brain Connectivity 
Toolbox101 and R with R packages (http://www.R-project.org/)102.

Results
Assortative within-layer structural connectivity (SC), disassortative within-layer functional 
connectivity (FC) and between-layer assortativity (SC and FC).  We first calculated node strength 
assortativity in each individual data set across the entire cerebral cortex. Within each layer, FC was characterized 
by disassortative connectivity (i.e., negative assortativity, Fig. 2C Left), while SC showed assortative connectiv-
ity with a somewhat broader variability among individuals (Fig. 2C Right). The coupling between FC and SC 
assuming multiplexity between the two layers demonstrated a weak but positive assortativity in general (Fig. 2D). 
Moreover, we have explored the impact of the number of regions on the assortativity by using 68 cortical regions 
(Desikan-Killiany Atlas)59, Lausanne 114 cortical regions and Lausanne 219 cortical regions58 (Fig. S2) since 
degree disassortative networks have shown a decreasing degree disassortativity as the network size increases103. 
The different sizes of the networks affected node strength assortativity coefficients; however, the disassortativity 
of FC remained the same and the contrasting assortativity properties between FC and SC were retained as well 
in three different network sizes (Fig. S2). Assortativity estimation based on Pearson’s correlation coefficient is 
shown to be influenced by the distribution of the degrees of the nodes in the network as well, which is the main 
factor for the decreasing assortativity in larger networks with broader degree distributions103. Thus, we examined 
the potential bias based on the difference in the ranges between SC and FC. In, particular, we investigated if the 
disassortativity of FC was from a broader strength distribution of nodes in FC. In fact, the strength distribution 
of SC is much broader than that of FC. Hence, the smaller assortativity value (or disassortativity) for FC is not 
attributable to a wider range of the strength distribution of FC (Fig. S3). In addition, we have used Spearman’s 
rank correlation coefficient (rho) as recommended103 to account for a possible bias due to the strength distribu-
tion differences between SC and FC and in different network sizes. Our results showed no qualitative differences 
when we used Spearman’s rho instead of Pearson’s correlation coefficient (Fig. S4).

Within-layer assortativity between canonical resting-state networks.  Next, we investigated if 
these assortativity patterns were distributed homogeneously across the whole brain or whether they exhibited 
local order within or between subnetworks. The overall disassortative mixing in FC was more prominent within 
functional subnetworks derived from the canonical Yeo parcellation (Fig. 3B), showing a contrast between diago-
nal (within a subnetwork) and off-diagonal (between subnetworks) elements. SC demonstrated overall assortative 
mixing between subnetworks (Fig. 3A), while showing a slightly higher range of assortativity within a subnetwork 
(diagonal) and some more strongly disassortative mixings between certain subnetworks.

Between-layer versus within-layer assortativity between 7 subnetworks.  The overall assortative 
linkage between SC and FC could be also displayed between SC subnetworks and FC subnetworks assuming 
one-to-one correspondence (Fig. 4). We found that the magnitude of subnetwork coupling between SC and FC 
ranged fairly heterogeneous across different networks. For instance, Dorsal Attention and Fronto-Parietal net-
works exhibited between-layer assortativity that was twice as large as compared to the rest of the subnetworks. 
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Figure 2.  (A) Averaged SC across all subjects, with edges representing log transformed streamline counts. (B) 
Averaged FC across all subjects with edges representing regularized partial correlation coefficients. Nodes in 
both panels (A) and (B) are sorted by membership in 7 canonical resting-state networks and (A,B) are only 
shown for representative examples of SC and FC. For analyses, individual SC and FC were estimated and used 
in the study. (C) Within-layer assortativity: histograms (tallying numbers of individual subjects) of the strength 
assortativity within the functional network (FC) and the structural network (SC), respectively. Red: FC, Blue: 
SC. (D) Between-layer assortativity between FC and SC.
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Figure 3.  (A) Within-layer assortativity in SC between 7 canonical resting-state networks. (B) Within-layer 
assortativity in SC between 7 canonical resting-state networks.
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Interestingly, those networks with higher between-layer assortativity (Dorsal Attention and Fronto-Parietal) also 
showed strong disassortativity within the FC layer and strong disassortativity within the SC layer. We could 
differentiate within-layer SC assortativity for each subnetwork, showing both assortative and disassortative mix-
ings for subnetworks as opposed to the overall assortative mixing pattern when aggregated in a single network. 
Within-layer FC assortativity showed disassortativity across all subnetworks although each network exhibited a 
different assortativity value.

