
Wait-Free Concurrent Graph Objects with
Dynamic Traversals
Nikolaos D. Kallimanis1 and Eleni Kanellou2

1 FORTH-ICS, Foundation for Research and Technology – Hellas (FORTH),
Institute of Computer Science (ICS), Heraklion, Greece
nkallima@ics.forth.gr

2 FORTH-ICS, Foundation for Research and Technology – Hellas (FORTH),
Institute of Computer Science (ICS), Heraklion, Greece, and
University of Rennes 1, Rennes, France
kanellou@ics.forth.gr

Abstract
Graphs are versatile data structures that allow the implementation of a variety of applications,
such as computer-aided design and manufacturing, video gaming, or scientific simulations. How-
ever, although data structures such as queues, stacks, and trees have been widely studied and
implemented in the concurrent context, multi-process applications that rely on graphs still largely
use a sequential implementation where accesses are synchronized through the use of global locks
or partitioning, thus imposing serious performance bottlenecks. In this paper we introduce an
innovative concurrent graph model that provides addition and removal of any edge of the graph,
as well as atomic traversals of a part (or the entirety) of the graph. We further present Dense,
a concurrent graph implementation that aims at mitigating the two aforementioned implement-
ation drawbacks. Dense achieves wait-freedom by relying on helping and provides the inbuilt
capability of performing a partial snapshot on a dynamically determined subset of the graph.

1998 ACM Subject Classification F.1.2 Modes of Computation

Keywords and phrases graph, shared memory, concurrent data structure, snapshot

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.27

1 Introduction

The irrevocable paradigm shift towards multi-core hardware has been accompanied by
developments in concurrent data structure design. Data structures that are at the heart
of many applications built for the sequential setting have been ported into the concurrent
domain. Such data structures include trees (e.g. [2, 6, 10, 12]), stacks (e.g. [5, 14, 17, 23]) or
queues (e.g. [16, 23, 25, 34]).

However, numerous are also the applications that rely on data structures with a more
complex or irregular morphology. An example of such a data structure is the graph. A graph
consists of a set V of vertices and a set E of edges, which are pairs of type (x, y), where x
and y are elements of V . Each edge may additionally be associated with a value w, referred
to as the weight of the edge, out of some set W . Vertices can be used to represent many
types of entities, from simple or complex data structures to tasks, functions or processes,
while the edges can flexibly express several types of relations. Graphs are essential building
blocks for applications in robotics (e.g. [9]), machine learning (e.g. [36]), automated design of
digital circuits (e.g. [24]), task scheduling in operating systems (e.g. [27]), garbage collection
(e.g. [39]), and video-game design (e.g. [7]) to name a few.

© Nikolaos D. Kallimanis and Eleni Kanellou;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Wait-Free Concurrent Graph Objects with Dynamic Traversals

Thus, in the multi-core era, applications that rely on graphs are also important in the
concurrent context, where they can be used either in message-passing or in shared memory
settings. Notable shared memory examples include Computer-Aided Manufacturing (CAM)
applications, scientific simulation tools, or video games, where a virtual world is represented
as a graph. Vertices of the graph model objects in the virtual world, while edges represent
the relationships and interactions of those objects [3]. As these relationships and interactions
are unlikely to be static, this implies that processes executing the application need to update
the structure and connectivity of the graph frequently. However, concurrent applications
that rely on graphs still mostly use sequential implementations and synchronize the access of
multiple processes to them with the help of a global lock or by partitioning the vertices into
disjoint sets that can then individually be accessed by different processes [37].

If a global lock is used, accesses become expensive and the lock poses a global bottleneck
for overall performance. Furthermore, even if fine-grained locking is employed on subsets
of the graph, the liveness of the application is restricted, as it becomes blocking by the
reliance on locks. By relying on graph partitioning instead, the interaction of processes for
the purpose of synchronizing accesses to the graph can be minimized, as different processes
access distinct partitions. Such an implementation can offer a higher degree of parallelism
to applications that are suitable for exploiting it. However, such an application then either
has to rely on a static, predefined partitioning, or it has to perform re-partitioning in order
to accommodate dynamicity, in which case synchronization among all processes may be
necessary and performance is likely to suffer.

These issues may be aggravated when the operation to be performed affects the entire
graph or a subset of it, as is the case with iterations, searches, or partial traversals. In those
cases it is important to provide a consistent view of the graph or some subgraph for the
operation, but without blocking or impeding concurrent updates on it. This possibility is
offered by atomic snapshots [1]. A snapshot is a concurrent object that consists of a collection
of components and which provides two operations: Update, which modifies the value of one
of the components, and Scan, which returns a consistent view of the values of all components.
To implement a graph, a one-to-one correspondence is established between graph edges and
snapshot components. Modifications on the graph structure are performed by using the
Update operation of the snapshot, while reads are done by using Scan.

When only a subset of the graph has to be accessed, the overhead that a snapshot incurs
can be avoided by using partial snapshot implementations, such as [4, 22]. There, Scan
takes as input argument the subset of components on which the snapshot is to be performed.
However, this precludes applications, in which the subgraph that should be accessed is not
known a priori, e.g. when there is the need to perform a random traversal on some part of
the graph, where the next edge to be accessed is determined dynamically.

In this paper we are concerned with the problem of providing such a dynamic traversal
for graphs. A generalized solution consists in using transactional memory (TM) [20, 35].
This paradigm offers the transaction abstraction. A transaction encapsulates one or several
read and update operations and attempts to apply them atomically. If this is possible,
the transaction commits making the effects of the operations visible. Otherwise, it aborts
discarding any change. We want to avoid the commit/abort semantics inherent in this
paradigm, the performance overheads that this paradigm can entail, as well as well-known
progress limitations [8]. For this reason, we define a novel concurrent graph object. It
supports the addition, removal, and modification of edges of the graph, as well as the atomic
walk of a dynamically-determined subset of the graph edges, such that a consistent view of it
may be obtained. The model we propose for the dynamic traversals is reminiscent of TM:

N.D. Kallimanis and E. Kanellou 27:3

Dynamic traversals resemble read-only transactions, while modifications of the edges of the
graph behave like mini-transactions that encapsulate a single update on a single transactional
object. Contrary to common transactional semantics, however, our model does not need,
and so does not include the possibility to abort.

