

 Universidade de São Paulo

2014-07

Multilevel refinement based on neighborhood

similarity

International Database Engineering & Applications Symposium, 18th, 2014, Porto.
http://www.producao.usp.br/handle/BDPI/46712

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo

Biblioteca Digital da Produção Intelectual - BDPI

Departamento de Ciências de Computação - ICMC/SCC Comunicações em Eventos - ICMC/SCC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)

https://core.ac.uk/display/37522099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.producao.usp.br
http://www.producao.usp.br/handle/BDPI/46712

Multilevel refinement based on neighborhood similarity

Alan Valejo, Jorge Valverde-Rebaza, Brett Drury and Alneu de Andrade Lopes
Department of Computer Science

ICMC, University of São Paulo
C. P. 668, CEP 13560-970, São Carlos, SP, Brazil

{alan, jvalverr, bdrury, alneu}@icmc.usp.br

ABSTRACT
The multilevel graph partitioning strategy aims to reduce
the computational cost of the partitioning algorithm by ap-
plying it on a coarsened version of the original graph. This
strategy is very useful when large-scale networks are ana-
lyzed. To improve the multilevel solution, refinement algo-
rithms have been used in the uncorsening phase. Typical re-
finement algorithms exploit network properties, for example
minimum cut or modularity, but they do not exploit features
from domain specific networks. For instance, in social net-
works partitions with high clustering coefficient or similarity
between vertices indicate a better solution. In this paper,
we propose a refinement algorithm (RSim) which is based
on neighborhood similarity. We compare RSim with: 1. two
algorithms from the literature and 2. one baseline strategy,
on twelve real networks. Results indicate that RSim is com-
petitive with methods evaluated for general domains, but
for social networks it surpasses the competing refinement
algorithms.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—Algorithms; H.2.8
[Database Applications]: Data mining; E.1 [Data]: Data
structures—Graphs and networks; G.4 [Mathematics of
Computing]: Mathematical software—Algorithm design and
analysis, Efficiency

Keywords
Graph Clustering, Multilevel Partitioning, Refinement, Com-
plex Networks, Social Networks

1. INTRODUCTION
The study of partition (community or cluster or module)

structures in complex networks1 has recently become a pop-
ular area of research [35, 9]. Graph partitioning is an impor-
tant problem with many applications such as clustering of

1We do not distinguish network and graph.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
IDEAS’14 July 07 - 09 2014, Porto, Portugal
Copyright 2014 ACM 978-1-4503-2627-8/14/07$15.00.
http://dx.doi.org/10.1145/2628194.2628227

web clients who have similar interests to improve the perfor-
mance of web services [17], customer clustering with simi-
lar interests to improve the performance of recommendation
systems [36], and others.

Graph partition techniques aim to divide the set of ver-
tices of a graph into k disjoint partitions such that the
number of edges connecting vertices among partitions is
minimal [35, 15]. Vertices belonging to the same parti-
tions share common properties and have similar roles, conse-
quently graph partitioning is useful to understand the topo-
logical structure and dynamic processes of graphs [9].

The graph partitioning problem is NP-complete, conse-
quently the identification of an optimal solution is a compu-
tationally expensive task, which may be infeasible for large-
scale networks [10]. A possible solution could be to identify
an optimal topological partition by optimizing some objec-
tive function. A drawback to this approach is that differing
graph partitioning algorithms may obtain different solutions
when evaluated in the same graph. Each graph partitioning
algorithm has a trade-off between accuracy and execution
time, and consequently the context of the problem will in-
fluence the selection of the algorithm [15, 9].

One of the most popular approach is the multilevel graph
partition strategy (MGR) [12, 4], which: reduces the size
of the graph by collapsing vertices and edges, partitions the
reduced graph, and then uncoarsening it to construct a par-
tition for the original graph. Figure 1 shows in more detail
the three phases of MGR, which in this case are: (i) the
initial graph G0 being reduced recursively (coarsening pro-
cess) into a sequence of smaller graphs G0, G1, . . . , GN ; (ii)
partitioning of the reduced graph GN and (iii) the partition
of the graph GN is projected back to the initial graph G0

(uncoarsening process).

Figure 1: The multilevel graph partitioning strategy
scheme. The solid lines represent the projection of
the partition. The dashed lines represent the refine-
ment process

67

An important criteria of the multilevel strategy is the
choice of the initial partition because an non-optimal choice
may lead the partition algorithm to converge to a local min-
ima2. It is important to note that, even though the graph
Gi is at a local minima, the projected partition of the graph
Gi−1 can not be at local minima, therefore the use of a local
refinement algorithm it is possible to improve the quality of
the partition [15]. The refinement process is typically per-
formed by vertex moving among adjacent partitions. Fig-
ure 2 shows local refinement operations. Given an initial
partition, the refinement process allows: (i) vertex moving
among partitions, (ii) merge two partitions, and (iii) create
new partitions.

Figure 2: Local refinement operations. Dashed lines
represent relationships among vertices belonging to
different partitions. Arrows indicate refinement op-
erations

Refinement methods tend to improve the partition quality
by an optimization of an objective function, for instance,
cut minimization and balancing [16, 8, 28, 29, 12, 15] or
maximization of the modularity [23, 30, 35, 26, 27]. These
methods use the general structural properties of complex
networks, however, some intrinsic properties of specific types
of complex networks have not been explored efficiently in the
refinement process.

One of the most studied types of complex networks are
social networks, which are characterized by: high cluster-
ing coefficient, significant assortativity mixing and numerous
common relationships among their members [22, 23]. These
properties are quantified using neighborhood and similarity
measures [20, 36, 32, 33].

In this paper, we propose a new algorithm, called Re-
finement algorithm based on similarity (RSim), which uses
intrinsic social network properties. Our proposal uses the
similarity between pairs of vertices to perform refinement
operations and thus improve the partition quality maximiz-
ing the number of cycles with three vertex and merging ver-
tices with similar degrees to the same partitions.

