7 research outputs found

    A Naïve Bayes model based on overlapping groups for link prediction in online social networks

    Get PDF
    Link prediction in online social networks is useful in numerous applications, mainly for recommendation. Recently, different approaches have considered friendship groups information for increasing the link prediction accuracy. Nevertheless, these approaches do not consider the different roles that common neighbors may play in the different overlapping groups that they belong to. In this paper, we propose a new approach that uses overlapping groups structural information for building a naïve Bayes model. From this proposal, we show three different measures derived from the common neighbors. We perform experiments for both unsupervised and supervised link prediction strategies considering the link imbalance problem. We compare sixteen measures in four well-known online social networks: Flickr, LiveJournal, Orkut and Youtube. Results show that our proposals help to improve the link prediction accuracy.São Paulo Research Foundation (FAPESP) (grants: 2013/12191-5, 2011/21880-3, 2011/23689-9 and 2011/22749-8

    Link prediction in online social networks using group information

    Get PDF
    Users of online social networks voluntarily participate in different user groups or communities. Researches suggest the presence of strong local community structure in these social networks, i.e., users tend to meet other people via mutual friendship. Recently, different approaches have considered communities structure information for increasing the link prediction accuracy. Nevertheless, these approaches consider that users belong to just one community. In this paper, we propose three measures for the link prediction task which take into account all different communities that users belong to. We perform experiments for both unsupervised and supervised link prediction strategies. The evaluation method considers the links imbalance problem. Results show that our proposals outperform state-of-the-art unsupervised link prediction measures and help to improve the link prediction task approached as a supervised strategy.São Paulo Research Foundation (FAPESP) (grants 2011/22749-8 and 2013/12191-5)National Council for Scientific and Technological Development (CNPq) (grant 151836/2013-2)14th International Conference on Computational Science and its Applications (ICCSA).\ud Guimarães, Portugal. 30 June - 3 July 2014

    Multilevel refinement based on neighborhood similarity

    Get PDF
    The multilevel graph partitioning strategy aims to reduce the computational cost of the partitioning algorithm by applying it on a coarsened version of the original graph. This strategy is very useful when large-scale networks are analyzed. To improve the multilevel solution, refinement algorithms have been used in the uncorsening phase. Typical refinement algorithms exploit network properties, for example minimum cut or modularity, but they do not exploit features from domain specific networks. For instance, in social networks partitions with high clustering coefficient or similarity between vertices indicate a better solution. In this paper, we propose a refinement algorithm (RSim) which is based on neighborhood similarity. We compare RSim with: 1. two algorithms from the literature and 2. one baseline strategy, on twelve real networks. Results indicate that RSim is competitive with methods evaluated for general domains, but for social networks it surpasses the competing refinement algorithms.CNPq (grant 151836-/2013-2)FAPESP (grants 2011/22749-8, 11/20451-1 and 2013/12191-5)CAPE

    Link prediction in graph construction for supervised and semi-supervised learning

    Get PDF
    Many real-world domains are relational in nature since they consist of a set of objects related to each other in complex ways. However, there are also flat data sets and if we want to apply graph-based algorithms, it is necessary to construct a graph from this data. This paper aims to: i) increase the exploration of graph-based algorithms and ii) proposes new techniques for graph construction from flat data. Our proposal focuses on constructing graphs using link prediction measures for predicting the existence of links between entities from an initial graph. Starting from a basic graph structure such as a minimum spanning tree, we apply a link prediction measure to add new edges in the graph. The link prediction measures considered here are based on structural similarity of the graph that improves the graph connectivity. We evaluate our proposal for graph construction in supervised and semi-supervised classification and we confirm the graphs achieve better accuracy.São Paulo Research Foundation (FAPESP) (grants: 2013/12191-5, 2011/21880-3 and 2011/22749-8

    Understanding Social Media Users via Attributes and Links

    Get PDF
    abstract: With the rise of social media, hundreds of millions of people spend countless hours all over the globe on social media to connect, interact, share, and create user-generated data. This rich environment provides tremendous opportunities for many different players to easily and effectively reach out to people, interact with them, influence them, or get their opinions. There are two pieces of information that attract most attention on social media sites, including user preferences and interactions. Businesses and organizations use this information to better understand and therefore provide customized services to social media users. This data can be used for different purposes such as, targeted advertisement, product recommendation, or even opinion mining. Social media sites use this information to better serve their users. Despite the importance of personal information, in many cases people do not reveal this information to the public. Predicting the hidden or missing information is a common response to this challenge. In this thesis, we address the problem of predicting user attributes and future or missing links using an egocentric approach. The current research proposes novel concepts and approaches to better understand social media users in twofold including, a) their attributes, preferences, and interests, and b) their future or missing connections and interactions. More specifically, the contributions of this dissertation are (1) proposing a framework to study social media users through their attributes and link information, (2) proposing a scalable algorithm to predict user preferences; and (3) proposing a novel approach to predict attributes and links with limited information. The proposed algorithms use an egocentric approach to improve the state of the art algorithms in two directions. First by improving the prediction accuracy, and second, by increasing the scalability of the algorithms.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Mining Time-aware Actor-level Evolution Similarity for Link Prediction in Dynamic Network

    Get PDF
    Topological evolution over time in a dynamic network triggers both the addition and deletion of actors and the links among them. A dynamic network can be represented as a time series of network snapshots where each snapshot represents the state of the network over an interval of time (for example, a minute, hour or day). The duration of each snapshot denotes the temporal scale/sliding window of the dynamic network and all the links within the duration of the window are aggregated together irrespective of their order in time. The inherent trade-off in selecting the timescale in analysing dynamic networks is that choosing a short temporal window may lead to chaotic changes in network topology and measures (for example, the actors’ centrality measures and the average path length); however, choosing a long window may compromise the study and the investigation of network dynamics. Therefore, to facilitate the analysis and understand different patterns of actor-oriented evolutionary aspects, it is necessary to define an optimal window length (temporal duration) with which to sample a dynamic network. In addition to determining the optical temporal duration, another key task for understanding the dynamics of evolving networks is being able to predict the likelihood of future links among pairs of actors given the existing states of link structure at present time. This phenomenon is known as the link prediction problem in network science. Instead of considering a static state of a network where the associated topology does not change, dynamic link prediction attempts to predict emerging links by considering different types of historical/temporal information, for example the different types of temporal evolutions experienced by the actors in a dynamic network due to the topological evolution over time, known as actor dynamicities. Although there has been some success in developing various methodologies and metrics for the purpose of dynamic link prediction, mining actor-oriented evolutions to address this problem has received little attention from the research community. In addition to this, the existing methodologies were developed without considering the sampling window size of the dynamic network, even though the sampling duration has a large impact on mining the network dynamics of an evolutionary network. Therefore, although the principal focus of this thesis is link prediction in dynamic networks, the optimal sampling window determination was also considered
    corecore