We further present Dense, a adjacency matrix concurrent graph implementation based on
the proposed model. Dense provides the linearizable operation Update, which is used to add
or remove edges of the graph or to modify existing edge weights. The step complexity (i.e.,
the total number of accesses in the shared base objects) is O(k), where k is the number of
active processes (i.e. Dense is an adaptive algorithm). Dynamic traversals are implemented
as a composite operation, reminiscent of read-only transactions. For this purpose, Dense
provides DynamicTraverse, another linearizable operation that is used to initiate a dynamic
traversal, and a matching EndTraverse operation which terminates it. An auxiliary routine,
Read, is used for obtaining edge weights. Instances of Read that are enclosed by an instance
of DynamicTraverse and a matching instance of EndTraverse, return a consistent view for
the weights of the edges they read. As such, dynamic traversals appear to be atomic and can
be considered as a virtual operation that is linearizable.

Dense operations are wait-free, i.e. an operation by a process that does not fail terminates
in a finite number of steps in any execution. Wait-freedom is achieved by employing
light-weight helping using a mechanism reminiscent of the one presented in [19]. Instances
of operations that are concurrent with instances of Update help them carry out edge
modifications. Operations are aware of concurrent active dynamic traversals and ensure
that those dynamic traversals can return a consistent view by storing old edge versions for
them (in the worst case, Dense keeps n different versions, one for each process, on a given
edge of the graph). The step complexity of DynamicTraverse and Read is O(k) and O(1),
respectively. Dense uses m LL/SC base objects (one for each edge), one atomic Add base
object of n bits, and an additional LL/SC object. Dense is of theoretical interest since the
size of LL/SC objects is big. We further present S-Dense, a practical version of Dense, with
step complexity O(k2), which uses small base objects.

The rest of the paper is organized as follows. Section 2 summarizes relevant literature.
Section 3 provides our view of the underlying system. Section 4 gives an overview of the
defining characteristics of the proposed implementation, while Section 5 provides a detailed
description of it and sketches out the proof of the correctness argument. Finally, Section 6
contains a discussion of the presented results and of prospects for future work.

2 Related Work

A great body of work on the concurrent implementation of graph algorithms tackles common
graph-related issues (e.g. [11, 29, 33]) and focuses either on parallelizing existing sequential
algorithms or on providing concurrency through the use of locks on well-known sequential
algorithms. Then, liveness guarantees are rather relaxed, as most of these implementations
are blocking. In contrast, we are interested in the graph as a general-purpose, concurrent
data structure and are especially concerned with providing wait-freedom and linearizability.

Work on concurrent data structures has been devoted to commonly-used ones, such as
queues, stacks, or trees, with the focus on providing interesting progress properties – initially
simply by avoiding locks (e.g. [28, 34]), and recently a step further, by proposing wait-free
implementations. Notably, [25] uses helping via an announce array in order to make a
wait-free version out of the CAS-based lock-free queue of [28]. Together with a “fast path,
slow path” methodology [38], previously used for the implementation of a wait-free linked list

OPODIS 2015

27:4 Wait-Free Concurrent Graph Objects with Dynamic Traversals

out of well-known lock-free design [15], this method is proposed as a generalized methodology
of designing wait-free concurrent data structures, given a lock-free implementation [26]. Our
method is “stand-alone”, providing wait-freedom without requiring a lock-free design as base.

Recently, techniques that provide iterators of concurrent data structures have been
proposed. An iterator parses a data structure in order to obtain a consistent view. In [31],
a methodology is proposed for enhancing lock-free or wait-free set-based data structures
with a CAS-based implementation of a wait-free iterator. It entails reporting data structure
updates to any active snapshot, so that they can be taken into account, depending on the
order of linearization. In [32], update and read operations on a trie are aware of an ongoing
iterator, and copy – and thus, effectively rebuild – the parts of the trie that they access,
leaving intact the albeit obsolete version that the iterator is parsing. The complexity is
divided among updates and reads, while the snapshot occurs in constant time. In [30] a
theoretical framework for defining the consistency of iterators is proposed and used in a case
study that equips the well-known lock-free concurrent queue of [28] with a wait-free iterator
that is linearizable according to the provided framework.

We, however, are interested in a partial view, which, furthermore, is dynamically defined.
Thus, we want to avoid the overhead that is induced by iterating over the entire data
structure. Arguably, the implementation in [32] does not induce it, having a constant-time
snapshot. However, to achieve that, it must employ either double compare, single swap
(DCSS) primitives, or a custom-made, CAS-like software primitive,unlike our method, which
simply relies on LL/SC. Moreover, those works take advantage of the structural regularity of
the underlying data structure. In contrast, a graph usually has irregular characteristics. Our
work is more akin to partial snapshots, such as [4, 22], as we use an adjacency matrix to
represent the graph. However, partial snapshots are more restrictive than our model as they
require a priori knowledge of the component subset to be scanned.

The required dynamicity can be provided by using transactional memory to access a
graph. Indeed the dynamic traversal provided by our model resembles a read-only transaction.
However, efficient TM algorithms commonly rely on locks, while even obstruction-free or non-
blocking ones commonly burden reads and updates with the processing overhead necessary
for conflict-detection and resolution (cf. with [13] for a survey on TM algorithmic techniques).
We wish to avoid these issues, as well as the commit/abort semantics inherent in TM, but
unusual for data structures. The recent impossibility result in [8] further implies that, even
if commit/abort semantics are included in our model, the TM progress property equivalent
to wait-freedom cannot be achieved.

3 Model

System model. We assume an asynchronous, shared memory system of n processes, which
communicate by accessing base objects. A base object O has a state and provides a set of
primitives, used by processes in order to access, i.e. read and/or modify, the state of O. We
use the following base objects: A read/write object O has a state that takes values out of
some set S. It provides the primitives read(O), which returns the state of O, and write(O, v),
v ∈ S, which sets the state of O to v. An Add object O has a state that takes values out of
some set of integers S. It provides the primitives read(O), which returns the state of O, and
add(O, v), v ∈ S, which adds the value v to the state of O. An LL/SC object O has a state
that takes values out of some set S. It provides the primitives LL(O) and SC(O, v), v ∈ S.
LL(O) returns the current state of O. SC(O, v), executed by a process pu, u ∈ {1, 2, . . . , n},
must follow an execution of LL(O) also by pu. It changes the state of O to v if O has not

N.D. Kallimanis and E. Kanellou 27:5

changed since the last execution of LL(O) by pu. The concurrent implementation of a data
structure also has a state, stored in shared base objects. It provides algorithms for the
operations provided by the data structure, which processes may use in order to access or
modify its state. A process executes an operation by issuing an invocation for it and an
operation terminates by returning a response to the process.

