95 research outputs found

    Coevolutionary fuzzy modeling

    Get PDF
    This thesis presents Fuzzy CoCo, a novel approach for system design, conducive to explaining human decisions. Based on fuzzy logic and coevolutionary computation, Fuzzy CoCo is a methodology for constructing systems able to accurately predict the outcome of a human decision-making process, while providing an understandable explanation of the underlying reasoning. Fuzzy logic provides a formal framework for constructing systems exhibiting both good numeric performance (precision) and linguistic representation (interpretability). From a numeric point of view, fuzzy systems exhibit nonlinear behavior and can handle imprecise and incomplete information. Linguistically, they represent knowledge in the form of rules, a natural way for explaining decision processes. Fuzzy modeling —meaning the construction of fuzzy systems— is an arduous task, demanding the identification of many parameters. This thesis analyses the fuzzy-modeling problem and different approaches to coping with it, focusing on evolutionary fuzzy modeling —the design of fuzzy inference systems using evolutionary algorithms— which constitutes the methodological base of my approach. In order to promote this analysis the parameters of a fuzzy system are classified into four categories: logic, structural, connective, and operational. The central contribution of this work is the use of an advanced evolutionary technique —cooperative coevolution— for dealing with the simultaneous design of connective and operational parameters. Cooperative coevolutionary fuzzy modeling succeeds in overcoming several limitations exhibited by other standard evolutionary approaches: stagnation, convergence to local optima, and computational costliness. Designing interpretable systems is a prime goal of my approach, which I study thoroughly herein. Based on a set of semantic and syntactic criteria, regarding the definition of linguistic concepts and their causal connections, I propose a number of strategies for producing more interpretable fuzzy systems. These strategies are implemented in Fuzzy CoCo, resulting in a modeling methodology providing high numeric precision, while incurring as little a loss of interpretability as possible. After testing Fuzzy CoCo on a benchmark problem —Fisher's Iris data— I successfully apply the algorithm to model the decision processes involved in two breast-cancer diagnostic problems: the WBCD problem and the Catalonia mammography interpretation problem. For the WBCD problem, Fuzzy CoCo produces systems both of high performance and high interpretability, comparable (if not better) than the best systems demonstrated to date. For the Catalonia problem, an evolved high-performance system was embedded within a web-based tool —called COBRA— for aiding radiologists in mammography interpretation. Several aspects of Fuzzy CoCo are thoroughly analyzed to provide a deeper understanding of the method. These analyses show the consistency of the results. They also help derive a stepwise guide to applying Fuzzy CoCo, and a set of qualitative relationships between some of its parameters that facilitate setting up the algorithm. Finally, this work proposes and explores preliminarily two extensions to the method: Island Fuzzy CoCo and Incremental Fuzzy CoCo, which together with the original CoCo constitute a family of coevolutionary fuzzy modeling techniques. The aim of these extensions is to guide the choice of an adequate number of rules for a given problem. While Island Fuzzy CoCo performs an extended search over different problem sizes, Incremental Fuzzy CoCo bases its search power on a mechanism of incremental evolution

    Fuzzy set covering as a new paradigm for the induction of fuzzy classification rules

    Get PDF
    In 1965 Lofti A. Zadeh proposed fuzzy sets as a generalization of crisp (or classic) sets to address the incapability of crisp sets to model uncertainty and vagueness inherent in the real world. Initially, fuzzy sets did not receive a very warm welcome as many academics stood skeptical towards a theory of imprecise'' mathematics. In the middle to late 1980's the success of fuzzy controllers brought fuzzy sets into the limelight, and many applications using fuzzy sets started appearing. In the early 1970's the first machine learning algorithms started appearing. The AQ family of algorithms pioneered by Ryszard S. Michalski is a good example of the family of set covering algorithms. This class of learning algorithm induces concept descriptions by a greedy construction of rules that describe (or cover) positive training examples but not negative training examples. The learning process is iterative, and in each iteration one rule is induced and the positive examples covered by the rule removed from the set of positive training examples. Because positive instances are separated from negative instances, the term separate-and-conquer has been used to contrast the learning strategy against decision tree induction that use a divide-and-conquer learning strategy. This dissertation proposes fuzzy set covering as a powerful rule induction strategy. We survey existing fuzzy learning algorithms, and conclude that very few fuzzy learning algorithms follow a greedy rule construction strategy and no publications to date made the link between fuzzy sets and set covering explicit. We first develop the theoretical aspects of fuzzy set covering, and then apply these in proposing the first fuzzy learning algorithm that apply set covering and make explicit use of a partial order for fuzzy classification rule induction. We also investigate several strategies to improve upon the basic algorithm, such as better search heuristics and different rule evaluation metrics. We then continue by proposing a general unifying framework for fuzzy set covering algorithms. We demonstrate the benefits of the framework and propose several further fuzzy set covering algorithms that fit within the framework. We compare fuzzy and crisp rule induction, and provide arguments in favour of fuzzy set covering as a rule induction strategy. We also show that our learning algorithms outperform other fuzzy rule learners on real world data. We further explore the idea of simultaneous concept learning in the fuzzy case, and continue to propose the first fuzzy decision list induction algorithm. Finally, we propose a first strategy for encoding the rule sets generated by our fuzzy set covering algorithms inside an equivalent neural network