Left versus right hemisphere assortativity differences both within and between layers.  When 
we further investigated the above characteristics by separating the left and the right hemispheres, we found that 
the characteristic disassortative mixing in within FC layer is mainly driven by the left hemisphere (Figs 5 and 6). 
In fact, the subnetworks in the right hemisphere showed weak disassortativity within the right FC layer; Dorsal 
Attention and Fronto-Parietal networks still demonstrated stronger disassortativity compared to other networks 
but all subnetworks in the right hemisphere showed much weaker disassortativity than those of the left hemi-
sphere (Fig. 6, all p-values < 10−21 after Bonferroni adjustment). In contrast, those with higher between-layer 
assortativity (Dorsal Attention and Fronto-Parietal) in both hemispheres also displayed strong disassortativity 
within the FC layer and within the SC layer in the similar way when both hemispheres were aggregated (Fig. 5).

We quantified the contrasts between hemispheres in both within and between-layer assortativity using per-
mutation test based on 10000 Monte Carlo resampled approximate distribution (See methods for details). Three 
common features were observed for all subnetworks (Fig. 6). The assortativity distributions for the left and right 
hemispheres showed a smaller difference between layers compared to within layer assortativity distributions 
except Fronto-Parietal and Default networks. Of note, the left and the right hemisphere differences showed oppo-
site patterns between within SC and within FC; within SC, the right hemisphere was characterized with nega-
tive and smaller assortativity than those in the left hemisphere except Ventral Attention (not significant) and 
Fronto-Parietal networks (the trend is reversed) (Fig. 6). In addition, the stark difference between hemispheres 
demonstrated mainly within FC. Moreover, the pattern is the opposite of within SC difference, which is summa-
rized as box plots in the last panel of Fig. 6; the left hemisphere showed strong disassortative connectivity and 
the right hemisphere showed weak disassortativity within the FC layer (Fig. 6). However, there are interesting 
differences among subnetworks. For instance, unlike other subnetworks, the frontoparietal network and Default 
network showed small but significant strong lateralization in terms of between-layer assortativity.
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Discussion
In this study, we constructed a two-layer multiplex interdependent network from structural and functional con-
nectivity estimated from MRI data to examine if within- and between-layer node strength assortativity differs 
between SC and FC. In particular, we divided SC and FC into a canonical partition of seven resting state networks 
(RSNs) to examine within- and between-layer assortativity differences in subnetworks and hemispheric diffrences 
as well. We find that, in general, SC is organized in an assortative manner, indicating brain regions are, on aver-
age, connected to other brain regions with similar node strengths. On the other hand, FC showed disassortative 
mixing in node strength. More detailed analysis showed that this discrepancy between SC and FC assortativity 
was pronounced to a different extent within- and between- RSNs. In SC, brain regions within the same subnet-
work are connected with similar node strengths; in contrast, in FC brain regions are more likely connected to 
brain regions with similar node strengths between subnetworks rather than within its own subnetwork. In addi-
tion, these patterns showed lateralization; the overall disassortative mixing within subnetworks in FC was mainly 
driven from the left hemisphere. The degree of laterality also showed differences among subnetworks.