Executions. At any point in time, the system is characterized by a configuration C, which
is a vector that contains the state of each process in the system and the state of each base
object. We denote by C0 the initial configuration of the system. A step φ is either the
execution of a primitive by some process, or the issuing of an operation invocation by some
process, or the response of some operation to some process.

A (possibly infinite) sequence C0, φ1, C1, . . . , Ci−1, φi, Ci, . . ., of alternating configurations
(Ck) and steps (φk), starting from the initial configuration C0, where for each k ≥ 0, Ck+1
results from applying step φk+1 to configuration Ck, is referred to as an execution. A
subsequence of an execution α in the form Ci, φi+1, Ci+1, . . . , Cj , φj+1, Cj+1, of alternating
configurations and steps, starting from some configuration Ck, k > 0, is referred to as an
execution interval of α.

If some configuration C occurs before some configuration C ′, C 6= C ′, in an execution α,
then we say that C precedes C ′ in α and denote it as C < C ′. Conversely, we say that C ′
follows C in α. Precedence among a step φi and a step φj , or precedence among a step φi

and a configuration Cj is defined in a similar fashion and denoted by the same operation <.
Let α1 and α2 be two execution intervals of some execution α. If the last configuration

of α1 precedes or is the same with the first configuration in α2, then we say that α1 precedes
α2 and denote it α1 < α2. In that case we also say that α2 follows α1. If neither α1 < α2
nor α2 < α1 are the case, then we say that α1 and α2 overlap.

Given the instance of some operation op for which the invocation and response steps are
included in α, we define αop, the execution interval of op, as that subsequence of α which
starts with the configuration in which op is invoked and ends with the configuration that
results from the response of op. If there are no two operation instances op1, op2 in α for
which the execution intervals overlap, then we say that α is a sequential execution, or that
operations in α are executed sequentially.

Concurrent graph. A graph G = 〈V,E〉 is composed of V , a (finite) set of elements referred
to as vertices, and E, a set of pairs of vertices, referred to as the edges between them. Each
edge ei,j ∈ E has a weight wij , that takes values out of some setW . A graph supports several
abstract operations, well-known in literature, such as operations for adding vertices or edges,
deleting vertices or edges, modifying attributes of vertices or edges, returning specific subsets
of the graph vertices or edges, etc. A concurrent graph is a graph that can be accessed
concurrently, through those types of operations, by n processes.

We propose the dynamic traversal (henceforth referred to as d-traversal for brevity) as a
concurrent graph operation exhibiting the following characteristics: (i) starts from a vertex v
of the graph, (ii) visits a sequence of vertices that is not necessarily known at the point that
the traversal initiates, (iii) the sequence of visits may be decided while the visiting is taking
place; (iv) the dynamic traversal returns a consistent view of the weights of all the edges
that it has traversed, i.e., all the returned values have co-existed at some point in time.

We further propose a concurrent graph implementation. The graph is represented as an
m×m adjacency matrix, for some positive integer m, and it allows the addition, and removal
of edges, the modification of edge weights by providing an Update operation. Update(i, j, w),

OPODIS 2015

27:6 Wait-Free Concurrent Graph Objects with Dynamic Traversals

where i, j are indices of vertices in V and where w is in W ∪ {⊥}, modifies the graph as
follows: Assume that ei,j ∈ E. If w = ⊥, then the edge is removed. Otherwise, its weight
is changed to w. If ei,j 6∈ E, then it is inserted in E with weight w. The implementation
supports the d-traversal as a composite operation, consisting of the following ones:

DynamicTraverse, which is used to mark the beginning of a d-traversal of the graph.
EndTraverse, which is used to mark the end of a d-traversal of the graph.
Read(i, j), where i, j are indices of vertices in V . It returns a weight for edge eij,, if
ei,j ∈ E, and ⊥ if ei,j 6∈ E.

Read is only used in d-traversals, as part of a sequence of Read operations. A d-traversal by
process pu consists in an instance bt of a DynamicTraverse operation, followed by a sequence
of instances of Read, followed in turn by an instance et of an EndTraverse operation. No
other operation is invoked between bt and et. The execution interval of the d-traversal starts
in the configuration in which pu invokes bt and ends in the configuration resulting from the
response of et. For correctness argumentation, we consider d-traversal as a virtual operation
that is invoked at the point that DynamicTraverse is invoked and responds at the matching
EndTraverse (if any).

Correctness criteria. We consider linearizability [21] as correctness criterion for the graph
operations. An execution α is linearizable if it is possible to assign a linearization point
inside the execution interval of each operation in α (Update and d-traversal operations), so
that the result of these operations is the same as it would be, if they had been performed
sequentially in the order dictated by their linearization points. A d-traversal operation is
considered linearizable if it is possible to assign a linearization point in its execution interval
so the result of the Read operations enclosed in it, is the same as it would be, if all the Read
operations had been performed at the linearization point in the sequential execution (the
order of Read is imposed by the invocation steps). Roughly speaking, we consider that the
entire sequence of Read operations enclosed in a dynamic traversal have a linearization point
inside the execution interval of the d-traversal, such that the Read return the weights that
the traversed edges had in the configuration in which the linearization point is placed.

Progress criteria. In this work we consider that processes that participate in an execution
α may suffer from crash failures, i.e. we consider that a process may unexpectedly stop taking
steps in α after some configuration. In this context, we provide a graph implementation with
operations that satisfy wait-freedom [18]. A data structure implementation is wait-free if in
any execution, each process finishes the execution of every operation it initiates within a
finite number of steps independently of the speed or the failure of other processes.

4 Main Ideas

Our implementation provides linearizable, wait-free operations and linearizable d-traversals
by using light-weight helping. To achieve it, each Update or DynamicTraverse operation
is first announced by a process, subsequently agreed by all processes, and then it can be
applied by some process – not necessarily the one that invoked it – and finally, terminate
and return a response. Processes provide very light-weight assistance to each other when
applying operations. In the case of DynamicTraverse operations, helping consists in storing
an integer number for it, while in the case of Update, helping consists in applying the update
on the edge. In order to coordinate how announced operations are executed among multiple

N.D. Kallimanis and E. Kanellou 27:7

processes, the processes collaborate to alternate between two types of phases, namely AGREE
and APPLY. An announce array of dimension n, an n-bit bitvector Add object, and two sets
of n bits each, namely ann and done, are used for this coordination.

To announce an operation, a process pu, 1 ≤ u ≤ n, starts by writing the operation type
and arguments (the operation information or op-info for brevity) in the u-th element of the
announce array. Notice that pu is the only process that may write to this element while all
processes in the system can read it. Subsequently, pu flips the value of the u-th bit of the
bitvector. Other processes can now also help the operation of pu.