In order to systematically describe and compare our pro-
posal with existing refinement algorithms, we performed ex-
periments on twelve real complex networks. Analysis from a
post-hoc test [6] indicated that, in general our proposal has
a comparative performance with methods described in the
research literature. Nevertheless, when we consider the anal-
ysis only on social networks, our proposal outperformed all
other methods. In addition, to evaluate the performance of
our proposal in a problem of the real world, we present a case
study which addresses the problem of ambiguous citations
in scientific cooperation networks. Also, independently of

2The solution is at a local minima if the exchange of
vertices between partitions not minimize cutting [15].

the type of complex network analyzed our proposal is faster
than compared graph partitioning methods.

The paper is organized as follows: Section 2 describes
graph definitions and the multilevel graph partition approa-
ch, respectively. Section 3 details our proposal. Section 4
shows the experimental results. Section 5 discusses the real
problem of ambiguous citations and shows how our proposal
outperforms various refinement algorithms. Finally, conclu-
sions are drawn in Section 6.

2. MULTILEVEL GRAPH PARTITIONING
Consider an undirected graph G = (V,E,W), where V

is the set of vertices and E is the set of edges. An edge is
defined for the relation e = {(v, u) = (u, v) | v, u ∈ V }. The
weight of the edge formed between the pair of vertices v and
u is represented by w(v, u). The total number of vertices is
n = |V | and the total number of edges is m = |E|, where
“|.|” indicates the cardinality of a set.

The basic structural definition for a vertex v ∈ V is its
degree k(v) =

∑
u∈V w(v, u), which denotes the total weight

of its edges. Similarly, the definition of its neighborhood is
Γ(v) = {u | (v, u) ∈ E ∨ (u, v) ∈ E}, which denotes the set
of neighbors of v.

Denote C = {C1, . . . , Ck} as the partitioning of V into dis-
joint non-empty partitions such that Ci ∩ Cj = ∅, ∀ i 6= j.
A partition C is considered trivial if k = 1 or k = n. A
partition Ci composed just by one vertex is called as sin-
gleton. The internal degree of v is the number of their
neighbors that are in the same partition, i.e. kCi(v) =
|{(v, u) | v, u ∈ Ci, (v, u) ∈ E}|. Given a partition C, the
number of edges whose vertices belong to different partitions
is called the edge cut and is defined as

∑
u∈Ci,v 6=Ci

w(u, v)
where 1 ≤ i ≤ k.

Most of partitioning algorithms tend to optimize the mod-
ularity due to it is one of the most widely used quality mea-
sures [25, 27, 26, 35, 30]. The modularity has a formal re-
lation to intra-cluster density and inter-cluster sparsity [25].
Formally, the modularity is defined as stated in Equation 1:

Q =
1

2m

∑
u,v

[Au,v −
k(u)k(v)

2m
]δ(Cu, Cv), (1)

where Au,v is an entry in the adjacency matrix A and the
function δ(Cu, Cv) is 1 if Cu = Cv and 0 in another case.
Modularity values greater than 0.3 indicate a good partition
quality [23].

2.1 Multilevel approach
Given an initial graph G0, with weights in the vertices

and edges. Multilevel approach aims to recursively reduce
this graph into a graph GN which is as small as it is desired.
After this, GN is partitioned into k sub-graphs using a par-
titioning algorithm. Lastly, the graph GN is projected back
to the intermediate graphs ones until the original graph G0.
This approach has three phases: coarsening, initial parti-
tioning and uncoarsening, illustrated in Figure 1.

Algorithm 2.1 shows the steps of the multilevel approach.
In this algorithm, the graph G0 indicates the original graph.
The rf is a variable used to calculate the size of the matching
in the coarsening phase. The three phases of the multilevel
approach are represented by functions: coarsener, partition-
ing and refiner.

68

Algorithm 2.1: Multilevel graph partitioning

Input: graph G0, reduction factor rf
1 Gi ← G0, i ← 0;
2 repeat
3 Gi+1 ← coarsener(Gi, rf);
4 i ← i+1;

5 until Gi not coarse enough;
6 clustering ← partitioning(Gi);
7 while Gi != G0 do
8 project clustering from Gi to Gi−1;
9 clustering ← refiner(Gi−1, clustering);

10 i ← i+1;

11 return clustering

2.2 Coarsening Phase
In this phase, the graph G0 is recursively reduced in a

sequence of smaller graphs G1, G2, ..., GN , such that |V0| >
|V1| > ... > |VN |, i.e. decreases the number of vertices
and edges. The GN , is called a coarse graph, which can
be achieved in various ways. In most coarsening schemes a
set of vertices of Gi are merged, forming a super-vertex sV
in the coarser graph Gi+1. For the graph Gi+1 to be a good
representation compared to its previous coarser versions, the
weight of sV = {v, u} ∈ Vi+1 is given by the sum of weights
v and u ∈ Vi. Furthermore, in order to preserve the connec-
tivity information, the edges of sV are obtained by the join
of edges into u ∈ Vi. The set of pairs of candidate vertices
for merging is denominated matching (show Figure 3).

(a) Gi (b) Gi+1

Figure 3: The coarsening graph process uses the
matching concept. The dashed ellipses represent
the set of pairs of candidate vertices to merged by
matching. In Gi, the all edges weight is 1

The coarsening phase is repeated until a graph with de-
sired size is attained. The size of a coarse graph may be
defined by the absolute number of vertices, a reason related
to the original size, or a number of iterations. Algorithm 2.2
summarizes the coarsening process in pseudo-code. In this
algorithm, Gi is the graph to be coarsened. The rf limits
the number of pairs of vertices merged by determining the
size of the matching. When rf = 0.5 (maximum value), the
number of vertices in the graph is reduced to half. Based
on this, the size of the matching (mergeCount) is defined by
the reduction factor (rf) times by the number of vertices in
Gi, therefore each iteration reduces the number of vertices
of a constant factor to the logarithmic scale.

The selector represents the merge selection quality to use.
The function getVertex selects the vertex by their selection
quality. Next, the function bestNeighbor stores the best

neighbor identified by the selector. One of the most popu-
lar selection algorithms is the Heavy-edge Matching (HEM)
[13]. The HEM searches the set of pairs of vertices that re-
duces the most of the edge weights in the graph. Thus, HEM
selects the vertex u adjacent to v, whose edge (u, v) is the
heaviest. We notice that, the HEM complexity is O(|E|).

