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Abstract-Many real-world domains are relational in nature 
since they consist of a set of objects related to each other in 
complex ways. However, there are also flat data sets and if 
we want to apply graph-based algorithms, it is necessary to 
construct a graph from this data. This paper aims to: i) increase 
the exploration of graph-based algorithms and ii) proposes new 
techniques for graph construction from flat data. Our proposal 
focuses on constructing graphs using link prediction measures for 
predicting the existence of links between entities from an initial 
graph. Starting from a basic graph structure such as a minimum 
spanning tree, we apply a link prediction measure to add new 
edges in the graph. The link prediction measures considered here 
are based on structural similarity of the graph that improves 
the graph connectivity. We evaluate our proposal for graph 
construction in supervised and semi-supervised classification and 
we confirm the graphs achieve better accuracy. 

Keywords-Graph construction, Graph-based classification, 
Link prediction 

I. INT RODUCTION 

Many social, biological and information systems can be 
naturally described as networks, where vertices represent en­
tities (individuals or organizations) and links/edges denote 
relations or interactions between vertices [1]. Networks or 
graphs are a powerful representation that has been employed 
in different tasks of machine learning (ML) and data mining 
(DM) [2]. An important scientific issue regarding network 
analysis that has attracted increasing attention in recent years 
is the link prediction. This problem aims to estimate the 
likelihood of the future existence of a link between two 
disconnected vertices [3]-[5]. 

Detection of hidden social relationships, such as friendship 
suggestion mechanism used by some online social networks, 
constitutes one of the main application of link prediction. In 
such case, hidden relationships may consist in existing social 
ties that have not been established yet in a social network or 
in social ties missed during the social network evolution [3], 
[4], [6], [7]. Link prediction has many applications outside the 
domain of social networks, such as to infer the importance 
of documents in scientific publications [8] and hypertext [9], 
[10], classify documents [11], [12], discover genetic or protein­
protein interactions [13], etc. 

Some data does not have a relational nature, i.e. is flat 
data. Many ML and DM techniques were proposed to resolve 
different problems represented as tabular attribute-value data. 
Recent studies have shown that converting attribute-value data 
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to relational data can help to improve classification accuracy 
[14], [15]. Furthermore, to apply graph-based methods to 
attribute-value data is necessary to convert the data into a 
network. Consequently, the issue of graph construction has re­
ceived increasing attention in the last years [16]-[19]. Despite 
many methods for graph construction have been proposed, it 
is still an open problem. 

Considering the fact that link prediction is a mechanism 
for analyzing the growth and quick changes over time in 
underlying structures of the networks, it is feasible to think that 
link prediction can be used as a framework to evolve an initial 
neighborhood graphs constructed from tabular data. However, 
few studies have considered this hypothesis. In [20], several 
methods for generating content graphs that outperformed the 
existing k-nearest neighbors (kNN) approach using a set 
of network metrics through a link prediction mechanism is 
presented. In [21], a graph construction scheme that consider 
the optimal neighborhood graph as a subgraph of a kNN is 
presented. The traditional kNN scheme is modified including 
a mechanism of links selection based on their existence prob­
ability and the links connecting different classes are pruned. 

In this paper, we propose a novel method for graph 
construction based on link prediction. First, an initial graph 
structure over the attribute-value data set is constructed using 
some traditional graph construction technique. After, some 
link prediction method is computed with the objective of 
estimate new links in the graph. Our hypothesis considers that 
if a network is very sparse, for example when a minimum 
spanning tree is applied, it misses structural information for 
the inference algorithms. Alternatively, if a network is very 
dense, for example when kNN considering k > 10 is applied, 
the excess of edges become noise in the graph. Taking this 
into consideration, the proposed approach considers a basic 
graph structure with additional predicted edges, generating a 
balanced graph structure. We show that our proposal improves 
the quality of graphs leading to better classification accuracy 
in supervised and semi-supervised domains. 

The remainder of the paper is organized as follows. Section 
II describes background information on graph construction, 
classification and the link prediction measures used for our 
proposal; Section III describes the proposed method, which 
uses a baseline graph construction method combined with a 
link prediction measure; Section IV evaluates the performance 
of the proposed graphs in supervised and semi-supervised 
scenarios along with some graph analysis. Finally, Section V 
presents the conclusions and future work. 



II. BACKGROUND 

The graph construction methods, the classification algo­
rithms and the link prediction measures considered in this 
paper are presented in this section. 

A. Graph construction 

Many data sets are available in tabular flat format (Table 
I). In this case the line is the i-th example (i = 1,2, . . .  , n) 
and the column is the j-th attribute (j = 1,2, ... , m). The last 
column Y is the class, Yi E {Cl, C2, ... , Ci }. When we have 
data sets in tabular format is necessary to convert the data into 
a network to be able to apply a graph-based algorithm. Each 
instance of the Table I is mapped to a vertex in the graph and 
similarity or distance between two vertices is represented by 
an edge. 

Table I. TABLE-BASED REPRESENTATION 

Xl X2 Xm y 
Zl Xll X12 Xlm Yl 
Z2 X2l X22 X2m Y2 

Zn Xnl Xn2 Xnm Yn 

Therefore, we have a weighted graph G(V, E, W) built on 
n data points Z. V is a set of vertices with each Vi representing 
a data point Xi E Z, E <;;; V x V is a set of edges or links 
connecting adjacent vertices, and W E Rnxn is a weighted 
adjacency matrix which measures the similarity among edges, 
in this way w ( Vi, Vj) is the weight of the link between vertices 
Vi and Vj. The data set Z is contained in a manifold and the 
graph G reflects the local connectivity and distances of points 
on the manifold. 

For the graph construction we consider the k-nearest 
neighbors (kNN) [22]. In this approach, each vertex considers 
its k neighbors by a similarity function and instantiates k 
undirected edges between itself and these neighbors. There 
are also the Mutual kNN graphs (MkNN) in which there 
is a connection between two vertices only if the rule of 
the neighborhood is fulfilled by both vertices. Another way 
to estimate a basic graph is applying MaximumfMinimum 
Spanning Tree (MaxSTlMinST). MaxST is a spanning tree of 
a weighted graph having maximum weight and MinST is the 
spanning tree with lowest total weight [23]. 

