37 research outputs found

    Non-blocking Priority Queue based on Skiplists with Relaxed Semantics

    Full text link
    Priority queues are data structures that store information in an orderly fashion. They are of tremendous importance because they are an integral part of many applications, like Dijkstra’s shortest path algorithm, MST algorithms, priority schedulers, and so on. Since priority queues by nature have high contention on the delete_min operation, the design of an efficient priority queue should involve an intelligent choice of the data structure as well as relaxation bounds on the data structure. Lock-free data structures provide higher scalability as well as progress guarantee than a lock-based data structure. That is another factor to be considered in the priority queue design. We present a relaxed non-blocking priority queue based on skiplists. We address all the design issues mentioned above in our priority queue. Use of skiplists allows multiple threads to concurrently access different parts of the skiplist quickly, whereas relaxing the priority queue delete_min operation distributes contention over the skiplist instead of just at the front. Furthermore, a non-blocking implementation guarantees that the system will make progress even when some process fails. Our priority queue is internally composed of several priority queues, one for each thread and one shared priority queue common to all threads. Each thread selects the best value from its local priority queue and the shared priority queue and returns the value. In case a thread is unable to delete an item, it tries to spy items from other threads\u27 local priority queues. We experimentally and theoretically show the correctness of our data structure. We also compare the performance of our data structure with other variations like priority queues based on coarse-grained skiplists for both relaxed and non-relaxed semantics

    Wait-Free Concurrent Graph Objects with Dynamic Traversals

    Get PDF
    Graphs are versatile data structures that allow the implementation of a variety of applications, such as computer-aided design and manufacturing, video gaming, or scientific simulations. However, although data structures such as queues, stacks, and trees have been widely studied and implemented in the concurrent context, multi-process applications that rely on graphs still largely use a sequential implementation where accesses are synchronized through the use of global locks or partitioning, thus imposing serious performance bottlenecks. In this paper we introduce an innovative concurrent graph model that provides addition and removal of any edge of the graph, as well as atomic traversals of a part (or the entirety) of the graph. We further present Dense, a concurrent graph implementation that aims at mitigating the two aforementioned implementation drawbacks. Dense achieves wait-freedom by relying on helping and provides the inbuilt capability of performing a partial snapshot on a dynamically determined subset of the graph

    Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data

    Get PDF
    The need for scalable concurrent ordered set data structures with linearizable range query support is increasing due to the rise of multicore computers, data processing platforms and in-memory databases. This paper presents a new concurrent ordered set with linearizable range query support. The new data structure is based on the contention adapting search tree and an immutable data structure. Experimental results show that the new data structure is as much as three times faster compared to related data structures. The data structure scales well due to its ability to adapt the sizes of its immutable parts to the contention level and the sizes of the range queries

    Concurrent Data Structures Linked in Time

    Get PDF
    Arguments about correctness of a concurrent data structure are typically carried out by using the notion of linearizability and specifying the linearization points of the data structure's procedures. Such arguments are often cumbersome as the linearization points' position in time can be dynamic (depend on the interference, run-time values and events from the past, or even future), non-local (appear in procedures other than the one considered), and whose position in the execution trace may only be determined after the considered procedure has already terminated. In this paper we propose a new method, based on a separation-style logic, for reasoning about concurrent objects with such linearization points. We embrace the dynamic nature of linearization points, and encode it as part of the data structure's auxiliary state, so that it can be dynamically modified in place by auxiliary code, as needed when some appropriate run-time event occurs. We name the idea linking-in-time, because it reduces temporal reasoning to spatial reasoning. For example, modifying a temporal position of a linearization point can be modeled similarly to a pointer update in separation logic. Furthermore, the auxiliary state provides a convenient way to concisely express the properties essential for reasoning about clients of such concurrent objects. We illustrate the method by verifying (mechanically in Coq) an intricate optimal snapshot algorithm due to Jayanti, as well as some clients
    corecore