Algorithm 2.2: Coarsener

Input: graph Gi, reduction factor rf
1 mergeCount← rf ∗ number of vertices in Gi + 1;
2 i← 0;
3 while mergeCount > 0 do
4 a ← selector.bestVertex(Gi);
5 b ← selector.bestNeighbor(a, Gi);
6 if a and b were not merged then
7 matching[i] ← merge pair (a,b);
8 mergeCount ← mergeCount - 1;
9 i← i+ 1;

10 return matching

2.3 Initial Partitioning Phase
This phase computes the partition C in the coarser graph

GN . Given a graph GN as the input parameter and a vector
C as output (representing the partitioning of GN), different
algorithms for graphs partitioning can be used. Depending
on the setting of the coarsening phase, the graph GN can
be very small, therefore it is possible to use computationally
expensive graph partitioning algorithms without a impact
on general performance. [13]. This phase represents the
partition() function in the Algorithm 2.1.

2.4 Uncoarsening Phase
During the uncoarsening phase, the partitioning graph

GN is recursively expanded until the original graph. For
each iteration, each super-vertex sV from the graph Gi+1

is divided in its origin vertices u and v. The edges which
link two sV are distributed between u and v keeping orig-
inal structure. In the same way, the partitioning C is pro-
jected by the intermediate levels (GN−1, GN−2, ..., G0) until
the original graph. By decomposing a sV , the original ver-
tices u and v are added to partition Ci, so that sV ∈ Ci. In
this phase, it is possible to use refinement heuristics in order
to improve the quality of the solution.

Refinement polices. As stated previously, refinement al-
gorithms may be used in the uncoarsening phase. This
process is done through local operations by moving ver-
tices among partitions (see Figure 2). Given a partitioning
C = {C1, C2}, the goal is to select C′1 ⊂ C1 and C′2 ⊂ C2,
so that the partitioning (C1 −C′1) ∪C′2 and (C2 −C′2) ∪C′1
optimize an objective function, for instance, the graph cut
[14].

In the research literature most refinement approaches are
based on the Kernighan-Lin (KL) algorithm [16]. KL per-
forms continuous changes of vertices among partitions in
order to reduce the graph cut and increase the balancing of
the partitions. The KL complexity is O(n3) but it can be
done in O(|E|log|E|). Fiduccia and Mattheyses [8] proposed
a modification (FM) of KL with linear computational cost
O(|E|). The FM algorithm uses accurate data structures

69

that makes KL computationally more efficient. The KL al-
gorithm has also been modified in order to maximize the
modularity [23].

These algorithms are efficient but are limited to improve a
bisection3. In many contexts, the partitioning is not limited
to a bisection, however refining k -partitions is more complex
than refining a bisection due to vertices can move to many
partitions [27].

One of the first adaptations of the KL algorithm to refine
k -partitions was proposed by Sanchis [28] in the context of
hypergraphs. Hendrickson and Leland [12] proposed an al-
gorithm for the k -partitioning of graphs using a strategy of
local refinement, however the algorithm complexity depends
of the number of partitions, i.e. O(k|E|), therefore this algo-
rithm can be used only when k is small. Karypis and Kumar
[15] proposed an algorithm (KK) where the complexity is in-
dependent of the number of partitions (simplifying the KL).
By using the gain concept based on the degree of vertices to
move boundary vertices among adjacent partitions.

Schuetz and Caflisch [30] moves vertices among adjacent
partitions based on the variation of modularity (∆Q). The
refinement algorithm fastgreedy (RFG) analyses the list of
vertices in order of increasing degree and each vertex is
moved to the adjacent partition with maximum ∆Q. The
algorithm complexity is O(m log n). Ye et al. [35] also
presented an approach based on the maximization of modu-
larity. Rotta and Noack [27] empirically analyzed heuristics
of coarsening and refinement of graphs, and proposed an al-
gorithm that prioritizes the modularity when perform any
operation of edge merges (coarsening) or refinement vertices
(uncoarsening).

Almeida and Lopes [1] presented a multilevel approach
by optimization of modularity. In the partitioning phase
is used the fastgreedy algorithm [5], however this approach
does not use any refinement method, due to its objective is
only to verify the performance of the fastgreedy algorithm
in a multilevel context.

3. PROPOSED METHOD
In this section, we present a refinement algorithm based

on neighborhood similarity, RSim, which explores social net-
works characteristics to face the refinement process. For
this, we review the similarity measures used as the basis for
our proposal, we then present the RSim algorithm and an
analysis of its properties and complexity.

3.1 Similarity measures
In the context of complex networks, similarity measures

quantify common characteristics between two vertices. When
the similarity between vertices is based solely on network
structure, it is called structural similarity. Structural sim-
ilarity measures can be classified in different ways, such as
the based on local or global information, refer to [20] for
details.

Liben-Nowell and Kleinberg [18] and Zhou et al. [37] sys-
tematically compared a number of structural similarity mea-
sures on real networks. According to the authors, methods
based on global information use all available information
from the network, therefore it can provide higher accuracy
than the measures based on local information. However, the
global measures computation is very time-consuming and

3A bisection is a 2-partition.

usually infeasible for large-scale networks. Alternatively, lo-
cal measures use only information about pair of vertices,
therefore are generally faster, but provide lower accuracy
compared to the global ones. There are different similar-
ity measures based on local information for example: Com-
mon Neighbors (CN), Salton (Sal), Jaccard (Jac), Sorensen
(Sor), Hub Promoted (HP), Hub Depressed (HD), Leicht-
Holme-Newman (LHN), Adamic-Adar (AA) and Resource
Allocation (RA), summarized in Table 1.

Recently have been proposed some approaches which use
other network informations such as the behavior of vertices
in communities. Valverde-Rebaza and Lopes [32] proposed
hybrid similarity measures based on community information.
The WIC measure and the W-measures which are based on
the relationship of belonging of the neighborhood of a pair
of vertices to certain partitions.