B. Semi-supervised classification 

In semi-supervised learning (SSL) an iterative process is 
performed. At every step, each vertex is assigned to the class 
to which the maximum number of its neighbors belong to. 
Considering V as a set of vertices defined in Rm, F is a 
function that associates a feature vector to each V E V and Ci 
is a set of vertices that belongs to the ith class. 

The iterative process performed by label propagation up­
dated the classification score F minimizing a cost function Q. 
Let F denote the set of n x C matrices, the classifying function 
is given by Eq. 1. 

F* = arg min Q(F) 
FEF 

(1) 

The usual graph based SSL techniques include the Min­
cut [24], the Gaussian Fields and Harmonic Functions [25], 
the Local and Global Consistency [26], the Manifold Regular­
ization or Laplacian Support Vector Machine [27], etc. Here 
we apply the popular Local and Global Consistency (LGC) 
method [17], [19]. 

C. Supervised classification 

In supervised learning, classification algorithms analyze the 
training data and produce an inferred function that can be used 
for classifying new examples. Due to the graph data conveys 
relational information, which imply dependency relations be­
tween instances, is necessary use strictly relational classifiers. 
Relational classifiers require to a graph G with known labels 
for some of the vertices to predict the labels of the remaining 
vertices. We considered three relational classifiers: relational 
neighbor (pm), network-only Bayes (no-Bayes) and network­
only link-based (no-lb). 

The pm classifier estimates class membership probabilities 
by assuming that the label of a node depends only on its 
immediate neighbors and that linked nodes tend to belong to 
the same class [28]. The no-Bayes classifier employs multi­
nomial naIve Bayesian classification based on the classes of 
the neighborhood of each vertex [14]. Furthermore, these both 
relational classifiers use the relaxation label as a collective 
inference method. 

The no-lb classifier creates a feature vector for a vertex by 
aggregating the labels of its neighborhood and then use logistic 
regression to build a discriminative model based on those 
feature vectors [29]. From no-Ib classifier three aggregation 
methods have been considered: binary-link (no-lb-binary), 
mode-link (no-Ib-mode) and count-link (no-Ib-count). All the 
no-Ib aggregations use the iterative classification as a collective 
inference method. 

D. Link prediction 

Link prediction (LP ) addresses the problem of predicting 
the existence of missing relations or new ones [3], [5]. Many 
methods for link prediction are based on similarity between 
vertices since similar vertices likely share the same relations 
(links). When the similarity between vertices is based solely 
on network structure, it is called structural similarity [5]. 
Structural similarity measures can be classified in different 
ways, such as the based on local or global information. 

Frequently used local measures are: Common Neighbors, 
Jaccard coefficient, Adamic Adar, Resource Allocation and 
P referential Attachment measures. The most used global mea­
sures are: Katz, Rooted P ageRank and SimRank [4]. Further­
more, sometimes the presence of weighted links is funda­
mental to improve the link prediction accuracy. Consequently, 
weighted measures were proposed as variants from some 
local measures [30], [31]. In this work we consider just one 
measure from each type of structural similarity measures. 
From local measures we consider Common Neighbors and 
its corresponding weighted variant, referred to as Weighted 
Common Neighbors. From global measures we consider Katz. 

For each pair of disconnected vertices Vi and Vj and using 
any link prediction measure, is assigned a score SV.i,Vj. Then, 



from all the disconnected pairs of vertices is produced a ranked 
list in decreasing order of scores. Considering that, let f( Vi) 
denote the set of neighbors of Vi, the formal definitions of link 
prediction measures considered in this paper are described as 
follows. 

Common Neighbors (c): Two vertices, Vi and Vj, are more 
likely to be connected if they have more COlmnon neighbors. 
Thus, this measure refers to the size of the set of all common 
neighbors of both Vi and Vj according to Eq. 2 [32]. 

(2) 

Weighted Common Neighbors (w): The weighted variant 
of Common Neighbors measure is defined by Eq. 3 [31]. 

(3) 

Katz (k): This measure is based on the ensemble of all 
paths, which directly sums over the collection of paths and is 
exponentially damped by length to give the shorter paths more 
weights according to Eq. 4 [33]. 

00 
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(4) 

where paths�l/'Vj is the set of all paths with length I connecting 
Vi and Vj, A is the adjacency matrix, and (3 is a free parameter 
(i.e., the damping factor) controlling the path weights. A very 
small (3 yields a measurement close to common neighbors 
measure, because the long paths contribute very little. To 
optimize the computational cost is possible calculates a matrix 
version as Eq. 5. 

Sk . = (1 - (3A)-1 - 1 Vt,Vj (5) 

Note that, (3 must be lower than the reciprocal of the largest 
eigenvalue of matrix A to ensure the convergence of Eq. 4. In 
the experiments (3 and I are set as 0.05 and 5, respectively. 

III. GR APH CONST RUCTION BASED ON LINK PREDICTION 

As our goal is to predict new links we must consider links 
that already exist. Hence, an initial graph structure is necessary 
that should be as sparse as possible. Sparse graphs minimize 
the application of the methods of link prediction and maintain 
the sparsity even with the addition of new edges. 

A. LP graph construction 

Minimum/maximum spanning tree (MinSTlMaxST) or k­
nearest neighbors (kNN), with small k values, can be used to 
obtain an initial graph structure. From this initial graph, a set of 
potential links among disconnected vertices is predicted. Here, 
we used three structural similarity-based algorithms consider­
ing different categories: a local measure (Common Neighbors), 
a weighted measure (Weighted Common Neighbors) and a 
global measure (Katz). Furthermore, for our purpose, is pos­
sible to apply any link prediction measure. 

To predict new links, each pair of disconnected vertices 
Vi and Vj is assigned a score SViVj' which is directly defined 
as the similarity between Vi and Vj. All non-observed links 

are ranked according to their scores, and the links connecting 
more similar nodes are supposed to be of higher existence 
likelihoods. A percentage of these ranked links, for example 
the top 10%, can be considered. 