The AGREE phase is used by processes in order detect which op-info in the announce
array corresponds to a pending operation: pu has a pending operation if the u-th bit of the
bitvector is not equal to done[u]. In this phase, processes essentially “agree” on a set of
operations that they will attempt to apply on the graph in the following APPLY phase. Then,
the APPLY phase that follows is used by processes for attempting to apply those pending
operations. As a result, operations are applied to the graph in batches. When an announced
operation is carried out by some process, we say that it is applied. Otherwise, it is pending.
An applied operation can return a response to the process that invoked it. The status of
an operation, i.e. whether it has been already applied or not, is reflected in the values of
ann[u] and done[u]: An invariant in our implementation is that when ann[u] = done[u], the
latest agreed operation by pu has been applied, while when ann[u] 6= done[u], it is pending.
A process which completes the actions associated with a phase, attempts to flip it.

A shared integer seq acts as global version counter and is also used to make the wait-
free partial traversals possible. Each time the phase changes from AGREE to APPLY, seq is
incremented. Apart from their weight, edges of the graph also have a version number as a
further attribute. In each configuration, the version of an edge is the value of seq at the
configuration in which the edge was last updated. Each d-traversal that is initiated, is also
assigned – either by the process that executes it or by some other, helping process – the
value that seq has at the configuration in which its DynamicTraverse is applied. This value
is referred to as the d-traversal read value and is visible to all processes.

Before a process pu applies an Update on edge ei,j , it also detects whether a d-traversal
by some other process pl, 1 ≤ u ≤ n, is active. If the read version of pl’s d-traversal is lower
than the current version of ei,j , pu stores the weight and version of ei,j for pl – as previous
weight and previous version for pl – and updates them only afterwards. For this, each edge
contains a vector prev of dimension n, where element l corresponds to pl and contains the
previous weight and previous version that pl may need during its d-traversal.

When pl uses Read to collect the weight-version pair of an edge that it accesses during
a d-traversal, it compares the edge’s version with the read version of the d-traversal. If
it is greater, pl collects the previous weight and previous version of the edge. Otherwise
it uses the current weight and value. This way, all the Read that are enclosed between
the DynamicTraverse and the matching EndTraverse operation of pl’s d-traversal, return
mutually consistent values and the d-traversal forms a consistent view.

5 Dense, a Concurrent Graph Implementation

In the following, Dense, an algorithm for our proposed concurrent graph implementation, is
presented. Dense is so named because it is mostly suitable for dense graphs, i.e. graphs with
high connectivity, in which case the allocated adjacency matrix is sufficiently exploited.

Listing 1 shows the data structures used by Dense (initial values are indicated on lines 20–
23). Operation information is stored in a structure of type AnnStruct. This structure

OPODIS 2015

27:8 Wait-Free Concurrent Graph Objects with Dynamic Traversals

1 type OpType = { DynamicTraverse , Update , Noop }; // operation types

2 struct AnnStruct // the data type of the announce array elements
3 OpType op; // the announced operation
4 int i, j; // if OpType =Update , ei,j has to be updated
5 int value; // weight to be assigned to ei,j if OpType = Update
6 };

7 struct StateStruct // data type for storing the graph ’s state
8 int seq; // the sequence number , used as a version counter
9 boolean phase; // current phase of execution , Announce or Apply

10 int ann [1..n]; // used as n-bit vector
11 int done [1..n]; // used as n-bit vector
12 int rvals [1..n]; // read value for each process
13 };

14 struct EdgeStruct { // the data type of a graph edge
15 〈 weightval , int 〉 prev [1..n]; // one element per process
16 int seq; // current version of the edge
17 weightval w; // current weight of the edge
18 };

19 shared int BitVector ; // used as n-bit vector
20 shared AnnStruct Announce [1..n] = {〈〈Noop, 0, 0, 0〉, . . . , 〈Noop, 0, 0, 0〉〉};
21 shared StateStruct ST = 〈0, AGREE, 〈0, . . . , 0〉, 〈0, . . . , 0〉, 〈0, . . . , 0〉〉;

// operations status and phase indicator
22 shared EdgeStruct Edges [1..m][1..m] = {〈〈0, 0〉, 0, 0〉, . . . , 〈〈0, 0〉, 0, 0〉};

// adjacency matrix representing the graph
23 private int toggleu = 2u; // a variable per process , u ∈ {1, . . . , n}

Listing 1 Dense: Data structures for a concurrent graph object suitable for dense graphs.

consists of four fields, namely: (i) op, of type OpType, which represents operations provided
by Dense (i.e., DynamicTraverse, Update, and the void operation Noop); (ii) i and j which
identify the edge on which an Update operation is to be applied (if op = Update); and
(iii) value, an integer representing the value that an Update operation has to apply to the
weight of the edge specified by fields i and j (if op = Update).

The status of operations on the graph is indicated by ST , an LL/SC object of type
StateStruct consisting of: (i) seq, an integer which serves as global version counter. It is
incremented each time a process successfully switches the execution phase from AGREE to
APPLY; (ii) phase, a boolean variable which indicates whether the execution of Dense is in
an AGREE or an APPLY phase at any given moment; (iii) ann[1..n], an array implemented as
n-bit integer, where ann[u] corresponds to process pu, u ∈ {1, 2, . . . , n}, and whose value is
toggled each time an operation by pu is agreed; (iv) done[1..n], an array implemented as n-bit
integer, where done[u] corresponds to process pu, u ∈ {1, 2, . . . , n}, and whose value is set
equal to ann[u] each time an operation by pu is applied to the graph; and (v) rvals[1..n], an
array of n elements, where t rvals[u] corresponds to process pu, u ∈ {1, 2, . . . , n}, and which
stores the value of seq that pu uses as read version, in case it is performing a d-traversal.