The basic definition is the set of common neighbors, de-
noted by Λv,u = Γ(v) ∩ Γ(u). Consider that Λv,u = ΛW

v,u ∪
ΛI

v,u, where ΛW
v,u = {z ∈ Λx,y | x, y, z ∈ Ci} is the set

of within-community common neighbors (W) and the com-
plement ΛI

v,u = Λv,u / ΛW
v,u is the set of inter-community

common neighbors (I). Therefore, ΛW
v,u ∩ ΛI

v,u = ∅.

WIC measure. The WIC measure uses information of
the common neighbors inter and intra-communities of the
evaluated pair (v, u). Considering each vertex belonging to
a unique partition, the WIC is defined by [34]:

SWIC
v,u =

{
|ΛW

v,u| if ΛW
v,u = Λv,u

|ΛW
v,u| / |ΛI

v,u| otherwise
(2)

W-measures. Correspond to the reformulation of the local-
similarity measures using information considering the com-
mon neighbors within-communities instead of compute all
the common neighbors of the evaluated pair (v, u). The
common neighbors within-community (W) capture the ex-
istent relations between pairs of vertices that belong to the
same communities. However, the common neighbors inter-
community (I) capture the existent relations between pairs
of vertices that belong to different communities. Therefore,
the similarity measures were reformulated using only the
neighborhood set W , ΛW

v,u (summarized in Table 1).

Table 1: Local similarity measures and their corre-
sponding W forms. Adapted from [32]

Local measure W-measure

SCN
v,u = |Γ(v) ∩ Γ(u)| = |Λv,u| SCN−W

v,u = |ΛW
v,u|

SSal
v,u =

|Λv,u|√
k(u)×k(y)

SSal−W
v,u =

|ΛW
v,u|√

k(u)×k(y)

SJac
v,u =

|Λv,u|
|Γ(x)∪Γ(y)| SJac−W

v,u =
|ΛW

v,u|
|Γ(x)∪Γ(y)|

SSor
v,u =

2|Λv,u|
k(x)+k(y)

SSor−W
v,u =

2|ΛW
v,u|

k(x)+k(y)

SHP
v,u =

|Λv,u|
min{k(x),k(y)} SHP−W

v,u =
|ΛW

v,u|
min{k(x),k(y)}

SHD
v,u =

|Λv,u|
max{k(x),k(y)} SHD−W

v,u =
|ΛW

v,u|
max{k(x),k(y)}

SLHN
v,u =

|Λv,u|
k(u)×k(y)

SLHN−W
v,u =

|ΛW
v,u|

k(u)×k(y)

SAA
v,y =

∑
z∈Λv,u

1
log k(z)

SAA−W
v,y =

∑
z∈ΛW

v,u
1

log k(z)

SRA
v,y =

∑
z∈Λv,u

1
k(z)

SRA−W
v,y =

∑
z∈ΛW

v,u
1

k(z)

70

3.2 RSim
RSim is a refinement algorithm for k -partitions based on

optimization of similarity measures between vertices. This
algorithm explores social networks characteristics to do re-
finement process unlike others literature methods which are
based on the general properties of complex networks. For
this, we use as base the WIC and W-measures. However,
these measures have been set in the link prediction context,
whose score Sv,u is calculated to any pair (v, u) 6∈ E. Once
our goal is not predicting future connections, but improve
the initial partitioning solution based on the existent con-
nections, the similarity is calculated to any pair (v, u) ∈ E.

Algorithm 3.1 describes the RSim steps. In each step i
of the uncoarsening phase, the algorithm moves boundary
vertices among adjacent partitions. A score is calculated
for each partition considering each one of their boundary
vertices. The scoring is calculated with base on the average
similarity between the vertex v and its neighborhood in the
partition. Lastly, the vertex v is moved to partition with
higher scoring.

Algorithm 3.1: Refiner

Input: graph, clustering
1 repeat
2 foreach boundary vertex v do
3 set ws;
4 C ← partitions where v has connection;
5 foreach Ci of C do

6 ws(Ci)← 1
kCi

(v)

∑
v,u|u∈Ci

Sv,u

7 Ci ← best cluster from ws;
8 if v 6∈ Ci then
9 move vertex v to cluster Ci;

10 update clustering;

11 until no improve clustering ;
12 return clustering

The clustering indicates the original partitioning. The
S indicates the similarity measure used, therefore RSim al-
lows the use of different similarity measures but it is limited
to measures based on the behavior of vertices in partitions.
This behaviors allows us to calibrate the RSIM into ten vari-
ants using WIC and W-measures. Each similarity measure
produces one RSim variant. For instance, RSim-CN uses
the CN-W similarity measure.

Considering that the algorithm performs operations only
in boundary vertices and their operations are done in con-
stant time using a vector mapping. For each boundary ver-
tex v is computed the similarity to their neighborhood in
each partition, i.e all neighbors of v will be visited indepen-
dent of the number of partitions. In the worst case, in which
all the vertices are boundary, all the edges will be checked.
Therefore, the algorithm complexity does not depend on the
number of partitions and it has a linear time of execution in
relation with the number of edges, i.e. O(|E|).

Figure 4 illustrates the refinement process for the bound-
ary vertex 5 using RSim-CN. Given the initial partition-
ing C = {CA, CB}, where CA = {1, 2, 3, 4, 5} and CB =
{6, 7, 8, 9}, illustrated by Figure 4(a), and after the uncoars-
ening phase, illustrated by Figure 4(b), we have:

ws(CA) =
1

kCA(v)

∑
5,u|u∈CA

SCN−W
5,u

=
|ΛCA

5,2 |+ |Λ
CA
5,4 |

kCA(v)

=
|{4}|+ |{2}|

2
= 1

ws(CB) =
1

kCB (v)

∑
5,u|u∈CB

SCN−W
5,u

=
|ΛCB

5,6 |+ |Λ
CB
5,7 |+ |Λ

CB
5,8 |

kCB (v)

=
|{7}|+ |{6, 8}|+ |{7}|

3
= 1.33

as ws(CB) > ws(CA), the vertex 5 is moved from partition
CA to CB . Thus, CA = {1, 2, 3, 4} and CB = {5, 6, 7, 8, 9},
Figure 4(c).