Assortative SC and Disassortative FC.  Degree assortativity, as typically applied in network science is 
computed as a global network metric and typically ranges between −0.3 and 0.323. Among biological networks, 
previous studies have shown disassortativity in several biological networks, including those defined by protein 
interactions23. Instead, synaptic networks in C. elegans104 and human structural brain networks estimated with 
diffusion weighted imaging and tractography105,106 are assortative, and this assortativity appears associated with 
the existence of modules107. Functional connectivity has been reported to show assortative mixing108 when edges 
are computed as standard Pearson correlations. Assortativity in FC networks rises in the course of epileptic sei-
zures109. To our knowledge, no previous study has examined assortative coupling within a two-layer multiplex 
SC/FC model. Assortative mixing in networks is known to confer greater robustness against random removal 
of nodes or edges compared to disassortative networks23,26,27. On the other hand, when it comes to spreading 
infectious diseases or seizure activity, assortativity makes it easier for these disruptions to spread across the whole 
network23,26,27. In this study, our goal was to see if the brain’s functional and structural networks would show 
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tendencies that may promote network’s robustness or resilience in line with the aforementioned theoretical works. 
The observed assortative and disassortative organization of SC and FC, respectively, may be relevant to posit a 
potential complementary interdependent relationship between the human brain’s structure and function.

Between-layer assortativity between SC and FC.  When more than two networks are coupled, or more 
generally, in a multi-layer network, the coupling between nodes in different layers affects the robustness of the 
system37. When nodes in different layers are connected regardless of their degrees, cascading failures of the nodes 
can destroy the network easily because even if a low-degree node is removed, that node can be connected to a 
high-degree node in another layer, and its removal could thus fragment the network into disconnected parts31,37. 
In general, when there is a positive correlation of the degree-degree coupling between layers, the interdepend-
ent networks are known to be more robust31. In this study, we find that overall SC and FC are coupled in a way 
that nodes with similar strengths are connected between layers in all subnetworks (Figs 3 and 4). This topolog-
ical feature of the brain’s multi-layer organization may explain the retention of the brain’s functionality unless 
a significant volume of the brain has been affected for example in the course of progressive neurodegenerative 
disease110,111.

Subnetwork differences of SC and FC in within- and between- layer node strength assortativity.  
After demonstrating these topological patterns within whole-brain networks, we carried out a more detailed anal-
ysis of specific RSNs, or subnetworks, to discern if these effects were predominantly found in specific subdivisions 
of the cerebral cortex. We found that Visual, Somatomotor, Limbic and Default Mode Networks displayed assor-
tativity patterns within and between layers. In contrast, the Dorsal Attention (DA), Ventral Attention (VA) and 
Fronto Parietal networks showed disassortativity within both SC and FC layers. Moreover, we also find distinctive 
differences between Dorsal and Ventral Attention networks, for instance, the between-layer assortativity of the 
Dorsal Attention network averaged over all participants was approximately twice as high as that of the Ventral 
Attention network (Fig. 5); SC within-layer assortativity in the right and the left hemispheres showed significant 
differences in DA but not in VA (Fig. 6, which corroborates previous literature that showed distinctive functional 
and structural networks between DA and VA112–114.

Possible implications for robustness of brain networks.  Although, our study did not measure the brain’s 
‘robustness’ per se, we may speculate on potential implications of our results in the context of previous theoretical 
network science literature. For SC, to counter the effects of lesions from injuries or disease processes, having a 
connected network may be a priority to keep the flow of neural signals and processing as intact as possible, even if 
signaling paths or delays may increase due to the lesions. Hence, SC may need to be organized with positive assorta-
tivity to promote resilience. On the other hand, limiting the extent of shared neuronal information (as expressed in 
the statistical construct of partial correlations) or controlling the spread of abnormal brain activity such as seizures 
could be a significant aspect in the architecture of FC, with disassortativity helping FC to maintain its functionality 
against indiscriminate propagation of perturbations.