We represent the graph G with Edges, an adjacency matrix, i.e. a two-dimensional array,
where each element (i, j) of the array represents edge between vertices i and j, i, j ≤ m.
Graph edges, i.e. adjacency matrix elements, are LL/SC objects of type EdgeStruct. This
type is a record of three fields: (i) prev, an array of n elements (one for each process),

N.D. Kallimanis and E. Kanellou 27:9

24 void Update (int i, int j, int value) { // for process pu, u ∈ {1, . . . , n}
25 BTU(Update , int i, int j, int value)
26 }

27 void DynamicTraverse () { // for process pu, u ∈ {1, . . . , n}
28 BTU(DynamicTraverse , ⊥, ⊥, ⊥);
29 }

30 void EndTraverse () { // for process pu, u ∈ {1, . . . , n}
31 ;
32 }

33 int Read(int i, int j) { // for process pu, u ∈ {1, . . . , n}
34 EdgeStruct edge;
35 int val , int seq , int rval;
36 edge = Edges[i][j];
37 rval = ST.rvals[u];

38 if (edge.seq > rval) {
39 〈val, seq〉 = edge.prev[u];
40 }
41 else val = edge.w;
42 return val;
43 }

Listing 2 Dense: Operations Update, DynamicTraverse, EndTraverse, and Read.

where each element is a pair < w, seq > of integers. Whenever an update operation modifies
the weight of an edge, it stores the current weight and version in prev[u] if process pu is
performing a d-traversal on the graph using as read value, stored in ST.rvals[u], a value that
is larger than the current version of the edge; (ii) seq, an integer which stores the current
version of the edge; (iii) w, of type weightval, which stores the current weight of the edge -
recall that if this value is ⊥, the corresponding edge does not exist.

Recall that Dense implements the helping mechanism, where any process pu that invokes
an operation also attempts to apply pending operations by other processes. Operation
information is stored by processes in Announce[1..n], an announce array of n elements, where
each element Announce[u], u ∈ {1, 2, . . . , n}, is of type AnnStruct and can be written to
only by process pu, but can be read by all processes. The announcing of an operation is
complemented by the use of BitV ector, shared vector of n bits (represented as a n-bit integer)
where bit u corresponds to process pu. In order to indicate a pending operations, each time
pu announces operation information in Announce[u], it flips the u-th bit of BitV ector. It
does so with the aid of a local, persistent variable, toggleu, with initial value 2u. After pu

announces an operation, it inverts the value of toggleu.

Pseudocode Description. Pseudocode for the operations of the graph that are described in
Section 3 is presented in Listing 2. Operations Update and DynamicTraverse require that the
processes that execute them, assist each other. In order to do this, they both invoke auxiliary
routine BTU (these initials stand for “Begin a Traversal or Update”). BTU implements the
phase alternation and is further detailed below. We say that an execution of Dense is
in AGREE or APPLY phase during those execution intervals in which ST.phase = AGREE, or
ST.phase = APPLY, respectively. Notice that Read is independent of the phases. Instances of

OPODIS 2015

27:10 Wait-Free Concurrent Graph Objects with Dynamic Traversals

Read are only invoked by a process following the execution of a DynamicTraverse operation
by the same process. They rely on Update operations to store possibly useful old edge
versions for them in the prev arrays of each modified edge.

The DynamicTraverse operation that initiates some d-traversal d, obtains as read version
the current value v of ST.seq (this happens when either the process that initiated d or some
other process helps to apply this DynamicTraverse operation while executing line 74). An
instance r of Read that is invoked by process pu on edge ei,j and that is included in d, must
check whether the version of ei,j is greater than v (line 38). If this is the case, then ei,j was
updated after d started. However, in Dense, d-traversals must not be aware of concurrent
edge updates and have to return values that the edge weights had before the d-traversal
initiated. For this reason, r must return a previous weight of ei,j , and finds this in ei,j .prev[u]
(line 39). If the version of ei,j is less than v, then r returns ei,j ’s current weight (line 41).
Notice that although the instances of Read that are included in a d-traversal are not aware
of concurrent Update instances (i.e. instances whose execution intervals overlap with that of
the d-traversal), those Update instances become aware of d-traversals and store the necessary
old edge weights for them when they modify edges the graph.

Listing 2 presents BTU, which is at the heart of the Dense implementation. It is invoked
by Update specifying as arguments the operation type, integers i and j, which identify the
edge to be modified, and integer value, which specifies the weight to be written to this
edge. When BTU is invoked by DynamicTraverse, then only the operation type is specified
as argument, while the remaining three are ⊥, as they are not required for the d-traversal.

An instance of BTU by pu first writes the operation information into element u of the
announce array (line 48) and then sets the value of the u-th bit of BitV ector (line 49), using
the current value of local persistent variable toggleu bit. It then flips toggleu (line 50) in
order to prepare its value for the next execution of an operation by pu. The algorithm
implements this practice in order to provide a previously mentioned invariant: by comparing
ST.ann[u] and ST.done[u], a process is able to detect whether the latest agreed operation
by pu has already been applied or not. Notice that the contents of BitV ector are copied into
ST.ann by each process that successfully executes an AGREE phase of Dense (lines 53, 56, 80),
while they are copied into ST.done by a process that successfully executes an APPLY phase
of Dense (lines 53, 77, 80). Therefore, each operation by pu must correspond to a different
BitV ector[u] value than the previous one.

BTU carries out any light-weight helping in addition to the execution of the operation that
invoked it. To do this, it iterates via a for loop (lines 51-81). An iteration of this for loop
consists in locally copying ST (line 52), and then attempting to perform the actions that
are required by the phase indicated in ST.phase. Once these actions have been performed,
BTU attempts to change the phase by executing the SC of line 80. If this SC is successful,
we say that BTU (or, abusing terminology, the process or the operation that invoked it)
successfully executed the phase. The execution of this primitive may fail if some instance
of BTU, executed by a process other than pu, has already performed the current phase and
advanced the execution to the next phase. When executing the for loop (lines 51-81), BTU
proceeds as follows, depending on the phase it performs:

AGREE phase (lines 55-58). This phase updates the status record ST with the newly
announced operations, so that all processes can agree on them. So, BTU first records
this status locally on st, before using an SC instruction in order to attempt to update it
globally on ST . In order to set st, BTU collects information from the BitV ector regarding
newly announced and therefore possibly pending operations. It does so by copying the
contents of BitV ector into st.ann (line 56). Notice that for a process pl, 1 ≤ l ≤ n

N.D. Kallimanis and E. Kanellou 27:11

44 void BTU(OpType op, int i, int j, int value) { // for pu, u ∈ {1, . . . , n}
45 StateStruct st;
46 int lbv , opi , opj;
47 EdgeStruct e;

48 Announce [u] = 〈op, i, j, value〉;
49 Add(BitVector , toggleu);
50 toggleu = - toggleu;

51 for (i=0; i < 4; i++) {
52 st = LL(ST);
53 lbv = BitVector ;

54 if (lbv[u] == st.done[u]) break;

55 if (st.phase == AGREE) { // AGREE Phase
56 st.ann[1..n] = lbv[1..n];
57 st.seq = st.seq + 1;
58 st.phase = APPLY;
59 } else { // APPLY Phase
60 for (r = 1; r ≤ n; r++) {

