1,872 research outputs found

    Scalable statistical learning for relation prediction on structured data

    Get PDF
    Relation prediction seeks to predict unknown but potentially true relations by revealing missing relations in available data, by predicting future events based on historical data, and by making predicted relations retrievable by query. The approach developed in this thesis can be used for a wide variety of purposes, including to predict likely new friends on social networks, attractive points of interest for an individual visiting an unfamiliar city, and associations between genes and particular diseases. In recent years, relation prediction has attracted significant interest in both research and application domains, partially due to the increasing volume of published structured data and background knowledge. In the Linked Open Data initiative of the Semantic Web, for instance, entities are uniquely identified such that the published information can be integrated into applications and services, and the rapid increase in the availability of such structured data creates excellent opportunities as well as challenges for relation prediction. This thesis focuses on the prediction of potential relations by exploiting regularities in data using statistical relational learning algorithms and applying these methods to relational knowledge bases, in particular in Linked Open Data in particular. We review representative statistical relational learning approaches, e.g., Inductive Logic Programming and Probabilistic Relational Models. While logic-based reasoning can infer and include new relations via deduction by using ontologies, machine learning can be exploited to predict new relations (with some degree of certainty) via induction, purely based on the data. Because the application of machine learning approaches to relation prediction usually requires handling large datasets, we also discuss the scalability of machine learning as a solution to relation prediction, as well as the significant challenge posed by incomplete relational data (such as social network data, which is often much more extensive for some users than others). The main contribution of this thesis is to develop a learning framework called the Statistical Unit Node Set (SUNS) and to propose a multivariate prediction approach used in the framework. We argue that multivariate prediction approaches are most suitable for dealing with large, sparse data matrices. According to the characteristics and intended application of the data, the approach can be extended in different ways. We discuss and test two extensions of the approach--kernelization and a probabilistic method of handling complex n-ary relationships--in empirical studies based on real-world data sets. Additionally, this thesis contributes to the field of relation prediction by applying the SUNS framework to various domains. We focus on three applications: 1. In social network analysis, we present a combined approach of inductive and deductive reasoning for recommending movies to users. 2. In the life sciences, we address the disease gene prioritization problem. 