An example of the graph construction schema is shown in 
Figure 1. From a flat data set an initial graph structure (MinST 
graph) are constructed. Then, a link prediction measure (Katz) 
considering a percentage of predicted edges (top 30%) is 
applied generating a final graph that contains the initial MinST 
graph and the predicted edges. The final graph can be used for 
any learning task, such as classification. 

Algorithm 1 shows the steps to construct graphs following 
our proposal, referred as LP graphs. The input are a flat data set 
X and the percentage of links to be considered, percentageL. 
The output is a graph structure G. Lines 1 to 4 initialize 
the structures. Lines 8 to 14 create an initial graph structure. 
Here is possible apply any graph construction technique such 
as kNN, MinST, and others. Finally, lines 15 to 22 apply a 
link prediction measure on the initial graph to compute the 
possible new edges. Here is possible apply any link prediction 
measure such as, Common Neighbors, Weighted Common 
Neighbors, Katz, and others. A percentage of these new edges 
are considered in the final graph. 

Algorithm 1: LP graph construction 
Input: X, percent ageL 
Output: G 

1 begin 
2 V +--- create a set of vertices from X; 
3 E, W +--- 0; 
4 G +--- (V, E, W); 
5 SearchGraph(G); 
6 SearchLP(G,percentageL); 
7 end 
8 Procedure SearchGraph (G) 
9 begin 

10 for vertex Vi E G do 
11 I N+--- getNeighbors( Vi); 
12 E +--- getEdges(N); 
13 end 
14 end 
IS Procedure SearchLP (G, percentageL) 
16 begin 
17 for vertex Vi E G do 
18 I LP +--- getP redictedLinks(G); 
19 end 
20 E* +--- getTopLinks(percentageL, LP); 
21 E +--- E* U E; 
22 end 

B. Complexity analysis 

In this paper we apply kNN, MkNN, MinST and MaxST 
methods to compute the initial graph structure. In the fol­
lowing, we show the time complexity for kNN and MinST 
methods, since MkNN and MaxST have a similar time. 

To compute the kNN, a static Kd-tree must be built from n 
samples taking O( n log n) if a linear median-finding algorithm 
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Figure 1. LP construction steps: (a) Gaussian data set. (b) MinST graph. (c) MinST +LP(Katz) considering the top 30% of predicted links. 

is used [23]. Finding one nearest neighbor in a balanced Kd­
tree with randomly distributed points takes O(log n). Search­
ing k nearest neighbor take O(k log n). Coming up with about 
O( nk log n) to search over n instances. 

To compute the MinST, a fully connect graph must be built 
initially. As this is a basic operation, the time is constant (for 
instance, create a matrix Anxn full of 1). Then, Kruskal's or 
P rim's algorithm can be applied to find a minimum spanning 
tree. Both of these algorithms explore the given graph, starting 
from an arbitrary vertex Vi, by looping through the neighbors 
of the vertices adding each unexplored neighbor to a data 
structure to be explored later. Then, a minimum spanning 
tree can be formed by connecting each vertex that minimizes 
the sum of the weights of their edges. These algorithms take 
O(IEl log lEI) [23], where lEI is the number of edges in the 
graph. As the number of edges in a complete undirected graph 
is n(n2-1) the final time complexity is O(n210gn) . 

Subsequently, a link prediction measure must be calculated. 
In this case, a different measure can result in different time 
complexity. Considering the Common Neighbors measure, for 
each jth neighbor of an element Vi, it is necessary to check 
which neighbors they have in common. If we have a kNN 
list, for each vertice it is necessary to access its k neighbors k 
times resulting in O(nk2). The same occurs with the Weighted 
Common Neighbors measure. The Katz measure is usually 
cubic if we consider the matricial Equation 5. 

The final complexity of our proposal results in the sum of 
the complexity of the initial graph construction and the link 
prediction measure chosen, for instace, it will be O(nk log n) + 
O(nk2) if kNN graph and Common Neighbors are used. 

IV. EXPERIMENTAL RESULTS 

This section presents the classification results in semi­
supervised and supervised domains, as well as an analysis of 
generated graphs. 

A. Semi-supervised results 

1) Data sets and experimental setup: The semi-supervised 
experiments were carried out on five data sets (Table II) 
frequently used in SSL literature and available in [34]. 

Table II. DATA SETS DESCRIPTIONS FOR SSL CLASSIFICATION 
I Data set I # Instances I # Attributes I # Classes I 

g241c 1500 241 2 
g241n 1500 241 2 
DigitI 1500 241 2 
USPS 1500 241 2 
COIL2 1500 241 2 

Principal Component Analysis (P CA) was applied to the 
data sets reducing the dimensions to 50 since in high­
dimensional data the distance to the nearest neighbor ap­
proaches the distance to the farthest neighbor [35], which 
degenerates the quality of the graph. Then, the experiments 
were running using 10 and 100 labeled vertices randomly 
selected from all the points to test the effectiveness of the 
graph in extreme cases. For the graph construction we apply 
MinST, MaxST, kNN and MkNN with 1 :s; k :s; 20, and the LP 
graphs (our proposal) considering the same methods combined 
with a LP measure: MinST +LP, MaxST +LP, kNN+LP and 
MkNN+LP with 1 :s; k :s; 5. To generate the weighted graph 
W the binary weighting approach was applied. The algorithm 
used for the label inference task was the LGC and the average 
accuracy of 30 runs was used as evaluation. 

2) Classification results: The semi-supervised classifica­
tion results are shown in Table III. In the first column are the 
data sets considered, in the second column are the methods 
for graph construction and in the third and fourth columns, 
respectively, are the classification results using 10 and 100 
labeled vertices, besides a parameter (in brackets). For kNN 
and MkNN this parameter is the number of neighbors k. For 
our proposal the parameter is the value of k (1, ... ,5), the 
method of LP used (c, w or k) and the percentage of top links 
selected (10, ... , 100). The highest accuracy for each labeled 
configuration in each data set are in bold. The LP graphs 
improve the accuracy specially when few labeled points are 
considered, in this case less than 1 %. 

From Table III, the Nemenyi post-hoc test [36] was exe­
cuted to verify the possibility of detecting differences among 
the graph construction methods. The results are shown in 
Figure 2. On the top of the diagrams is the critical difference 
(CD) and in the axis are plotted the average ranks of the 
evaluated techniques, where the lowest (best) ranks are in 
the left side. When the methods analyzed have no significant 
difference, they are connected by a black line in the diagram. 