(a) Initial Partitioning (b) Uncoarsening

(c) Refinement

Figure 4: Example of the refinement process using
RSim with CN-W. During the refinement process
the vertex 5 is moved from the partition CA to CB

RSim has numerous variants based on the set of common
neighbors, it is possible that all of the lead to the same
decisions. For instance, Table 2 shows values obtained by
three RSim variants to refine the vertex 5. In this case, all
variants have moved the vertex 5 to CB partition.

Table 2: Values by three RSim variants to refine the
vertex 5 from sV = {2, 5} (Figure 4) and refine the
vertices 2 and 4 from sV = {2, 4} (Figure 5)

Variant

sV = {2, 5} sV = {2, 4}

refining 5 refining 2 refining 4

w(Ca) w(Cb) w(Ca) w(Cb) w(Ca) w(Cb)

RSim-CN 1.00 1.33 2.00 0.00 2.00 0.00

RSim-HP 0.25 0.38 0.66 0.00 0.66 0.00

RSim-HD 0.20 0.26 0.55 0.00 0.55 0.00

Analogous, Figure 5 illustrates another scenario in which
sV = {2, 4}. In this case, the three variations also have

71

take the same decisions to refine the vertices 2 and 4, as
shown in Table 2. We can conclude from the information in
this table that the variants of RSim have produced the same
solutions, any measure of quality of partitioning will show
equalize performance for these variants.

(a) Initial Partitioning (b) Refinement

Figure 5: Example of the refinement process using
RSim. During the refinement process the vertices 2
and 4 remain in the partition CB

As stated previously, our algorithm explores social net-
works characteristics to perform the refinement process. For
this, we use an approach based on neighborhood and degree.
This characteristic are relevant at networks characterized
by high clustering coefficient (presence of cycles with three
vertices) and assortativity (tendency of vertices to connect
with other vertices with similar degrees). In addition, our
proposal is fast and feasible for large-scale networks.

4. EXPERIMENTS
We evaluated the RSim algorithm performance in twelve

real networks from different domains: information networks,
technological networks, biological networks, and social net-
works. The selected networks are commonly used in the re-
search literature. Their topological characteristics are sum-
marized in Table 3.

We evaluated ten RSim variants. Each variant uses a dif-
ferent similarity measure (WIC or W-measures). We have
compared RSIM with two methods from the research liter-
ature, KK [15] and RFG [30, 35, 27]. Furthermore, in order
to evaluate the efficiency of these algorithms we used a base-
line (also called no-refinement) that performs pure multilevel
partitioning (HEM+fastgreedy), i.e. does not undertake the
refinement process. The baseline method is described in de-
tail in [1].

The algorithms were implemented in C++ and compiled
with GCC 4.7.3 and Linux Ubuntu kernel 3.8.0-34-gene-

ric. The structure of data is based in the platform LP-
made [19]. Our experiments were performed on a com-
puter with an Intel(R) Core(TM) i5-2430M processor CPU
@ 2.40GHz and 4 GBytes of memory.

Figure 6 summarizes our methodology with a flowchart.
The experiments performed three steps: (i) the original gra-
ph G0 is reduced recursively using the HEM algorithm, (ii)
the coarse graph GN is partitioned using the fastgreedy al-
gorithm [5], (iii). the partition of the graph GN is projected
back to the intermediates levels and refined by an refine-
ment algorithms. This step is repeated individually for each
evaluated refinement algorithm.

Table 4 summarizes the accuracy results, measured by
modularity on the twelve networks. First, we analyze the
difference between RSim and two refinement algorithms (KK
and RFG). Second, we analyze the statistical performance
of all the analyzed refinement algorithms. The highest ac-
curacies are highlighted in bold.

Figure 6: Flowchart of our experimental methodol-
ogy

We observed that the RSim algorithm has the best perfor-
mance in seven of the twelve evaluated networks. Also, we
observed that the RSim performance is better in networks
with a high clustering coefficient (C) and assortativity (r),
as observed in AL, ZK, DBLP, NS, IM, HT and AP net-
works.

Many real networks have a high clustering coefficient. This
concept can be generalized by assuming that object similar-
ity behaves transitivity, i.e most of the neighbors of a vertex
are neighbors of each other. Based on this intuition, RSim-
CN and RSim-WIC maximize the proportion of pairs of ver-
tices linked with one another among all the neighbors of a
vertex, i.e. maximize the number of cycles of length three,
therefore, these variants have best performance in networks
with a high clustering coefficient, as observed in AL and
DBLP networks. The other RSim variants have best perfor-
mance in networks with high assortativity coefficient, such
as NS, MI, HT and AP networks. Alternatively, RSim is less
efficient in networks with lower clustering and assortativity
coefficient.

To analyze the difference between refinement algorithms,
we use a post-hoc test [6]. The results of Table 4 and anal-
ysis is shown in two critical difference diagrams in Figure 7.
In the diagram of Figure 7(a), we analyze the refinement al-
gorithms in a general context, i.e. using all networks. In the
diagram of Figure 7(b), we analyze the top five refinement
algorithms and baseline by the overall ranking obtained by
diagram of the Figure 7(a) for social networks. The crit-
ical difference (CD) is shown in the top of each diagram.
In the axis of each diagram is plotted the average ranks of
the refinement algorithms analyzed. In each axis, the low-
est (best) ranks are in the left side. Algorithms that have
no significant difference are connected by a black continuous
line.