3. In the recommendation system, we describe and investigate the back-end of a mobile app called BOTTARI, which provides personalized location-based recommendations of restaurants.Die Beziehungsvorhersage strebt an, unbekannte aber potenziell wahre Beziehungen vorherzusagen, indem fehlende Relationen in verfügbaren Daten aufgedeckt, zukünftige Ereignisse auf der Grundlage historischer Daten prognostiziert und vorhergesagte Relationen durch Anfragen abrufbar gemacht werden. Der in dieser Arbeit entwickelte Ansatz lässt sich für eine Vielzahl von Zwecken einschließlich der Vorhersage wahrscheinlicher neuer Freunde in sozialen Netzen, der Empfehlung attraktiver Sehenswürdigkeiten für Touristen in fremden Städten und der Priorisierung möglicher Assoziationen zwischen Genen und bestimmten Krankheiten, verwenden. In den letzten Jahren hat die Beziehungsvorhersage sowohl in Forschungs- als auch in Anwendungsbereichen eine enorme Aufmerksamkeit erregt, aufgrund des Zuwachses veröffentlichter strukturierter Daten und von Hintergrundwissen. In der Linked Open Data-Initiative des Semantischen Web werden beispielsweise Entitäten eindeutig identifiziert, sodass die veröffentlichten Informationen in Anwendungen und Dienste integriert werden können. Diese rapide Erhöhung der Verfügbarkeit strukturierter Daten bietet hervorragende Gelegenheiten sowie Herausforderungen für die Beziehungsvorhersage. Diese Arbeit fokussiert sich auf die Vorhersage potenzieller Beziehungen durch Ausnutzung von Regelmäßigkeiten in Daten unter der Verwendung statistischer relationaler Lernalgorithmen und durch Einsatz dieser Methoden in relationale Wissensbasen, insbesondere in den Linked Open Daten. Wir geben einen Überblick über repräsentative statistische relationale Lernansätze, z.B. die Induktive Logikprogrammierung und Probabilistische Relationale Modelle. Während das logikbasierte Reasoning neue Beziehungen unter der Nutzung von Ontologien ableiten und diese einbeziehen kann, kann maschinelles Lernen neue Beziehungen (mit gewisser Wahrscheinlichkeit) durch Induktion ausschließlich auf der Basis der vorliegenden Daten vorhersagen. Da die Verarbeitung von massiven Datenmengen in der Regel erforderlich ist, wenn maschinelle Lernmethoden in die Beziehungsvorhersage eingesetzt werden, diskutieren wir auch die Skalierbarkeit des maschinellen Lernens sowie die erhebliche Herausforderung, die sich aus unvollständigen relationalen Daten ergibt (z. B. Daten aus sozialen Netzen, die oft für manche Benutzer wesentlich umfangreicher sind als für Anderen). Der Hauptbeitrag der vorliegenden Arbeit besteht darin, ein Lernframework namens Statistical Unit Node Set (SUNS) zu entwickeln und einen im Framework angewendeten multivariaten Prädiktionsansatz einzubringen. Wir argumentieren, dass multivariate Vorhersageansätze am besten für die Bearbeitung von großen und dünnbesetzten Datenmatrizen geeignet sind. Je nach den Eigenschaften und der beabsichtigten Anwendung der Daten kann der Ansatz auf verschiedene Weise erweitert werden. In empirischen Studien werden zwei Erweiterungen des Ansatzes--ein kernelisierter Ansatz sowie ein probabilistischer Ansatz zur Behandlung komplexer n-stelliger Beziehungen-- diskutiert und auf realen Datensätzen untersucht. Ein weiterer Beitrag dieser Arbeit ist die Anwendung des SUNS Frameworks auf verschiedene Bereiche. Wir konzentrieren uns auf drei Anwendungen: 1. In der Analyse sozialer Netze stellen wir einen kombinierten Ansatz von induktivem und deduktivem Reasoning vor, um Benutzern Filme zu empfehlen. 2. In den Biowissenschaften befassen wir uns mit dem Problem der Priorisierung von Krankheitsgenen. 3. In den Empfehlungssystemen beschreiben und untersuchen wir das Backend einer mobilen App "BOTTARI", das personalisierte ortsbezogene Empfehlungen von Restaurants bietet