    A Serendipitous Software Framework for Facilitating Collaboration in Computational Intelligence

    Get PDF
    A major flaw in the academic system, particularly pertaining to computer science, is that it rewards specialisation. The highly competitive quest for new scientific developments, or rather the quest for a better reputation and more funding, forces researchers to specialise in their own fields, leaving them little time to properly explore what others are doing, sometimes even within their own field of interest. Even the peer review process, which should provide the necessary balance, fails to achieve much diversity, since reviews are typically performed by persons who are again specialists in the particular field of the work. Further, software implementations are rarely reviewed, having as a consequence the publishing of untenable results. Unfortunately, these factors contribute to an environment which is not conducive to collaboration, a cornerstone of academia | building on the work of others. This work takes a step back and examines the general landscape of computational intelligence from a broad perspective, drawing on multiple disciplines to formulate a collaborative software platform, which is flexible enough to support the needs of this diverse research community. Interestingly, this project did not set out with these goals in mind, rather it evolved, over time, from something more specialised into the general framework described in this dissertation. Design patterns are studied as a means to manage the complexity of the computational intelligence paradigm in a flexible software implementation. Further, this dissertation demonstrates that releasing research software under an open source license eliminates some of the deficiencies of the academic process, while preserving, and even improving, the ability to build a reputation and pursue funding. Two software packages have been produced as products of this research: i) CILib, an open source library of computational intelligence algorithms; and ii) CiClops, which is a virtual laboratory for performing experiments that scale over multiple workstations. Together, these software packages are intended to improve the quality of research output and facilitate collaboration by sharing a repository of simulation data, statistical analysis tools and a single software implementation.Dissertation (MSc)--University of Pretoria, 2006.Computer ScienceUnrestricte

    Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling

    Get PDF
    This paper aims at providing an in-depth overview of designing interpretable fuzzy inference models from data within a unified framework. The objective of complex system modelling is to develop reliable and understandable models for human being to get insights into complex real-world systems whose first-principle models are unknown. Because system behaviour can be described naturally as a series of linguistic rules, data-driven fuzzy modelling becomes an attractive and widely used paradigm for this purpose. However, fuzzy models constructed from data by adaptive learning algorithms usually suffer from the loss of model interpretability. Model accuracy and interpretability are two conflicting objectives, so interpretation preservation during adaptation in data-driven fuzzy system modelling is a challenging task, which has received much attention in fuzzy system modelling community. In order to clearly discriminate the different roles of fuzzy sets, input variables, and other components in achieving an interpretable fuzzy model, a taxonomy of fuzzy model interpretability is first proposed in terms of low-level interpretability and high-level interpretability in this paper. The low-level interpretability of fuzzy models refers to fuzzy model interpretability achieved by optimizing the membership functions in terms of semantic criteria on fuzzy set level, while the high-level interpretability refers to fuzzy model interpretability obtained by dealing with the coverage, completeness, and consistency of the rules in terms of the criteria on fuzzy rule level. Some criteria for low-level interpretability and high-level interpretability are identified, respectively. Different data-driven fuzzy modelling techniques in the literature focusing on the interpretability issues are reviewed and discussed from the perspective of low-level interpretability and high-level interpretability. Furthermore, some open problems about interpretable fuzzy models are identified and some potential new research directions on fuzzy model interpretability are also suggested. Crown Copyright © 2008

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    Fuzzy set covering as a new paradigm for the induction of fuzzy classification rules

    Full text link
    In 1965 Lofti A. Zadeh proposed fuzzy sets as a generalization of crisp (or classic) sets to address the incapability of crisp sets to model uncertainty and vagueness inherent in the real world. Initially, fuzzy sets did not receive a very warm welcome as many academics stood skeptical towards a theory of imprecise'' mathematics. In the middle to late 1980's the success of fuzzy controllers brought fuzzy sets into the limelight, and many applications using fuzzy sets started appearing. In the early 1970's the first machine learning algorithms started appearing. The AQ family of algorithms pioneered by Ryszard S. Michalski is a good example of the family of set covering algorithms. This class of learning algorithm induces concept descriptions by a greedy construction of rules that describe (or cover) positive training examples but not negative training examples. The learning process is iterative, and in each iteration one rule is induced and the positive examples covered by the rule removed from the set of positive training examples. Because positive instances are separated from negative instances, the term separate-and-conquer has been used to contrast the learning strategy against decision tree induction that use a divide-and-conquer learning strategy. This dissertation proposes fuzzy set covering as a powerful rule induction strategy. We survey existing fuzzy learning algorithms, and conclude that very few fuzzy learning algorithms follow a greedy rule construction strategy and no publications to date made the link between fuzzy sets and set covering explicit. We first develop the theoretical aspects of fuzzy set covering, and then apply these in proposing the first fuzzy learning algorithm that apply set covering and make explicit use of a partial order for fuzzy classification rule induction. We also investigate several strategies to improve upon the basic algorithm, such as better search heuristics and different rule evaluation metrics. We then continue by proposing a general unifying framework for fuzzy set covering algorithms. We demonstrate the benefits of the framework and propose several further fuzzy set covering algorithms that fit within the framework. We compare fuzzy and crisp rule induction, and provide arguments in favour of fuzzy set covering as a rule induction strategy. We also show that our learning algorithms outperform other fuzzy rule learners on real world data. We further explore the idea of simultaneous concept learning in the fuzzy case, and continue to propose the first fuzzy decision list induction algorithm. Finally, we propose a first strategy for encoding the rule sets generated by our fuzzy set covering algorithms inside an equivalent neural network