In the diagram of Figure 7(a) although there is no sig-
nificant difference between these measures, observe that the
RSim-CN, RFG, KK, RSim-AA and RSim-WIC have the
best average rank. We noticed that two groups of RSim vari-
ants have the same performance. The first group is formed
by RSim-WIC and RSim-AA. The second group is formed
by RSim-HD, RSim-HP, RSim-Sor, RSim-Sal, Rsim-LH and
Rsim-RA. Lastly, RSIM-Jac have the worst overall average
rank. In the diagram of the Figure 7(a) also there is no
significant difference between the top five algorithms, how-
ever observe that the RSim variants have a better average

72

Table 3: The basic topological features of twelve networks. Where |V | and |E| are the number of vertices and
links. C and r are clustering and assortative coeficient, respectively. H denotes the heterogeneity degree

Domain Nets Acronym |V | |E| C r H

Technological
Airline [3] AL 332 2126 0.7494 -0.2079 3.4639
Power [24] PW 4941 6594 0.0801 0.0034 1.4504
Router [31] RT 5022 6258 0.0116 -0.1384 5.5031

Biological Yeast [24] YT 2362 7182 0.2443 -0.0587 2.7643

Information Political Blogs [24] PB 1224 16716 0.3203 -0.2211 2.9749
Industry [7] ID 2189 11666 0.3297 0.1842 3.4122

Social

Zachary Karate [24] ZK 34 78 0.5879 -0.4756 1.6933
DBLP [11] DB 1011 5754 0.8677 0.0651 2.5485
Imdb [21] IM 1441 20317 0.5843 0.3492 2.0982
NetScience [24] NS 1461 2742 0.6937 0.4616 1.8486
High-energy theory [24] HT 8361 7875 0.2939 0.3402 2.3057
Astrophysics [24] AP 16706 121251 0.2355 0.4305 3.0946

Table 4: Accuracy measured by modularity on twelve networks for ten RSim variants, RFG, KK, and the
baseline. Each modularity value is obtained by averaging over 100 times

Algorithm
Network

AL PW RT YT PB ID ZK DBLP NS IM HT AP

RSim-AA 0.3160 0.9165 0.8650 0.6869 0.4218 0.4801 0.3553 0.9128 0.9553 0.5912 0.6522 0.6243
RSim-CN 0.3165 0.9165 0.8650 0.6869 0.4218 0.4801 0.3560 0.9130 0.9553 0.5912 0.6479 0.6128
RSim-HD 0.3160 0.9165 0.8650 0.6869 0.4218 0.4801 0.3553 0.9128 0.9553 0.5912 0.6479 0.6243
RSim-HP 0.3160 0.9165 0.8650 0.6869 0.4218 0.4801 0.3553 0.9128 0.9553 0.5912 0.6479 0.6243
RSim-Jac 0.2930 0.9144 0.8599 0.6860 0.4151 0.4592 0.3828 0.9117 0.9548 0.6474 0.6479 0.6471
RSim-LH 0.3160 0.9165 0.8650 0.6869 0.4218 0.4801 0.3553 0.9128 0.9553 0.5912 0.6479 0.6243
RSim-RA 0.3160 0.9165 0.8650 0.6869 0.4218 0.4801 0.3553 0.9128 0.9553 0.5912 0.6479 0.6243
RSim-Sal 0.3160 0.9165 0.8650 0.6869 0.4218 0.4801 0.3553 0.9128 0.9553 0.5912 0.6479 0.6243
RSim-Sor 0.3160 0.9165 0.8650 0.6869 0.4218 0.4801 0.3553 0.9128 0.9553 0.5912 0.6479 0.6243
RSim-WIC 0.3160 0.9165 0.8650 0.6869 0.4218 0.4801 0.3553 0.9130 0.9553 0.5912 0.6522 0.6128
RFG 0.3165 0.9301 0.8840 0.6920 0.4236 0.4871 0.3667 0.9123 0.9549 0.5869 0.6429 0.6120
KK 0.2632 0.9311 0.8870 0.7081 0.4257 0.4693 0.3798 0.9128 0.9459 0.6385 0.6422 0.6128
baseline 0.2884 0.9228 0.8611 0.6607 0.4204 0.4782 0.3483 0.9113 0.9403 0.5785 0.5864 0.6058

1 2 3 4 5 6 7 8 9 10 11 12

RSim-CN
RFG
KK

RSim-AA
RSim-WIC
RSim-HD RSim-HP

RSim-LH
RSim-RA
RSim-Sal
RSim-Sor
RSim-Jac

CD

(a)

1 2 3 4 5 6

RSim-AA
RSim-CN
RSim-WIC KK

RFG
baseline

CD

(b)

Figure 7: Critical difference diagrams for results from Table 4. In (a), we show the statistical analyses for
all refinement algorithms in the twelve networks analyzed. In (b), is show statistical analyses for the top five
refinement algorithms for only the six social networks analyzed (ZK, DBLP, NS, IM, HT, AP)

rank, which in turn is considerably larger than the average
rank of the KK and RFG. This fact indicates that RSim
surpasses the usual refinement algorithms in social networks
and is competitive with the methods evaluated for general
domains. The critical value for comparing mean ranking of
two different algorithms at 95 percentile is 4.81 in the di-
agram of the Figure 7(a) and 2.49 in the diagram of the
Figure 7(b). Mean rank differences above this value are sig-
nificative.

The results of post-hoc values, shown in Figure 7(b), also
indicated that there is significant difference between the
baseline and RSim, as opposed, the algorithms RFG and
KK have no statistically significant difference, providing evi-
dence that the methods of literature have no clear advantage
over the baseline.

Finally, we noted from results of Table 4, some RSim vari-
ants have exactly the same results. This ties as discussed in
Subsection 3.2, occur due to the all RSim variants are based
on the set of common neighbors.

Figure 8 shows the execution time of the refinement al-
gorithms considering the size of the all analyzed networks.
The upper x-axis shows the acronym of the evaluated net-
work and the lower x-axis shows the size of the network by
the number of edges.

The longest runtime of the RSim was 153.33 seconds, al-
ternatively KK and RFG they took around of 700 seconds.
Also, we notice that RSim variants have the lower growth
curve than KK and RFG. This is due to RSim: perform-
ing only operations from boundary vertices. In addition the
similarity measures used have a low computationally com-

73

number of edges

ti
m

e

RSim−AA
KK
RFG
RSim−WIC
RSim−CN
baseline

1
e
−

0
2

1
e
+

0
0

1
e
+

0
2

1
e
+

0
4

1e+02 5e+02 1e+03 5e+03 1e+04 5e+04 1e+05 5e+05

ZK AL RT ID HT AP

156.33 seconds

Figure 8: Runtime ratio the refinement algorithms considering the graph size at 50% reduction factor. The
dashed line marks the longest runtime of the RSim. Baseline shows the runtime to projection partitions
without perform the refinement process

plexity, unlike: RFG which uses the computationally ex-
pensive modularity increase (∆Q) and KK which requires:
1. extra operations to check balancing and 2. additional
computations to calculate the gain based on the degree of
vertices. Therefore, independently of the type of network
analyzed our proposal is faster than refinement algorithms
compared.