    Scalable statistical learning for relation prediction on structured data

    Get PDF
    Relation prediction seeks to predict unknown but potentially true relations by revealing missing relations in available data, by predicting future events based on historical data, and by making predicted relations retrievable by query. The approach developed in this thesis can be used for a wide variety of purposes, including to predict likely new friends on social networks, attractive points of interest for an individual visiting an unfamiliar city, and associations between genes and particular diseases. In recent years, relation prediction has attracted significant interest in both research and application domains, partially due to the increasing volume of published structured data and background knowledge. In the Linked Open Data initiative of the Semantic Web, for instance, entities are uniquely identified such that the published information can be integrated into applications and services, and the rapid increase in the availability of such structured data creates excellent opportunities as well as challenges for relation prediction. This thesis focuses on the prediction of potential relations by exploiting regularities in data using statistical relational learning algorithms and applying these methods to relational knowledge bases, in particular in Linked Open Data in particular. We review representative statistical relational learning approaches, e.g., Inductive Logic Programming and Probabilistic Relational Models. While logic-based reasoning can infer and include new relations via deduction by using ontologies, machine learning can be exploited to predict new relations (with some degree of certainty) via induction, purely based on the data. Because the application of machine learning approaches to relation prediction usually requires handling large datasets, we also discuss the scalability of machine learning as a solution to relation prediction, as well as the significant challenge posed by incomplete relational data (such as social network data, which is often much more extensive for some users than others). The main contribution of this thesis is to develop a learning framework called the Statistical Unit Node Set (SUNS) and to propose a multivariate prediction approach used in the framework. We argue that multivariate prediction approaches are most suitable for dealing with large, sparse data matrices. According to the characteristics and intended application of the data, the approach can be extended in different ways. We discuss and test two extensions of the approach--kernelization and a probabilistic method of handling complex n-ary relationships--in empirical studies based on real-world data sets. Additionally, this thesis contributes to the field of relation prediction by applying the SUNS framework to various domains. We focus on three applications: 1. In social network analysis, we present a combined approach of inductive and deductive reasoning for recommending movies to users. 2. In the life sciences, we address the disease gene prioritization problem. 3. In the recommendation system, we describe and investigate the back-end of a mobile app called BOTTARI, which provides personalized location-based recommendations of restaurants.Die Beziehungsvorhersage strebt an, unbekannte aber potenziell wahre Beziehungen vorherzusagen, indem fehlende Relationen in verfügbaren Daten aufgedeckt, zukünftige Ereignisse auf der Grundlage historischer Daten prognostiziert und vorhergesagte Relationen durch Anfragen abrufbar gemacht werden. Der in dieser Arbeit entwickelte Ansatz lässt sich für eine Vielzahl von Zwecken einschließlich der Vorhersage wahrscheinlicher neuer Freunde in sozialen Netzen, der Empfehlung attraktiver Sehenswürdigkeiten für Touristen in fremden Städten und der Priorisierung möglicher Assoziationen zwischen Genen und bestimmten Krankheiten, verwenden. In den letzten Jahren hat die Beziehungsvorhersage sowohl in Forschungs- als auch in Anwendungsbereichen eine enorme Aufmerksamkeit erregt, aufgrund des Zuwachses veröffentlichter strukturierter Daten und von Hintergrundwissen. In der Linked Open Data-Initiative des Semantischen Web werden beispielsweise Entitäten eindeutig identifiziert, sodass die veröffentlichten Informationen in Anwendungen und Dienste integriert werden können. Diese rapide Erhöhung der Verfügbarkeit strukturierter Daten bietet hervorragende Gelegenheiten sowie Herausforderungen für die Beziehungsvorhersage. Diese Arbeit fokussiert sich auf die Vorhersage potenzieller Beziehungen durch Ausnutzung von Regelmäßigkeiten in Daten unter der Verwendung statistischer relationaler Lernalgorithmen und durch Einsatz dieser Methoden in relationale Wissensbasen, insbesondere in den Linked Open Daten. Wir geben einen Überblick über repräsentative statistische relationale Lernansätze, z.B. die Induktive Logikprogrammierung und Probabilistische Relationale Modelle. Während das logikbasierte Reasoning neue Beziehungen unter der Nutzung von Ontologien ableiten und diese einbeziehen kann, kann maschinelles Lernen neue Beziehungen (mit gewisser Wahrscheinlichkeit) durch Induktion ausschließlich auf der Basis der vorliegenden Daten vorhersagen. Da die Verarbeitung von massiven Datenmengen in der Regel erforderlich ist, wenn maschinelle Lernmethoden in die Beziehungsvorhersage eingesetzt werden, diskutieren wir auch die Skalierbarkeit des maschinellen Lernens sowie die erhebliche Herausforderung, die sich aus unvollständigen relationalen Daten ergibt (z. B. Daten aus sozialen Netzen, die oft für manche Benutzer wesentlich umfangreicher sind als für Anderen). Der Hauptbeitrag der vorliegenden Arbeit besteht darin, ein Lernframework namens Statistical Unit Node Set (SUNS) zu entwickeln und einen im Framework angewendeten multivariaten Prädiktionsansatz einzubringen. Wir argumentieren, dass multivariate Vorhersageansätze am besten für die Bearbeitung von großen und dünnbesetzten Datenmatrizen geeignet sind. Je nach den Eigenschaften und der beabsichtigten Anwendung der Daten kann der Ansatz auf verschiedene Weise erweitert werden. In empirischen Studien werden zwei Erweiterungen des Ansatzes--ein kernelisierter Ansatz sowie ein probabilistischer Ansatz zur Behandlung komplexer n-stelliger Beziehungen-- diskutiert und auf realen Datensätzen untersucht. Ein weiterer Beitrag dieser Arbeit ist die Anwendung des SUNS Frameworks auf verschiedene Bereiche. Wir konzentrieren uns auf drei Anwendungen: 1. In der Analyse sozialer Netze stellen wir einen kombinierten Ansatz von induktivem und deduktivem Reasoning vor, um Benutzern Filme zu empfehlen. 2. In den Biowissenschaften befassen wir uns mit dem Problem der Priorisierung von Krankheitsgenen. 3. In den Empfehlungssystemen beschreiben und untersuchen wir das Backend einer mobilen App "BOTTARI", das personalisierte ortsbezogene Empfehlungen von Restaurants bietet