    Dynamically reconfigurable bio-inspired hardware

    Get PDF
    During the last several years, reconfigurable computing devices have experienced an impressive development in their resource availability, speed, and configurability. Currently, commercial FPGAs offer the possibility of self-reconfiguring by partially modifying their configuration bitstream, providing high architectural flexibility, while guaranteeing high performance. These configurability features have received special interest from computer architects: one can find several reconfigurable coprocessor architectures for cryptographic algorithms, image processing, automotive applications, and different general purpose functions. On the other hand we have bio-inspired hardware, a large research field taking inspiration from living beings in order to design hardware systems, which includes diverse topics: evolvable hardware, neural hardware, cellular automata, and fuzzy hardware, among others. Living beings are well known for their high adaptability to environmental changes, featuring very flexible adaptations at several levels. Bio-inspired hardware systems require such flexibility to be provided by the hardware platform on which the system is implemented. In general, bio-inspired hardware has been implemented on both custom and commercial hardware platforms. These custom platforms are specifically designed for supporting bio-inspired hardware systems, typically featuring special cellular architectures and enhanced reconfigurability capabilities; an example is their partial and dynamic reconfigurability. These aspects are very well appreciated for providing the performance and the high architectural flexibility required by bio-inspired systems. However, the availability and the very high costs of such custom devices make them only accessible to a very few research groups. Even though some commercial FPGAs provide enhanced reconfigurability features such as partial and dynamic reconfiguration, their utilization is still in its early stages and they are not well supported by FPGA vendors, thus making their use difficult to include in existing bio-inspired systems. In this thesis, I present a set of architectures, techniques, and methodologies for benefiting from the configurability advantages of current commercial FPGAs in the design of bio-inspired hardware systems. Among the presented architectures there are neural networks, spiking neuron models, fuzzy systems, cellular automata and random boolean networks. For these architectures, I propose several adaptation techniques for parametric and topological adaptation, such as hebbian learning, evolutionary and co-evolutionary algorithms, and particle swarm optimization. Finally, as case study I consider the implementation of bio-inspired hardware systems in two platforms: YaMoR (Yet another Modular Robot) and ROPES (Reconfigurable Object for Pervasive Systems); the development of both platforms having been co-supervised in the framework of this thesis

    A technique for determining viable military logistics support alternatives

    Get PDF
    A look at today's US military will see them operating much beyond the scope of protecting and defending the United States. These operations now consist of, but are not limited to humanitarian aid, disaster relief, and conflict resolution. This broad spectrum of operational environments has necessitated a transformation of the individual military services into a hybrid force that can leverage the inherent and emerging capabilities from the strengths of those under the umbrella of the Department of Defense (DOD), this concept has been coined Joint Operations. Supporting Joint Operations requires a new approach to determining a viable military logistics support system. The logistics architecture for these operations has to accommodate scale, time, varied mission objectives, and imperfect information. Compounding the problem is the human in the loop (HITL) decision maker (DM) who is a necessary component for quickly assessing and planning logistics support activities. Past outcomes are not necessarily good indicators of future results, but they can provide a reasonable starting point for planning and prediction of specific needs for future requirements. Adequately forecasting the necessary logistical support structure and commodities needed for any resource intensive environment has progressed well beyond stable demand assumptions to one in which dynamic and nonlinear environments can be captured with some degree of fidelity and accuracy. While these advances are important, a holistic approach that allows exploration of the operational environment or design space does not exist to guide the military logistician in a methodical way to support military forecasting activities. To bridge this capability gap, a method called A Technique for Logistics Architecture Selection (ATLAS) has been developed. This thesis describes and applies the ATLAS method to a notional military scenario that involves the Navy concept of Seabasing and the Marine Corps concept of Distributed Operations applied to a platoon sized element. This work uses modeling and simulation to incorporate expert opinion and knowledge of military operations, dynamic reasoning methods, and certainty analysis to create a decisions support system (DSS) that can be used to provide the DM an enhanced view of the logistics environment and variables that impact specific measures of effectiveness.Ph.D.Committee Chair: Mavris, Dimitri; Committee Member: Fahringer, Philip; Committee Member: Nixon, Janel; Committee Member: Schrage, Daniel; Committee Member: Soban, Danielle; Committee Member: Vachtsevanos, Georg
    • …
    corecore