5. CASE STUDY
In this section, we conducted a case study addressed the

problem of ambiguous citations in scientific cooperation net-
works. The ambiguous citations problem affects the perfor-
mance and quality of scientific data recovery from digital li-
braries (Springer4, ACM5, DBLP6 and CiteSeer7). The am-
biguous citations problem is where citations are incorrectly
assigned and therefore gives undue credit to authors. This
problem can be classified in different ways, such as: (i) split
citation problem, in which citations of the same author ap-
pears under different name variations, such as “Ronald W.
Williams” and “R. W. Williams”; (ii) mixed citation prob-
lem, in which different authors have the same name spellings,
such as“Mohammed Zaki”(Al-Azhar University, Egypt) and
“Mohammed Zaki” (Rensselaer Polytechnic Institute, USA).
Recently, some studies used cooperation networks and parti-
tioning algorithms to solving the split/mixed citation prob-
lem [11, 2]. However, the solution scalability and quality is a
critical factor for large-scale bibliographic databases which
may make some approaches unfeasible. For instance, the
computer science citation databases DBLP contains approx-
imately 2 million records. In order to increase scalability
and accuracy in scientific cooperation networks, a multilevel

4http://www.springer.com/
5http://dl.acm.org/
6http://www.informatik.uni-trier.de/ ley/db/
7http://citeseer.ist.psu.edu/

partitioning algorithm may be appropriate. The idea is to
match the multilevel strategy and the refinement algorithm
that optimizes inherent characteristics of social networks.

In this experiment, we used the collection of authorship
records extracted from the DBLP digital library. The reg-
isters were manually labeled using the authors information,
the collection is available in [11]. We choose to treat the
problem of the author “A. Gupta”, which is similar to “A.
Gupta” and “Amit Gupta” and related to “Ajay K. Gupta”,
“Amit Gupta” and “Anoop Gupta”. The set of citations has
567 registers and 26 different authors.

The experiment was made in two steps: (i) the scientific
cooperation network8 is partitioned using a multilevel ap-
proach from different refinement algorithms, and (ii) each
partition is processed individually using similarity between
strings9. For this, we use the Levenshtein distance at 40%
threshold. This value was selected due to the citation vari-
ants that take place mainly by abbreviations. For instance,
two citations to the same author can be very different, such
as“A. Gupta”and“Ashish Kumar Gupta”. If there are more
spelling mistakes (as “A. Gupta” and “A. Gopta”) than ab-
breviations it is possible to set a lower threshold, for instance
10%.

Table 5 summarizes the results measured by modularity,
F-measure and runtime on the DBLP network from the top
five refinement algorithms. From entries highlighted in bold,
we observe that RSim-CN and RSim-WIC have better per-
formance towards from modularity and f-measure. This is
due to DBLP having a high clustering coefficient (0.8677),
consequently, it is more likely that common neighbors (co-
operators) are connected among themselves. As we previ-
ously mentioned, using CN-W and WIC as refinement crite-
ria is an efficient strategy in this scenario, once maximized

8Two authors have a link if they producing a scientific
writing together.

9Strings contained author’s name.

74

the proportion of pairs of vertices linked with one another
among all the neighbors of a vertex. Another observation
is that RSim-AA have better f-measure than KK, although
both have the same modularity, therefore, it is important
to note that, the selection of the refinement algorithm will
influence the final quality of the solution. Lastly, RSim vari-
ants surpasses KK and RFG as to the runtime.

Table 5: Efficacy and efficiency measured by modu-
larity, F-measure and runtime in ambiguous citation
problem in the DBLP network

Algorithm modularity F-measure time/ms

RSIM-CN 0.9130 0.6730 06.81
RSIM-WIC 0.9130 0.6730 06.91
RSIM-AA 0.9128 0.6628 06.79
KK 0.9128 0.6501 12.02
RFG 0.9123 0.6501 11.02

6. SUMMARY AND CONCLUSION
This article focuses on the multilevel refinement process to

improve the partitioning solution in a network. We propose
a refinement algorithm based on optimization of similarity
between vertices, called RSim. This algorithm exploits the
tendency of vertices to be related to other vertices with simi-
lar characteristics. RSim can be applied to problems involv-
ing complex networks, but it can have a better performance
in social networks.

Our proposal was compared with two algorithms from the
research literature and one baseline method. The analy-
sis on twelve real networks from different domains demon-
strates that there was no single clear winner but our proposal
achieve better accuracies. For networks which have a high
clustering and assortativity coefficients, RSim surpasses the
usual refinement algorithms. When we address the duplicate
problem in scientific cooperation networks, the RSim out-
performs methods based on minimum cut and modularity.
In summary, this research produces evidences for efficiency
of RSim in problems involving social networks.

Finally, the performance is an important matter when
we work in large scale network, and the main advantage of
multilevel approach is the reduction of the execution time.
Based on this, our analysis shows that RSim is faster than
the competing methods due to it uses operations with low
computationally cost. Future work will be focus on the stud-
ies of heuristics for matching using different coarsening con-
figurations.

7. ACKNOWLEDGEMENT
This work was partially supported by CNPq grant: 151836-

/2013-2, FAPESP grants: 2011/22749-8, 11/20451-1 and
2013/12191-5 as well as by the CAPES funding agency.

8. REFERENCES
[1] L. J. Almeida and A. A. Lopes. An ultra-fast

modularity-based graph clustering algorithm.
Proceedings 14th Portuguese Conference on Artificial
Intelligence (EPIA) - Web and Network Intelligence
Track, pages 1–9, 2009.

[2] D. R. Amancio, O. N. Oliveira Jr., and L. d. F. Costa.
Topological-collaborative approach for disambiguating
authors’ names in collaborative networks. CoRR,
abs/1311.1266, 2013.

[3] V. Batagelj and A. Mrvar. Pajek datasets, 2006.
visited on 2014-02-30.