Table III. SEMI-SUPERVISED CLASSIFICATION RESULTS 
BD I Method I LGC(IO) I LGC(100) 

kNN 0.544 ± 0.066 (I) 0.581 ± 0.026 (I) 
MkNN 0.515 ± 0.D28 (4) 0.607 ± 0.082 (2) 
MinST 0.499 ± 0.011 0.50 ± 0.035 

g241c 
MaxST 0.499 ± 0.009 0.501 ± 0.028 

kNN+LP 0.581 ± 0.075 (1, colO) 0.597 ± 0.022 (I. c-40) 
MkNN+LP 0.574 ± 0.156 (2. k-50) 0.622 ± 0.084 (2, c-40) 

MinST+LP 0.535 ± 0.039 (c-40) 0.588 ± 0.021 (c-40) 
MaxST+LP 0.51 ± 0.016 (c-60) 0.536 ± 0.017 (c-70) 

kNN 0.52 ± 0.03 (4) 0.573 ± 0.065 (4) 

MkNN 0.515 ± 0.024 (II) 0.571 ± 0.052 (12) 
MinST 0.499 ± 0.014 0.502 ± 0.03 

g24In MaxST 0.499 ± 0.019 0.50 ± 0.043 

kNN+LP 0.524 ± 0.03 (4, c-10) 0.57 ± 0.023 (I. c-20) 
MkNN+LP 0.508 ± 0.131 (5. c-l 0) 0.538 ± 0.014 (5. c-30) 
MinST+LP 0.51 ± 0.161 (k-70) 0.574 ± 0.02 (c-10) 

MaxST+LP 0.502 ± 0.061 (c-60) 0.504 ± 0.01 (c-90) 

kNN 0.894 ± 0.048 (3) 0.971 ± 0.097 (4) 

MkNN 0.89 ± 0.097 (7) 0.972 ± 0.074 (10) 

MinST 0.50 ± 0.01 0.501 ± 0.011 

DigitI MaxST 0.503 ± 0.099 0.499 ± 0.01 

kNN+LP 0.899 ± 0.06 (3. k-IO) 0.966 ± 0.013 (5. w-30) 
MkNN+LP 0.905 ± 0.046 (5. c-40) 0.948 ± 0.0 I (5. w-60) 
MinST+LP 0.917 ± 0.042 (w-40) 0.94 ± 0.018 (w-50) 

MaxST+LP 0.592 ± 0.077 (c-90) 0.716 ± 0.031 (w-80) 

kNN 0.838 ± 0.03 (3) 0.892 ± 0.027 (2) 

MkNN 0.841 ± 0.063 (12) 0.913 ± 0.027 (9) 
MinST 0.709 ± 0.021 0.74 ± 0.018 

USPS MaxST 0.709 ± 0.021 0.65 ± 0.026 

kNN+LP 0.843 (3. k-IO) ± 0.034 0.89 ± 0.032 (2. c-20) 
MkNN+LP 0.799 ± 0.049 (5. w-80) 0.90 ± 0.014 (5, w-60) 
MinST+LP 0.845 ± 0.063 (k-20) 0.933 ± 0.014 (\V-50) 

MaxST+LP 0.792 ± 0.015 (c-80) 0.798 ± 0.057 (c-70) 

kNN 0.653 ± 0.045 (3) 0.971 ± 0.017 (3) 

MkNN 0.656 ± 0.039 (7) 0.965 ± 0.015 (7) 
MinST 0.499 ± 0.01 0.499 ± 0.031 

COIL2 MaxST 0.499 ± 0.01 0.498 ± 0.029 
kNN+LP 0.682 ± 0.062 (5, k-60) 0.956 ± 0.019 (3. w-80) 

MkNN+LP 0.65 ± 0.038 (5. k-90) 0.953 ± 0.019 (5. c-30) 
MinST+LP 0.647 ± 0.042 (w-80) 0.898 ± 0.028 (w-60) 
MaxST+LP 0.526 ± 0.039 (c-90) 0.567 ± 0.038 (c-100) 

According to the Nemenyi statlstlcs, the critical value for 
comparing the average-ranking of two different algorithms at 
95 percentile is 3.32. Note that all methods improved the 
accuracy when combined with LP measures except MkNN. 

There exist statistical difference among all methods against 
MaxST and MinST, except MaxST +LP. This proves our hy­
pothesis that very sparse graphs are not good for classification. 
Therefore, when MinST and MaxST are combined with LP 
measures, they had their accuracy increased. About kNN 
graphs, the best accuracy already was achieved with small k 
values, nevertheless kNN+LP increases the accuracy a little. 
If we had considered high values of k, kNN method would 
not achieve good results. For MkNN+LP we test values for 
k smaller than 5 and MkNN is better with high values, as 
shown by the parameter k in Table III. This way MkNN+LP 
could not increase the accuracy for MkNN. In future work is 
recommended to consider higher k values for MkNN+LP. 

B. Supervised results 

1) Data sets and experimental setup: The supervised ex­
periments were carried out on seven data sets (Table IV) where 
artificial data sets (Gaussians 3 and 5) and benchmark data 
sets (Wine, Ecoli, Customers, Cancer and Blood) from VCI 
Machine Learning Repository [37] were considered. 

For Ecoli and Cancer, the first attribute related to a name 
or id number were removed. For Cancer the instances with 
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Figure 2. Nemenyi post-hoc test for semi-supervised classification. 

Table IV. DATA SETS DESCRIPTIONS FOR SUPERVISED CLASSIFICATION 
I Data set I # Instances I # Attributes I # Classes I 

Wine 178 13 3 
Ecoli 336 8 8 

Customers 440 8 2 
Cancer 699 10 2 
Blood 748 5 2 

Gaussians3 500 2 2 
Gaussians5 500 2 2 

missing values were also removed. For the graph construction 
we apply MinST, MaxST, kNN and MkNN with 1 � k � 20, 
and the LP graphs (our proposal) considering the same meth­
ods combined with a LP measure: MinST +LP, MaxST +LP, 
kNN+LP and MkNN+LP with 1 � k � 3. To generate the 
weighted graph W the opposite of Euclidean Distance (ED) 
was applied (lower ED higher similarity among the points). 
The algorithms used for the classification were: nobayes, nolb­
lr-binary, nolb-Ir-count, nolb-Ir-mode, pm. The accuracy of 10-
fold cross validation was used as evaluation. 