// at most k shared memory accesses , k =active processes
61 if (st.ann[r] 6= st.done[r]) {
62 if (Announce [r].op == Update) {
63 opi = Announce [r].i;
64 opj = Announce [r].j;
65 e = LL(Edges[opi][opj]);
66 if (e.seq < st.seq) {
67 for (k = 1; k ≤ n; k++) {
68 if (e.seq < st.rvals[k]) e.prev[k] = 〈e.w, e.seq〉;
69 }
70 e.w = Announce [r]. value;
71 e.seq = st.seq;
72 SC(Edges[opi][opj], e);
73 } // if (e.seq < st.seq)
74 } else st.rvals[r] = st.seq;
75 } // if (st.ann[r] 6= st.done[r])
76 } // for (r = 1; r ≤ n; r++)
77 st.done[1..n] = lbv[1..n];
78 st.phase = AGREE;
79 }
80 SC(ST , st);
81 }
82 }

Listing 3 Dense: BTU auxiliary routine.

that has a newly announced operation, the invariant st.ann[u] 6= st.done[u] must hold.
Therefore, a successful assignment of st to ST (through the execution of the SC of line 80)
creates the inequality between ST.ann[u] and ST.done[u] and makes all processes “agree”
that pu has a newly announced operation which has not been applied yet. Once the
information regarding pending operation for each process has been copied into st, BTU
increments seq, the global version counter in st (line 57) and changes the phase field of
st from AGREE to APPLY.

OPODIS 2015

27:12 Wait-Free Concurrent Graph Objects with Dynamic Traversals

APPLY phase (lines 59–78). This phase applies any pending agreed Update operation on
the edges of the graph, and assigns read version to any pending agreed DynamicTraverse
operation. For this, BTU uses st again, and for each process pu (line 60) it checks whether
such a pending operation exists (line 61), in which case it holds that st.ann[u] 6= st.done[u].
Consider the case of a pending Update operation by pu on edge ei,j . Since multiple
processes may be executing an operation on ei,j , these modifications must be synchronized
in order to safeguard correctness. For this reason, ei,j is copied locally into e using LL
(line 65). If the current version number of ei,j , e.seq is greater than st.seq then the
specific Update operation has already been applied, namely by some process other than
pu, that has also changed the state. However, if this is not the case, the modification
of ei,j is carried out. Before setting the new value for the weight (line 70) and version
(line 71) of ei,j , a comparison of the current version of ei,j and all read versions stored
in st.rvals is performed (lines 67–68). If the current version of ei,j is less than the read
version for some process pr, 1leqr ≤ n, then the condition e.seq<st.rvals[r] is true. This
means that a concurrent d-traversal by process pr might be in progress. In order to
guarantee that an eventual such d-traversal can read mutually consistent values, the
current values of ei,j ’s weight and version are stored in e.prev[r]. There, instances of
Read on ei,j that are included in a d-traversal, can later find it if necessary. BTU then
attempts to finalize the update of ei,j by using SC to copy e into ei,j (line 72). Whether
the SC on the edge is successful or not, the operation is considered applied.
If pu’s pending operation is a DynamicTraverse, the read version must simply be set.
This is first recorded in st.rvals[u] (line 74) and is eventually stored in ST.rvals[u]
(line 80) by the process that successfully executes the phase. Recall that it is used by a
concurrent Update operation in order to judge whether to discard the current value of
the edge that it is updating or whether to keep it for the ongoing d-traversal of pu. If
the assignment of line 74 followed by a successful SC on ST is executed more than once
for a given DynamicTraverse instance or for the d-traversal that it initiated, then the
consistency of the Read instances of the d-traversal could be compromised. An eventual
bad scenario would happen if Read instances that are invoked before the second execution
of those lines and Read instances that are invoked after the second execution would use a
different read version when reading edges.
Thus, at the end of an APPLY phase, the done bits in st are set equal to the corresponding
ann bits (line 77). Then, BTU attempts to change the phase from APPLY back to AGREE
(line 78) by switching the phase field of st, which is reflected on ST if the SC instruction
of line 80 is successful.

Notice that an instance of BTU may be slow and end up performing the actions associated
with a phase while the execution has already progressed to the next phase. Notice also that
in the worst case, an instance of BTU has to perform four iterations of the for loop before
the operation that invoked it is applied. Such a worst-case scenario is the following: Let Ibtu

be an instance of BTU that executes the first iteration of the for loop during an AGREE phase
and let pl be the process that successfully flips the phase to APPLY by executing the SC on
ST of line 80. Consider however that the execution of line 49 by Ibtu occurs after pl executes
the LL of line 52, which corresponds to the successful SC on ST . This means that in the
following APPLY phase, the operation that invoked Ibtu will not be executed. In the worst
case, all other processes are slow and the process that invoked Ibtu must perform the actions
associated with the APPLY phase itself, during the second iteration of the for loop, as well
as the actions required by the following AGREE phase, during the third iteration of its for
loop. During this AGREE phase, the Add on BitV ector by Ibtu is guaranteed to be observed

N.D. Kallimanis and E. Kanellou 27:13

by the process that performs the successful SC on ST and changes the phase to APPLY. Here
again, in the worst case, all other processes are once more slower than the process which
invoked Ibtu, and thus it is Ibtu that performs the actions associated with the APPLY phase,
in its fourth iteration of the for loop. This time, however, the operation that invoked it is
guaranteed to have been applied.

However, in the common case, the operation may be applied earlier, by some other,
helping process. The condition that signals this is expressed on line 54 and is checked at each
iteration of the for loop. It consists in verifying whether the toggle bit for pl, the process
executing BTU, in shared array BitV ector has the same value as the corresponding bit in the
ST.done array. If that is the case, the operation executed by BTU is considered applied and
the iteration of the for loop terminates as well.

S-Dense. We provide S-Dense, a variation on Dense, implemented with smaller registers.
S-Dense is meant to conform to current machine architectures restrictions. The main
difference with Dense is the implementation of the EdgeStruct, which no longer contains
a large register prev. Instead, a 3-dimensional array prev, external to the EdgeStruct
structure, is used. A process that updates some edge ei,j records locally the weight wold and
version seqold that it read in ei,j . After performing the SC on ei,j (as on line 72 of Dense), the
process uses the LL/SC primitive to attempt to write wold and seqold into the prev position
they have to be recorded for some other traversing process. Notice that the status LL/SC
object ST can also be implemented with smaller registers, by applying the technique that is
used in the P-Sim algorithm that is presented in [14]. A detailed description of S-Dense will
be presented in the full version of the paper.