    Neurosymbolic AI for Reasoning on Graph Structures: A Survey

    Full text link
    Neurosymbolic AI is an increasingly active area of research which aims to combine symbolic reasoning methods with deep learning to generate models with both high predictive performance and some degree of human-level comprehensibility. As knowledge graphs are becoming a popular way to represent heterogeneous and multi-relational data, methods for reasoning on graph structures have attempted to follow this neurosymbolic paradigm. Traditionally, such approaches have utilized either rule-based inference or generated representative numerical embeddings from which patterns could be extracted. However, several recent studies have attempted to bridge this dichotomy in ways that facilitate interpretability, maintain performance, and integrate expert knowledge. Within this article, we survey a breadth of methods that perform neurosymbolic reasoning tasks on graph structures. To better compare the various methods, we propose a novel taxonomy by which we can classify them. Specifically, we propose three major categories: (1) logically-informed embedding approaches, (2) embedding approaches with logical constraints, and (3) rule-learning approaches. Alongside the taxonomy, we provide a tabular overview of the approaches and links to their source code, if available, for more direct comparison. Finally, we discuss the applications on which these methods were primarily used and propose several prospective directions toward which this new field of research could evolve.Comment: 21 pages, 8 figures, 1 table, currently under review. Corresponding GitHub page here: https://github.com/NeSymGraph

    Structural Logistic Regression for Link Analysis

    Get PDF
    We present Structural Logistic Regression, an extension of logistic regression to modeling relational data. It is an integrated approach to building regression models from data stored in relational databases in which potential predictors, both boolean and real-valued, are generated by structured search in the space of queries to the database, and then tested with statistical information criteria for inclusion in a logistic regression. Using statistics and relational representation allows modeling in noisy domains with complex structure. Link prediction is a task of high interest with exactly such characteristics. Be it in the domain of scientific citations, social networks or hypertext, the underlying data are extremely noisy and the features useful for prediction are not readily available in a flat file format. We propose the application of Structural Logistic Regression to building link prediction models, and present experimental results for the task of predicting citations made in scientific literature using relational data taken from the CiteSeer search engine. This data includes the citation graph, authorship and publication venues of papers, as well as their word content

    Tensor factorization for relational learning

    Get PDF
    Relational learning is concerned with learning from data where information is primarily represented in form of relations between entities. In recent years, this branch of machine learning has become increasingly important, as relational data is generated in an unprecedented amount and has become ubiquitous in many fields of application such as bioinformatics, artificial intelligence and social network analysis. However, relational learning is a very challenging task, due to the network structure and the high dimensionality of relational data. In this thesis we propose that tensor factorization can be the basis for scalable solutions for learning from relational data and present novel tensor factorization algorithms that are particularly suited for this task. In the first part of the thesis, we present the RESCAL model -- a novel tensor factorization for relational learning -- and discuss its capabilities for exploiting the idiosyncratic properties of relational data. In particular, we show that, unlike existing tensor factorizations, our proposed method is capable of exploiting contextual information that is more distant in the relational graph. Furthermore, we present an efficient algorithm for computing the factorization. We show that our method achieves better or on-par results on common benchmark data sets, when compared to current state-of-the-art relational learning methods, while being significantly faster to compute. In the second part of the thesis, we focus on large-scale relational learning and its applications to Linked Data. By exploiting the inherent sparsity of relational data, an efficient computation of RESCAL can scale up to the size of large knowledge bases, consisting of millions of entities, hundreds of relations and billions of known facts. We show this analytically via a thorough analysis of the runtime and memory complexity of the algorithm as well as experimentally via the factorization of the YAGO2 core ontology and the prediction of relationships in this large knowledge base on a single desktop computer. Furthermore, we derive a new procedure to reduce the runtime complexity for regularized factorizations from O(r^5) to O(r^3) -- where r denotes the number of latent components of the factorization -- by exploiting special properties of the factorization. We also present an efficient method for including attributes of entities in the factorization through a novel coupled tensor-matrix factorization. Experimentally, we show that RESCAL allows us to approach several relational learning tasks that are important to Linked Data. In the third part of this thesis, we focus on the theoretical analysis of learning with tensor factorizations. Although tensor factorizations have become increasingly popular for solving machine learning tasks on various forms of structured data, there exist only very few theoretical results on the generalization abilities of these methods. Here, we present the first known generalization error bounds for tensor factorizations. To derive these bounds, we extend known bounds for matrix factorizations to the tensor case. Furthermore, we analyze how these bounds behave for learning on over- and understructured representations, for instance, when matrix factorizations are applied to tensor data. In the course of deriving generalization bounds, we also discuss the tensor product as a principled way to represent structured data in vector spaces for machine learning tasks. In addition, we evaluate our theoretical discussion with experiments on synthetic data, which support our analysis