2) Classification results: The supervised classification re­
sults are shown in Table V. In the first column are the data sets 
considered, in the second column are the methods for graph 
construction and in the following columns are the classification 
results together with a parameter (in brackets). For kNN and 
MkNN this parameter is the number of neighbors k. For the 
proposed LP variants the parameter is k (1,2 or 3), the method 
of LP used (c, w or k) and the percentage of top links selected 
(10, . . .  , 100). The highest accuracy for each classifier in each 
data set are in bold. In most cases the LP graph proposed 
achieve better accuracy. 

The Nemenyi post-hoc test was also executed to verify 
the possibility of detecting differences among the graph con­
struction methods from results of Table V. The best results 
achieved for each graph construction method in each data set 
were selected. Figure 3 shows the comparison of all graph 
construction techniques evaluated. According to the Nemenyi 
statistics, the critical value for comparing the average-ranking 
of two different algorithms at 95 percentile is 3.97. The 
results have a similar behavior with semi-supervised results: i) 
MinST +LP and MaxST +LP increase the accuracy of MinST 
and MaxST; ii) MkNN+LP could not increase the accuracy 
for MkNN, as we consider small values of k for MkNN+LP ; 
iii) kNN+LP increase a little the accuracy of kNN. This 
confirm that LP graphs have strategic links that improves the 
connectivity and consequently the classification. 

C. Analysis of generated graphs 

To know how sensitive graph generation is to input pa­
rameters the distribution of them were plotted. In this case, 



Table Y. SUPERVISED CLASSIFICATION RESULTS 
I DB I Method no-Bayes I nolb-lr-binary I nolb-lr-count I nolb-lr-mode prn 

kNN 0.353 + 0.071 (11) 0.663 + 0.101 (I) 

MkNN 0.310 + 0.108 (IS) 0.618 + 0.103 (2) 

MinST 0.237 + 0.088 0.545 + 0.116 

Wine 
MaxST 0.620 + 0.119 0.613 + 0.085 

kNN+LP 0.410 + 0.062 (I. c-50) 0.675 + 0.081 (I. c-10) 

MkNN+LP 0.427 + 0.120 (I, w-100) 0.664 + 0.139 (I, k -SO) 

MinST+LP 0.348 + 0.154 (w-80) 0.647 + 0.115 (c-IO) 

MaxST+LP 0.433 + 0.091 (c-IO) 0.761 + 0.203 (c-l0) 

kNN 0.125 ± 0.060 (I) 0.684 ± 0.080 (I) 

MkNN 0.289 ± 0.055 (I) 0.667 ± 0.089 (4) 

MinST 0.098 ± 0.032 0.670 ± 0.081 

Ecoli 
MaxST 0.155 ± 0.090 0.545 ± 0.128 

kNN+LP 0.143 ± 0.044 (I, k-60) 0.753 ± 0.079 (I, w-40) 

MkNN+LP 0.331 ± 0.090 (1, k-30) 0.634 ± 0.066 (2. w-90) 

MinST+LP 0.143 ± 0.070 (c-60) 0.690 ± 0.112 (w-50) 

MaxST+LP 0.152 ± 0.128 (c-70) 0.607 ± 0.185 (k-40) 

kNN 0.543 ± 0.068 (13) 0.782 ± 0.042 (I) 

MkNN 0.614 ± 0.070 (I) 0.807 ± 0.056 (2) 

MinST 0.470 ± 0.089 0.745 ± 0.037 

Customers 
MaxST 0.509 ± 0.086 0.675 ± 0.042 

kNN+LP 0.555 ± 0.056 (I, c-20) 0.811 ± 0.057 (1, w-50) 

MkNN+LP 0.639 ± 0.048 (1, c-90) 0.811 ± 0.056 (2, c-20) 

MinST+LP 0.541 ± 0.063 (c-80) 0.768 ± 0.084 (k-IO) 

MaxST+LP 0.580 ± 0.089 (k-IO) 0.709 ± 0.095 (c-30) 

kNN 0.526 ± 0.070 (17) 0.856 ± 0.067 (I) 

MkNN 0.654 ± 0.064 (2) 0.858 ± 0.060 (4) 

MinST 0.475 ± 0.045 0.877 ± 0.058 

Cancer 
MaxST 0.562 ± 0.094 0.789 ± 0.160 

kNN+LP 0.556 ± 0.047 (I, w-70) 0.893 ± 0.069 (1, w-70) 

MkNN+LP 0.666 ± 0.049 (2, w-50) 0.856 ± 0.047 (3, k-40) 

MinST+LP 0.591 ± 0.070 (w-20) 0.839 ± 0.115 (k-IO) 

MaxST+LP 0.613 ± 0.102 (c-IO) 0.792 ± 0.033 (k-60) 

kNN 0.533 ± 0.056 (17) 0.765 ± 0.064 (4) 

MkNN 0.656 ± 0.052 (I) 0.762 ± 0.059 (4) 

MinST 0.509 ± 0.071 0.762 ± 0.043 

Blood 
MaxST 0.535 ± 0.093 0.714 ± 0.174 

kNN+LP 0.548 ± 0.072 (I, c-50) 0.769 ± 0.053 (3, k-60) 

MkNN+LP 0.680 ± 0.063 (1, w-60) 0.762 ± 0.051 (3, k-80) 

MinST+LP 0.524 ± 0.063 (k-IO) 0.766 ± 0.045 (w-100) 

MaxST+LP 0.549 ± 0.114 (k-40) 0.774 ± 0.040 (c-50) 

kNN 0.546 ± 0.061 (9) 0.834 ± 0.057 (I) 

MkNN 0.548 ± 0.066 (17) 0.774 ± 0.088 (3) 

MinST 0.488 ± 0.078 0.816 ± 0.066 

Gaussians3 
MaxST 0.522 ± 0.092 0.818 ± 0.153 

kNN+LP 0.552 ± 0.085 (I, c-100) 0.848 ± 0.069 (I, c-50) 