5.1 Proof of Correctness Sketch
Due to space constraints, we present a sketch of the correctness argument for our algorithm.
Consider an execution α of Dense. Denote by SCST

1 , SCST
2 , . . . the sequence of successful

SC of line 80 on ST in α and by LLST
1 , LLST

2 , . . . the sequence of matching LL on ST . We
first prove that the phases of Dense indeed oscillate between AGREE and APPLY.

I Corollary 1. Any SCST
k such that k mod 2 = 1 changes ST.phase from AGREE to APPLY.

Any SCST
k such that k mod 2 = 0 changes ST.phase from APPLY to AGREE.

Let op be an instance of some operation, invoked by process pu, 1 ≤ u ≤ n. When line 49 is
executed for op, we say that op is announced. Let op be an operation that is announced in
some configuration C. Let pl, 1 ≤ l ≤ n where possibly l 6= u, be a process which executes a
successful SC on ST after C, such that the value written to BitV ector[u] at C is copied into
ST.toggles[u]. If this occurs, we say that op has been agreed. Let op be a DynamicTraverse
operation that is agreed in some configuration C ′. Let pl, where possibly l 6= u, be a process
which executes a successful SC on ST after C ′, such that the value written to BitV ector[u]
at C is now also copied into ST.done[u]. If this occurs, we say that op has been applied. We
say that an agreed Update operation op, with edge ei,j as parameter, has been applied, if
some process pl successfully executes the SC of line 72 on ei,j with the parameter v of op. We
assign the linearization points to operations in the configuration in which they are applied.

We prove that each operation is agreed in its execution interval and use this to prove that
it is also applied exactly once during its execution interval, as well as the following lemmas:

I Lemma 2. Let OP be any instance of either DynamicTraverse or Update. The lineariza-
tion point of OP is included in its execution interval.

OPODIS 2015

27:14 Wait-Free Concurrent Graph Objects with Dynamic Traversals

Then, we prove that instances of Read enclosed in a d-traversal, read edge values that
are mutually consistent.

I Lemma 3. Consider an instance R of Read with arguments i and j, executed by pu and let
r be the executed by R on line 36. Let DT be the last instance of DynamicTraverse executed
by pu before R. Then, R returns as the weight for edge ei,j the value v, which is the weight
written to ei,j by U , where U is the last instance of Update with arguments i, j, v, that was
linearized before the linearization point of DT .

We prove then that d-traversals have a linearization point inside their execution interval
and use all the above to prove the following theorem.

I Theorem 4. Dense is a wait-free linearizable concurrent graph implementation with O(k)
step complexity, where k is the number of active processes.

6 Discussion

We have introduced a concurrent graph and provided an implementation, which supports wait-
free operations, which include updates to the graph edges and the possibility of performing
dynamically defined partial traversals. Operations implemented by Dense access and affect
edges of a graph. Thus, the algorithm is designed with the implicit assumption of a fixed or
at least, maximal number of possible vertices out of a specific vertex set. Dense operations
are oblivious to the values or possible other attributes of those vertices. Indeed, there are
many applications that are concerned with the connectivity of a graph only and need only
access graph edges. Examples include garbage-collection – where objects are represented by
graph nodes, while references to them are represented by graph edges – and graph-based
video game navigation – where the edges of a graph represent walkable surfaces between
obstacles, represented in turn by graph nodes. Nevertheless, an interesting line of future work
is to extend the update and traversal capabilities of Dense to also provide information about
the state or attributes of the visited vertices. Dense takes an irregular data structure and
uses a regularized representation of it, in order to provide dynamic traversals. An interesting
question concerns whether the helping mechanism employed by Dense can be used as a
generalized traversal technique. It would be interesting to explore what other irregular or
regular data structures (trees, lists, queues, etc) can benefit from it.

Acknowledgements. The authors would further like to thank Prof. Panagiota Fatourou for
the useful comments and fruitful discussion that she provided. We thankfully acknowledge
the support of the ARISTEIA Action of the Operational Programme Education and Lifelong
Learning which is co-funded by the European Social Fund (ESF) and National Resources
through the GreenVM project, and the support of the European Commission under the 7th
Framework Programs through the EuroServer (FP7-ICT-610456) and HiPEAC3 (FP7-ICT-
287759) projects.

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit.

Atomic snapshots of shared memory. J. ACM, 40(4):873–890, September 1993. doi:10.
1145/153724.153741.

2 Marcos Kawazoe Aguilera, Wojciech M. Golab, and Mehul A. Shah. A practical scalable
distributed b-tree. PVLDB, 1(1):598–609, 2008.

http://dx.doi.org/10.1145/153724.153741
http://dx.doi.org/10.1145/153724.153741

N.D. Kallimanis and E. Kanellou 27:15

3 Zeyad Abd Algfoor, Mohd Shahrizal Sunar, and Hoshang Kolivand. A comprehensive study
on pathfinding techniques for robotics and video games. International Journal of Computer
Games Technology, 2015.

4 Hagit Attiya, Rachid Guerraoui, and Eric Ruppert. Partial snapshot objects. In Proceedings
of the 20th Annual Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 336–343, NY, USA, 2008. ACM.

5 Gal Bar-Nissan, Danny Hendler, and Adi Suissa. A dynamic elimination-combining stack
algorithm. CoRR, abs/1106.6304, 2011.

6 Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking trees. In
Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 329–342, NY, USA, 2014. ACM. doi:10.1145/2555243.
2555267.

7 Vadim Bulitko, Yngvi Bjornsson, Nathan R. Sturtevant, and Ramon Lawrence. Real-time
heuristic search for pathfinding in video games. In Artificial Intelligence for Computer
Games, pages 1–30. Springer New York, 2011. doi:10.1007/978-1-4419-8188-2_1.

8 Victor Bushkov, Rachid Guerraoui, and Michal Kapalka. On the liveness of transactional
memory. In Proceedings of the 31st Annual ACM SIGACT-SIGOPS Symposium on Prin-
ciples of Distributed Computing (PODC), pages 9–18, NY, USA, 2012. ACM.

9 Joseph Carsten, Arturo Rankin, Dave Ferguson, and Anthony Stentz. Global planning
on the mars exploration rovers: Software integration and surface testing. J. Field Robot.,
26(4):337–357, April 2009. doi:10.1002/rob.v26:4.