[4] C.-E. Bichot. A Partitioning Requiring Rapidity and
Quality: The Multilevel Method and Partitions
Refinement Algorithms, pages 27–63. John Wiley &
Sons, Inc., 2013.

[5] A. Clauset, M. E. J. Newman, and C. Moore. Finding
community structure in very large networks. Physical
Review E, 70:066111, 2004.

[6] J. Demšar. Statistical comparisons of classifiers over
multiple data sets. J. Mach. Learn. Res., 7:1–30, 2006.

[7] T. Fawcett and F. Provost. Activity monitoring:
Noticing interesting changes in behavior. In
Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’99, pages 53–62, New York, NY, USA, 1999.

[8] C. M. Fiduccia and R. M. Mattheyses. A linear-time
heuristic for improving network partitions. In
Proceedings of the 19th Design Automation
Conference, DAC ’82, pages 175–181, Piscataway, NJ,
USA, 1982.

[9] S. Fortunato. Community detection in graphs. Physics
Reports, 486(3-5):75–174, 2010.

[10] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer.
Some simplified np-complete graph problems. Theor.
Comput. Sci., 1(3):237–267, 1976.

[11] H. Han, L. Giles, H. Zha, C. Li, and
K. Tsioutsiouliklis. Two supervised learning
approaches for name disambiguation in author
citations. In Proceedings of the 4th ACM/IEEE-CS
Joint Conference on Digital Libraries, JCDL ’04,
pages 296–305, New York, NY, USA, 2004.

[12] B. Hendrickson and R. Leland. A multilevel algorithm
for partitioning graphs. In Proceedings of the 1995
ACM/IEEE Conference on Supercomputing,
Supercomputing ’95, New York, NY, USA, 1995.

[13] G. Karypis and V. Kumar. Analysis of multilevel
graph partitioning. In Proceedings of the 1995
ACM/IEEE conference on Supercomputing (CDROM),
Supercomputing ’95, New York, NY, USA, 1995.

[14] G. Karypis and V. Kumar. Multilevel graph
partitioning schemes. In ICPP (3), pages 113–122,
1995.

[15] G. Karypis and V. Kumar. Multilevel k-way
partitioning scheme for irregular graphs. Journal of
Parallel and Distributed Computing, 48:96–129, 1998.

[16] B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. Bell System
Technical Journal, 49(2):291–307, 1970.

[17] B. Krishnamurthy and J. Wang. On network-aware
clustering of web clients. In Proceedings of the
Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communication, SIGCOMM ’00, pages 97–110, New
York, NY, USA, 2000.

[18] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. In Proceedings of the

75

Twelfth International Conference on Information and
Knowledge Management, CIKM ’03, pages 556–559,
New York, NY, USA, 2003.

[19] R. N. Lichtenwalter and N. V. Chawla. Lpmade: Link
prediction made easy. J. Mach. Learn. Res.,
12:2489–2492, Nov. 2011.

[20] L. Lü and T. Zhou. Link prediction in complex
networks: A survey. Physica A, 390(6):1150–1170,
2011.

[21] J. Neville, D. Jensen, L. Friedland, and M. Hay.
Learning relational probability trees. In Proceedings of
the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’03,
pages 625–630, New York, NY, USA, 2003.

[22] M. E. J. Newman. Assortative mixing in networks.
Phys. Rev. Lett., 89:208701, 2002.

[23] M. E. J. Newman. Modularity and community
structure in networks. Proceedings of the National
Academy of Sciences, 103(23):8577–8582, 2006.

[24] M. E. J. Newman, Dataset 2013. Available at
http://www-personal.umich.edu/~mejn/netdata/;
accessed 2013-30-03.

[25] M. E. J. Newman and M. Girvan. Finding and
evaluating community structure in networks. Phys.
Rev. E, 69(2):026113, 2004.

[26] A. Noack and R. Rotta. Multi-level algorithms for
modularity clustering. In Proceedings of the 8th
International Symposium on Experimental Algorithms,
SEA ’09, pages 257–268, Berlin, Heidelberg, 2009.

[27] R. Rotta and A. Noack. Multilevel local search
algorithms for modularity clustering. J. Exp.
Algorithmics, 16:2.3:2.1–2.3:2.27, 2011.

[28] L. A. Sanchis. Multiple-way network partitioning.
IEEE Trans. Comput., 38(1):62–81, 1989.

[29] L. A. Sanchis. Multiple-way network partitioning with
different cost functions. IEEE Trans. Comput.,
42(12):1500–1504, 1993.

[30] P. Schuetz and A. Caflisch. Efficient modularity
optimization by multistep greedy algorithm and vertex
mover refinement. Phys. Rev. E, 77:046112, 2008.

[31] N. Spring, R. Mahajan, and D. Wetherall. Measuring
isp topologies with rocketfuel. SIGCOMM Comput.
Commun. Rev., 32(4):133–145, 2002.

[32] J. Valverde-Rebaza and A. A. Lopes. Link prediction
in complex networks based on cluster information. In
Advances in Artificial Intelligence - SBIA 2012,
volume 7589, pages 92–101. Curitiba, PR, Brazil, 2012.

[33] J. Valverde-Rebaza and A. A. Lopes. Exploiting
behaviors of communities of twitter users for link
prediction. Social Network Analysis and Mining,
3(4):1063–1074, 2013.

[34] J. C. Valverde-Rebaza and A. de Andrade Lopes.
Structural link prediction using community
information on twitter. In CASoN, pages 132–137.
IEEE, 2012.

[35] Z. Ye, S. Hu, and J. Yu. Adaptive clustering algorithm
for community detection in complex networks. Phys.
Rev. E, 78:046115, 2008.

[36] Z. Yin, M. Gupta, T. Weninger, and J. Han. A unified
framework for link recommendation using random
walks. In Proceedings of the 2010 International

Conference on Advances in Social Networks Analysis
and Mining, ASONAM ’10, pages 152–159,
Washington, DC, USA, 2010.

[37] T. Zhou, L. Lü, and Y.-C. Zhang. Predicting missing
links via local information. The European Physical
Journal B, 71(4):623–630, 2009.

76

http://www-personal.umich.edu/~mejn/netdata/