MkNN+LP 0.542 ± 0.089 (2, k-30) 0.804 ± 0.064 (3, w-20) 

MinST+LP 0.554 ± 0.092 (k-80) 0.840 ± 0.041 (c-30) 

MaxST+LP 0.538 ± 0.111 (c-30) 0.884 ± 0.077 (c-l0) 

kNN 0.518 ± 0.090 (11) 0.916 ± 0.048 (I) 

MkNN 0.560 ± 0.075 (12) 0.866 ± 0.084 (3) 

MinST 0.520 ± 0.076 0.878 ± 0.090 

Gaussians5 
MaxST 0.534 ± 0.140 0.938 ± 0.106 

kNN+LP 0.558 ± 0.080 (I, w-100) 0.922 ± 0.048 (I, c-40) 

MkNN+LP 0.532 ± 0.072 (2, k-70) 0.894 ± 0.055 (3, c-20) 

MinST+LP 0.548 ± 0.084 (c-70) 0.898 ± 0.067 (c-20) 

MaxST+LP 0.570 ± 0.124 (k-100) 0.926 ± 0.172 (c-IO) 

CD I I 
1 2 3 4 5 6 7 8  

kNN;��::J _-=-�II'===tI'===*1 '�I c �:��:LP MkNN . . MinST 
MinST +LP MaxST +LP 

Figure 3. Nemenyi post-hoc test for supervised classification. 

0.719 + 0.144 (18) 0.731 + 0.130 (2) 0.647 + 0.108 (I) 

0.713 + 0.068 (18) 0.686 + 0.140 (9) 0.579 + 0.133 (2) 

0.715 + 0.101 0.724 + 0.114 0.623 + 0.123 

0.600 + 0.155 0.398 + 0.160 0.307 + 0.050 

0.749 + 0.131 (1, c-50) 0.760 + 0.010 (2, c-40) 0.714 + 0.101 (1, k-l00) 

0.670 + 0.103 (2. k-50) 0.698 + 0.144 (2, c-60) 0.646 + 134 (2, c-50) 

0.742 + 0.078 (k-90) 0.749 + 0.148 (k-70) 0.670 + 1.159 (c-30) 

0.695 + 0.115 (w-70) 0.668 + 0.120 (w-80) 0.350 + 0.112 (w-50) 

0.837 ± 0.070 (17) 0.848 ± 0.063 (7) 0.651 ± 0.105 (I) 

0.822 ± 0.064 (12) 0.839 ± 0.036 (11) 0.524 ± 0.080 (4) 

0.726 ± 0.064 0.732 ± 0.064 0.565 ± 0.103 

0.538 ± 0.038 0.560 ± 0.123 0.392 ± 0.056 

0.801 ± 0.061 (2, w-40) 0.825 ± 0.044 (3, k-80) 0.667 ± 0.087 (1, c-20) 

0.714 ± 0.072 (3, k-IO) 0.712 ± 0.090 (3, k-60) 0.530 ± 0.067 (3, kAO) 

0.806 ± 0.055 (w-100) 0.810 ± 0.066 (w-70) 0.589 ± 0.093 (c-80) 

0.661 ± 0.077 (w-20) 0.664 ± 0.072 (w-100) 0.416 ± 0.052 (w-60) 

0.870 ± 0.043 (3) 0.866 ± 0.035 (3) 0.789 ± 0.072 (I) 

0.884 ± 0.046 (17) 0.884 ± 0.038 (17) 0.748 ± 0.045 (4) 

0.859 ± 0.035 0.875 ± 0.036 0.780 ± 0.048 

0.677 ± 0.099 0.677 ± 0.063 0.411 ± 0.121 

0.873 ± 0.022 (2, c-50) 0.875 ± 0.053 (3, c-30) 0.807 ± 0.048 (I, c-70) 

0.852 ± 0.050 (3, c-40) 0.843 ± 0.045 (3, c-70) 0.791 ± 0.067 (2, k-30) 

0.889 ± 0.020 (w-90) 0.886 ± 0.034 (w-90) 0.810 ± 0.069 (k-90) 

0.730 ± 0.072 (w-60) 0.677 ± 0.090 (w-80) 0.523 ± 0.064 (w-30) 

0.972 ± 0.019 (5) 0.974 ± 0.020 (8) 0.884 ± 0.043 (I) 

0.962 ± 0.027 (12) 0.950 ± 0.036 (20) 0.755 ± 0.041 (5) 

0.953 ± 0.021 0.957 ± 0.030 0.880 ± 0.031 

0.837 ± 0.058 0.831 ± 0.056 0.396 ± 0.088 

0.974 ± 0.018 (3, w-70) 0.972 ± 0.028 (3, w-90) 0.896 ± 0.039 (1, k-50) 

0.908 ± 0.040 (3, c-90) 0.843 ± 0.056 (3, k-10) 0.746 ± 0.051 (3, c-20) 

0.969 ± 0.019 (w-100) 0.971 ± 0.026 (w-100) 0.894 ± 0.052 (k-50) 

0.930 ± 0.032 (w-80) 0.943 ± 0.021 (w-40) 0.531 ± 0.081 (c-100) 

0.777 ± 0.049 (4) 0.774 ± 0.061 (16) 0.660 ± 0.05 I (2) 

0.773 ± 0.056 (5) 0.762 ± 0.058 (I) 0.614 ± 0.044 (4) 

0.763 ± 0.031 0.762 ± 0.047 0.603 ± 0.070 

0.769 ± 0.046 0.767 ± 0.051 0.368 ± 0.103 

0.777 ± 0.038 (3, c-90) 0.762 ± 0.081 (3, w-IO) 0.666 ± 0.045 (2, c-60) 

0.775 ± 0.037 (3, c-60) 0.762 ± 0.061 (I, w-30) 0.641 ± 0.073 (2, wAO) 

0.770 ± 0.065 (c-40) 0.762 ± 0.068 (k-90) 0.636 ± 0.063 (w-60) 

0.769 ± 0.043 (k-80) 0.769 ± 0.045 (k-70) 0.535 ± 0.048 (w-90) 