    Cross-domain Recommendations based on semantically-enhanced User Web Behavior

    Get PDF
    Information seeking in the Web can be facilitated by recommender systems that guide the users in a personalized manner to relevant resources in the large space of the possible options in the Web. This work investigates how to model people\u27s Web behavior at multiple sites and learn to predict future preferences, in order to generate relevant cross-domain recommendations. This thesis contributes with novel techniques for building cross-domain recommender systems in an open Web setting

    Tensor factorization for relational learning

    Get PDF
    Relational learning is concerned with learning from data where information is primarily represented in form of relations between entities. In recent years, this branch of machine learning has become increasingly important, as relational data is generated in an unprecedented amount and has become ubiquitous in many fields of application such as bioinformatics, artificial intelligence and social network analysis. However, relational learning is a very challenging task, due to the network structure and the high dimensionality of relational data. In this thesis we propose that tensor factorization can be the basis for scalable solutions for learning from relational data and present novel tensor factorization algorithms that are particularly suited for this task. In the first part of the thesis, we present the RESCAL model -- a novel tensor factorization for relational learning -- and discuss its capabilities for exploiting the idiosyncratic properties of relational data. In particular, we show that, unlike existing tensor factorizations, our proposed method is capable of exploiting contextual information that is more distant in the relational graph. Furthermore, we present an efficient algorithm for computing the factorization. We show that our method achieves better or on-par results on common benchmark data sets, when compared to current state-of-the-art relational learning methods, while being significantly faster to compute. In the second part of the thesis, we focus on large-scale relational learning and its applications to Linked Data. By exploiting the inherent sparsity of relational data, an efficient computation of RESCAL can scale up to the size of large knowledge bases, consisting of millions of entities, hundreds of relations and billions of known facts. We show this analytically via a thorough analysis of the runtime and memory complexity of the algorithm as well as experimentally via the factorization of the YAGO2 core ontology and the prediction of relationships in this large knowledge base on a single desktop computer. Furthermore, we derive a new procedure to reduce the runtime complexity for regularized factorizations from O(r^5) to O(r^3) -- where r denotes the number of latent components of the factorization -- by exploiting special properties of the factorization. We also present an efficient method for including attributes of entities in the factorization through a novel coupled tensor-matrix factorization. Experimentally, we show that RESCAL allows us to approach several relational learning tasks that are important to Linked Data. In the third part of this thesis, we focus on the theoretical analysis of learning with tensor factorizations. Although tensor factorizations have become increasingly popular for solving machine learning tasks on various forms of structured data, there exist only very few theoretical results on the generalization abilities of these methods. Here, we present the first known generalization error bounds for tensor factorizations. To derive these bounds, we extend known bounds for matrix factorizations to the tensor case. Furthermore, we analyze how these bounds behave for learning on over- and understructured representations, for instance, when matrix factorizations are applied to tensor data. In the course of deriving generalization bounds, we also discuss the tensor product as a principled way to represent structured data in vector spaces for machine learning tasks. In addition, we evaluate our theoretical discussion with experiments on synthetic data, which support our analysis

    Using rules of thumb to repair inconsistent knowledge

    Get PDF
    corecore