In some cases, most notably in unilateral neglect, lesions may have differential effects on behavior and cog-
nition depending on the laterality of the lesion site. Right hemisphere lesions have been reported to accompany 
more frequent and severe unilateral spatial neglect up to 80% of the time115–118. Hence, we were interested whether 
we could observe lateralization of the assortativity, which could be relevant to potential resilience differences in 
hemispheres. Indeed, the strong disassortativity in the FC layer observed in the whole brain mainly seems to 
derive from the left hemisphere, although both hemispheres show disassortativity in general within the FC layer. 
Stronger disassortativity in the left hemisphere may suggest greater robustness to the disruptive effect of the brain 
injuries – conversely, weaker disassortativity in the right hemisphere suggests greater vulnerability. Increased/
decreased robustness in the left hemisphere may also be related to faster/slower recovery post-injury. Indeed, 
previous studies showed that a right hemisphere stroke is more likely to be followed by more severe spatial neglect 
and more prolonged recovery118–122, although some studies have shown opposite or inconclusive results on hem-
ispheric differences in functional recovery123 (See the references therein). This pronounced lateralization of the 
FC layer can also be related to previous studies that showed disrupted laterality in the functional brain network 
in brain disorders124–126. The Ventral Attention network (as opposed to Dorsal Attention network) showed a large 
difference in the disassortativity between the left and the right hemispheres; the right hemisphere VA exhibited 
much weaker disassortativity than that of the left hemisphere, which is consistent with the prevalence of spatial 
neglect when patients experienced strokes in the right hemisphere in regions associated with the VA113,127. We 
note that our findings suggest potential hemispheric differences in robustness despite largely symmetric distribu-
tions of standard topological measures related to both SC and FC.

Limitations.  There are several limitations of our study. First, there are many ways to estimate functional brain 
networks. Depending which preprocessing steps one chooses to use, the relationship of subnetworks can vary; for 
instance, negative correlations between some RSNs are observed only when global signal regression is applied128. 
In our study, we adopted an approach to estimate partial correlations in order to allow the assessment of assor-
tativity within a sparse functional network composed of functional links that express specific shared pairwise 
dependencies. More commonly used full correlation methods yield full networks and are prone to transitivity 
and spurious dependencies that artifactually boost shared variance. Second, assortativity could in principle be 
calculated based on other nodal attributes such as node between-ness or page-rank, and node strength can be 
also defined in different ways depending on how we define weights in FC. Third, as the assortativity is a global 
measure, estimating it within and between subnetworks might suffer as there are smaller numbers of nodes within 
each subnetwork than in the network as a whole. A main aim of the paper was to investigate the node strength 
assortativity in the functional subnetworks and the left and the right hemispheres. However, as brain regions are 
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heterogeneous even within functionally defined subnetworks, it is worth examining ROI-wise local assortativity. 
Some initial data on local assortativity results are included in the supplementary information (Figs S1, S6 and S7). 
These data may offer a starting point for a more detailed analysis and discussion of potential regional contribu-
tions to assortativity in the context of network robustness. Future studies could also provide more detailed analy-
ses of various nodal attributes using alternative definitions of weighted assortativity and with different parameters 
during time series processing.

Conclusion
In this study, we have systematically examined topological discrepancies between SC and FC by estimating node 
strength assortativity, using a framework of two-layer multiplex interdependent networks. We find that SC is, 
in general, organized as an assortative network while FC is organized as a disassortative network, with assorta-
tive coupling between the layers, which resembles an arrangement that promotes robustness within the interde-
pendent network considered as a multi-layer system in theoretical framework. Moreover, we find differences in 
subnetworks for within and between layer assortativity. Finally, we find there is a characteristic lateralization of 
assortativity expressed in the FC layer. Our study may be a useful starting point to further investigate the robust-
ness of human brain networks, which may ultimately allow predicting individual differences in the response to 
injury, recovery rate or prognosis.
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