0.916 ± 0.023 (18) 0.914 ± 0.032 (6) 0.828 ± 0.057 (I) 

0.916 ± 0.044 (19) 0.914 ± 0.028 (15) 0.788 ± 0.058 (3) 

0.894 ± 0.034 0.880 ± 0.028 0.824 ± 0.029 

0.902 ± 0.030 0.902 ± 0.036 0.440 ± 0.113 

0.916 ± 0.036 (3, k-50) 0.912 ± 0.030 (3, w-70) 0.844 ± 0.042 (1, k-80) 

0.870 ± 0.030 (3, w-100) 0.890 ± 0.040 (3, w-40) 0.810 ± 0.066 (3, c-50) 

0.904 ± 0.045 (k-60) 0.908 ± 0.039 (c-70) 0.832 ± 0.030 (c-20) 

0.902 ± 0.042 (c-20) 0.902 ± 0.404 (cAO) 0.538 ± 0.086 (w-70) 

0.988 ± 0.010 (7) 0.988 ± 0.017 (7) 0.934 ± 0.035 (I) 

0.982 ± 0.026 (19) 0.986 ± 0.016 (19) 0.852 ± 0.046 (3) 

0.972 ± 0.019 0.978 ± 0.024 0.868 ± 0.067 

0.986 ± 0.021 0.986 ± 0.016 0.358 ± 0.090 

0.988 ± 0.014 (3, c-80) 0.988 ± 0.014 (3, c-10) 0.944 ± 0.030 (1, c-20) 

0.966 ± 0.031 (3, k-20) 0.966 ± 0.021 (3, k-10) 0.902 ± 0.037 (3, c-60) 

0.984 ± 0.023 (w-70) 0.984 ± 0.013 (c-20) 0.914 ± 0.039 (cAO) 

0.986 ± 0.017 (c-IO) 0.986 ± 0.013 (c-IO) 0.548 ± 0.082 (w-40) 

they are k (for kNN and MkNN graphs) and top percentage 
of links (for LP graph variants). Figure 4 shows the number 
of graphs whose best classification results were achieved by 
k = 1, . . .  , 10 (in the 10th position we consider k > 10), and 
the number of LP graphs variants whose best classification 
results were achieved by top percentage of links = 10, . . .  , 100. 
We observe most graphs use k values equal 1 for kNN and k 
values bigger than 10 for MkNN. The percentage of links is 
equal distributed. 

Figures 5 and 6 show the average degree and the clustering 
coefficient for the graphs generated from Gaussians 3 data set. 
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Figure 4. Distribution of parameters k and top percentage of links used for 
the graph construction methods in the supervised classification. 
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Figure 5. Average degree for kNN, MkNN, MST and LP versions: kNN+LP, 
MkNN+LP, MST +LP applied to Gaussians3 data set. LP versions use k = 3 
and the common neighbors measure. 

In both of them, MinST and MaxST are referred as MST. 

As the value of k increases, the average degree for kNN 
increases almost linearly and the network becomes dense. For 
this reason kNN with small values of k are better for classi­
fication. MkNN for small values of k are very sparse and the 
network can be unconnected. For this reason MkNN achieves 
better results with high k values. MST does not depend on the 
k and remains with a constant low degree. The average degree 
remains almost constant for the LP graphs variants (kNN+LP, 
MkNN+LP, MST +LP). It means our proposal generateS sparse 
graphs independent of the parameter percentage of links, which 
is better for classification since a lot of edges are like noise in 
the graph. 

To understand the network topology we plot the clustering 
coefficient (CC) [1] for all the graphs (Figure 6). This measure 
indicates the quantity of triangles in the network, it means that 
if A is friend of B and C, there is a high probability of B and 

-e-kNN 
�MkNN 
-+-MST 
�kNN+LP 
........... MkNN+LP 

MST+LP 

4 6 8 10 
k or % of links * 10 

Figure 6. Clustering coefficient for kNN, MkNN, MST and LP versions: 
kNN+LP, MkNN+LP, MST +LP, applied to Gaussians3 data set. LP versions 
use k = 3 and the common neighbors measure. 

C be friends too. MST has the CC = 0 that means no triangle 
exists in this graph. When MST is combined to LP measure, its 
CC increases because triangles are formed. kNN graphs have 
bigger degree than LP variants, however its CC is smaller. The 
ideal graph should have a balance among degree and CC: small 
CC/degree indicates it misses structural information for the 
inference algorithms alternatively the excess edges in network 
become noise in the graph. It explain the effectiveness of LP 
graphs, they increase the CC of a graph without increase a lot 
the average degree. 

V. CONCLUSION 

Link prediction has been used in many fields of science, 
as online social networks where links can be recommended 
as promising friendships. In this paper link prediction was 
used for graph construction. From an initial graph structure 
edges are predict generating a new balanced graph. If a graph 
is very sparse or very dense it decreases the classification 
performance. When we consider a basic graph structure and 
predict new strategic links, it increase the quality of the graph 
leading to better classification accuracy. 

The proposed graphs were evaluated in supervised and 
semi-supervised classification providing improvements in ac­
curacy. Moreover, the graphs are sparse and represent well 
the neighborhood of a point. The complexity analysis shows 
the method has (nk log n) time complexity using kNN and 
Common Neighbors link prediction measure. 

In future work, other baseline methods could be tested as 
well other measures for link prediction. Our approach also 
could be applied in other domains of machine learning using 
graph-based methods. 

ACKNOWLEDGMENTS 

This research was partially supported by Sao P aulo 
Research Foundation (FAPESP ) grants: 20l3/121 91-5, 
2011121880-3 and 2011122749-8. 



REFERENCES 

[1] M. E. J. Newman, Networks: an introduction. Oxford University Press, 
2010. 

[2] J. Valverde-Rebaza and A. Lopes, "Link prediction in complex networks 
based on cluster information," in SBIA '12. Springer-Verlag, 2012, pp. 
92-101. 

[3] D. Liben-NoweU and J. Kleinberg, "The link-prediction problem for 
social networks," lASIST, vol. 58, no. 7, pp. 1019-1031,2007. 

