7 research outputs found

    Linearly many faults in 2-tree-generated networks

    Full text link
    In this article we consider a class of Cayley graphs that are generated by certain 3-cycles on the alternating group A n . These graphs are generalizations of the alternating group graph A G n . We look at the case when the 3-cycles form a β€œtree-like structure,” and analyze its fault resiliency. We present a number of structural theorems and prove that even with linearly many vertices deleted, the remaining graph has a large connected component containing almost all vertices. Β© 2009 Wiley Periodicals, Inc. NETWORKS, 2010Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64908/1/20319_ftp.pd

    Fault-tolerant analysis of augmented cubes

    Full text link
    The augmented cube AQnAQ_n, proposed by Choudum and Sunitha [S. A. Choudum, V. Sunitha, Augmented cubes, Networks 40 (2) (2002) 71-84], is a (2nβˆ’1)(2n-1)-regular (2nβˆ’1)(2n-1)-connected graph (nβ‰₯4)(n\ge 4). This paper determines that the 2-extra connectivity of AQnAQ_n is 6nβˆ’176n-17 for nβ‰₯9n\geq 9 and the 2-extra edge-connectivity is 6nβˆ’96n-9 for nβ‰₯4n\geq 4. That is, for nβ‰₯9n\geq 9 (respectively, nβ‰₯4n\geq 4), at least 6nβˆ’176n-17 vertices (respectively, 6nβˆ’96n-9 edges) of AQnAQ_n have to be removed to get a disconnected graph that contains no isolated vertices and isolated edges. When the augmented cube is used to model the topological structure of a large-scale parallel processing system, these results can provide more accurate measurements for reliability and fault tolerance of the system

    Fault diagnosability of regular graphs

    Get PDF
    An interconnection network\u27s diagnosability is an important measure of its self-diagnostic capability. In 2012, Peng et al. proposed a measure for fault diagnosis of the network, namely, the hh-good-neighbor conditional diagnosability, which requires that every fault-free node has at least hh fault-free neighbors. There are two well-known diagnostic models, PMC model and MM* model. The {\it hh-good-neighbor diagnosability} under the PMC (resp. MM*) model of a graph GG, denoted by thPMC(G)t_h^{PMC}(G) (resp. thMMβˆ—(G)t_h^{MM^*}(G)), is the maximum value of tt such that GG is hh-good-neighbor tt-diagnosable under the PMC (resp. MM*) model. In this paper, we study the 22-good-neighbor diagnosability of some general kk-regular kk-connected graphs GG under the PMC model and the MM* model. The main result t2PMC(G)=t2MMβˆ—(G)=g(kβˆ’1)βˆ’1t_2^{PMC}(G)=t_2^{MM^*}(G)=g(k-1)-1 with some acceptable conditions is obtained, where gg is the girth of GG. Furthermore, the following new results under the two models are obtained: t2PMC(HSn)=t2MMβˆ—(HSn)=4nβˆ’5t_2^{PMC}(HS_n)=t_2^{MM^*}(HS_n)=4n-5 for the hierarchical star network HSnHS_n, t2PMC(Sn2)=t2MMβˆ—(Sn2)=6nβˆ’13t_2^{PMC}(S_n^2)=t_2^{MM^*}(S_n^2)=6n-13 for the split-star networks Sn2S_n^2 and t2PMC(Ξ“n(Ξ”))=t2MMβˆ—(Ξ“n(Ξ”))=6nβˆ’16t_2^{PMC}(\Gamma_{n}(\Delta))=t_2^{MM^*}(\Gamma_{n}(\Delta))=6n-16 for the Cayley graph generated by the 22-tree Ξ“n(Ξ”)\Gamma_{n}(\Delta)
    corecore