[4] J. Valverde-Rebaza and A. Lopes, "Exploiting behaviors of communities 
of Twitter users for link prediction," SNAM, vol. 3, no. 4, pp. 1063-
1074, 2013. 

[5] L. Lii and T. Zhou, "Link prediction in complex networks: A survey," 
Physica A, vol. 390, no. 6, pp. 1150 - 1170, 2011. 

[6] J. Valverde-Rebaza and A. Lopes, "Link prediction in online social 
networks using group information," in ICCSA 2014, vol. 8584, 2014, 
pp. 31-45. 

[7] M. Fire, L. Tenenboim, O. Lesser, R. Puzis, L. Rokach, and Y. Elovici, 
"Link Prediction in Social Networks Using Computationally Efficient 
Topological Features," in SOCIALCOM'}}, 2011, pp. 73 -80. 

[8] J. Tague-Sutcliffe, "An introduction to informetrics," Information Pro­
cessing and Management, vol. 28, no. I, pp. 1-3, 1992. 

[9] L. Page, S. Brin, R. Motwani, and T. Winograd, "The pagerank citation 
ranking: Bringing order to the web," in Proceedings of the WWW, 
Brisbane, Australia, 1998, pp. 161-172. 

[10] J. M. Kleinberg, "Authoritative sources in a hyperlinked environment," 
1. ACM, vol. 46, no. 5, pp. 604-632, Sep. 1999. 

[11] L. Getoor, E. Segal, B. Taskar, and D. Koller, "Probabilistic models of 
text and link structure for hypertext classification," in JJCAI Workshop 

on Text Learning: Beyond Supervision, 2001. 

[12] R. Ghani, S. Slattery, and Y. Yang, "Hypertext categorization using 
hyperlink patterns and meta data," in Proceedings of 18th ICML. 
Morgan Kaufmann Publishers, 2001, pp. 178-185. 

[13] M. Kotera, Y. Yamanishi, Y. Moriya, M. Kanehisa, and S. Goto, 
"Genies: gene network inference engine based on supervised analysis," 
Nucleic Acids Research, vol. 40, pp. 162-167, 2012. 

[14] S. A. Macskassy and F. J. Provost, "Classification in networked data: A 
toolkit and a univariate case study," lMLR, vol. 8, pp. 935-983, 2007. 

[15] 1. Valverde-Rebaza, A. Soriano, L. Berton, M. C. F. de Oliveira, and 
A. Lopes, "Music genre classification using traditional and relational 
approaches," in Proceedings of BRAClS 2014. IEEE, 2014, pp. 259-
264. 

[16] L. Berton and A. Lopes, "Graph construction based on labeled instances 
for semi-supervised learning," in Proceedings of 22nd ICPR, 2014, pp. 
2477-2482. 

[17] T. Jebara, J. Wang, and S.-F. Chang, "Graph construction and b­
matching for semi-supervised learning," in Proceedings of the 26th 
ICML '09. ACM, 2009, pp. 441-448. 

[18] M. Maier and U. Luxburg, "Influence of graph construction on graph­
based clustering measures," NIPS, vol. 22, pp. 1025-1032, 2009. 

[19] K. Ozaki, M. Shimbo, M. Komachi, and Y. Matsumoto, "Using the 
mutual k-nearest neighbor graphs for semi-supervised classification of 
natural language data," in Proceedings of CoNLL'JI, 2011, pp. 154-
162. 

[20] K. Greenfield and W. Campbell, "Link prediction methods for generat­
ing speaker content graphs," in Processings of ICASSP 2013,2013, pp. 
7721-7725. 

[21] M. H. Rohban and H. R. Rabiee, "Supervised neighborhood graph 
construction for semi-supervised classification," Pattern Recognition, 
vol. 45, no. 4, pp. 1363-1372, 2012. 

[22] X. Zhu, "Semi-supervised learning literature survey," Computer Sci­
ences, University of Wisconsin-Madison, Tech. Rep. 1530, 2005. 

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction 
to Algorithms. The MIT Press, 2009, ch. 10. 

[24] A. Blum and S. Chawla, "Learning from labeled and unlabeled data 
using graph mincuts," in Proceedings of ICML'OI. Morgan Kaufmann 
Publishers Inc., 2001, pp. 19-26. 

[25] X. Zhu, Z. Ghahramani, and 1. Lafferty, "Semi-supervised learning 
using gaussian fields and harmonic functions," in Proceedings of 
ICML'03, 2003, pp. 912-919. 

[26] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Scholkopf, 
"Learning with local and global consistency. " in NIPS. MIT Press, 
2003. 

[27] M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A 
geometric framework for learning from labeled and unlabeled exam­
ples," lMLR, vol. 7, pp. 2399-2434, Dec. 2006. 

[28] S. A. Macskassy and F. J. Provost, "A simple relational classifier," in 
2nd Workshop on Multi-Relational Data Mining, 2003. 

[29] Q. Lu and L. Getoor, "Link-based classification," in Proceedings of 
ICML'03, 2003, pp. 496-503. 

[30] T. Murata and S. Moriyasu, "Link prediction of social networks based 
on weighted proximity measures," in International Conference on Web 
Intelligence, Nov 2007, pp. 85-88. 

[31] L. Lii and T. Zhou, "Link prediction in weighted networks: The role of 
weak ties," EPL (Europhysics Letters), vol. 89, no. 1, p. 18001, 2010. 

[32] F. Lorrain and H. White, "Structural equivalence of individuals in social 
networks," lournal of Mathematical Sociology, vol. 1, pp. 49-80, 1971. 

[33] L. Katz, "A new status index derived from sociometric analysis," 
Psychometrika, vol. 18, no. 1, pp. 39-43, 1953. 

[34] O. ChapeUe, B. Schlkopf, and A. Zien, Semi-Supervised Learning, 
1st ed. The MIT Press, 2010. 

[35] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, "When is "near­
est neighbor" meaningful?" in International Conference on Database 
Theory, 1999, pp. 217-235. 

[36] J. Demsar, "Statistical comparisons of classifiers over multiple data 
sets," lMLR, vol. 7, pp. 1-30, 2006. 

[37] K. Bache and M. Lichman, "UCI machine learning repository," 2013. 
[Online]. Available: http://archive.ics.uci.edu/ml 