10 Bapi Chatterjee, Nhan Nguyen, and Philippas Tsigas. Efficient lock-free binary search
trees. In Proceedings of the 33rd Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (PODC), pages 322–331, NY, USA, 2014. ACM. doi:10.1145/
2611462.2611500.

11 Guojing Cong, Sreedhar B. Kodali, Sriram Krishnamoorthy, Doug Lea, Vijay A. Saraswat,
and Tong Wen. Solving large, irregular graph problems using adaptive work-stealing. In
37th International Conference on Parallel Processing (ICPP), pages 536–545, 2008.

12 Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking
binary search trees. In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC), pages 131–140, NY, USA, 2010. ACM. doi:
10.1145/1835698.1835736.

13 Panagiota Fatourou, Mykhailo Iaremko, Eleni Kanellou, and Eleftherios Kosmas. Al-
gorithmic techniques in stm design. In Transactional Memory. Foundations, Algorithms,
Tools, and Applications, volume 8913, pages 101–126. Springer, 2015. doi:10.1007/
978-3-319-14720-8_5.

14 Panagiota Fatourou and Nikolaos D. Kallimanis. Highly-efficient wait-free synchronization.
Theory of Computing Systems, pages 1–46, 2013. doi:10.1007/s00224-013-9491-y.

15 Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In Proceed-
ings of the 15th International Conference on Distributed Computing (DISC), pages 300–
314, London, UK, 2001. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=
645958.676105.

16 Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Scalable flat-combining based
synchronous queues. In Distributed Computing, volume 6343, pages 79–93. Springer, 2010.

17 Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algorithm.
In Proceedings of the 16th Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 206–215. ACM, 2004.

18 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–
149, January 1991. doi:10.1145/114005.102808.

OPODIS 2015

http://dx.doi.org/10.1145/2555243.2555267
http://dx.doi.org/10.1145/2555243.2555267
http://dx.doi.org/10.1007/978-1-4419-8188-2_1
http://dx.doi.org/10.1002/rob.v26:4
http://dx.doi.org/10.1145/2611462.2611500
http://dx.doi.org/10.1145/2611462.2611500
http://dx.doi.org/10.1145/1835698.1835736
http://dx.doi.org/10.1145/1835698.1835736
http://dx.doi.org/10.1007/978-3-319-14720-8_5
http://dx.doi.org/10.1007/978-3-319-14720-8_5
http://dx.doi.org/10.1007/s00224-013-9491-y
http://dl.acm.org/citation.cfm?id=645958.676105
http://dl.acm.org/citation.cfm?id=645958.676105
http://dx.doi.org/10.1145/114005.102808

27:16 Wait-Free Concurrent Graph Objects with Dynamic Traversals

19 Maurice Herlihy. A methodology for implementing highly concurrent data objects. ACM
Transactions on Programming Languages and Systems (TOPLAS), 15(5):745–770, 1993.

20 Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for
lock-free data structures. SIGARCH Comput. Archit. News, 21(2):289–300, May 1993.

21 Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990.

22 Damien Imbs and Michel Raynal. Help when needed, but no more: Efficient read/write
partial snapshot. In Distributed Computing, volume 5805, pages 142–156. Springer Berlin
Heidelberg, 2009.

23 Prasad Jayanti and Srdjan Petrovic. Logarithmic-time single deleter, multiple inserter
wait-free queues and stacks. In Proceedings of the 25th International Conference on Found-
ations of Software Technology and Theoretical Computer Science (FSTTCS), pages 408–419.
Springer-Verlag, 2005. doi:10.1007/11590156_33.

24 Frank M. Johannes. Partitioning of vlsi circuits and systems. In Proceedings of the 33rd
Annual Design Automation Conference, DAC’96, pages 83–87, NY, USA, 1996. ACM.

25 Alex Kogan and Erez Petrank. Wait-free queues with multiple enqueuers and dequeuers. In
Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), pages 223–234, NY, USA, 2011. ACM. doi:10.1145/1941553.1941585.

26 Alex Kogan and Erez Petrank. A methodology for creating fast wait-free data structures.
SIGPLAN Not., 47(8):141–150, February 2012. doi:10.1145/2370036.2145835.

27 Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and comparison of the task graph
scheduling algorithms. J. Parallel Distrib. Comput., 59(3):381–422, December 1999. doi:
10.1006/jpdc.1999.1578.

28 Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In Proceedings of the 15th Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 267–275, NY, USA, 1996. ACM.
doi:10.1145/248052.248106.

29 Donald Nguyen and Keshav Pingali. Synthesizing concurrent schedulers for irregular
algorithms. In Proceedings of the 16th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), pages 333–344, 2011.
doi:10.1145/1950365.1950404.

30 Yiannis Nikolakopoulos, Anders Gidenstam, Marina Papatriantafilou, and Philippas Tsigas.
A consistency framework for iteration operations in concurrent data structures. In 2015
IEEE International Parallel and Distributed Processing Symposium, IPDPS 2015, Hydera-
bad, India, May 25-29, 2015, pages 239–248, 2015. doi:10.1109/IPDPS.2015.84.

31 Erez Petrank and Shahar Timnat. Lock-free data-structure iterators. In Distributed Com-
puting, volume 8205, pages 224–238. Springer Berlin Heidelberg, 2013. doi:10.1007/
978-3-642-41527-2_16.

32 Aleksandar Prokopec, Nathan G. Bronson, Phil Bagwell, and Martin Odersky. Concurrent
tries with efficient non-blocking snapshots. SIGPLAN Not., 47(8):151–160, Feb 2012. doi:
10.1145/2370036.2145836.

33 Dimitrios Prountzos, Roman Manevich, and Keshav Pingali. Elixir: A system for syn-
thesizing concurrent graph programs. SIGPLAN Not., 47(10):375–394, October 2012.
doi:10.1145/2398857.2384644.

34 William N. Scherer III, Doug Lea, and Michael L. Scott. Scalable synchronous queues. In
Proceedings of the 11th ACM Symposium on Principles and Practice of Parallel Program-
ming (PPOPP), NY, USA, 2006. ACM.

http://dx.doi.org/10.1007/11590156_33
http://dx.doi.org/10.1145/1941553.1941585
http://dx.doi.org/10.1145/2370036.2145835
http://dx.doi.org/10.1006/jpdc.1999.1578
http://dx.doi.org/10.1006/jpdc.1999.1578
http://dx.doi.org/10.1145/248052.248106
http://dx.doi.org/10.1145/1950365.1950404
http://dx.doi.org/10.1109/IPDPS.2015.84
http://dx.doi.org/10.1007/978-3-642-41527-2_16
http://dx.doi.org/10.1007/978-3-642-41527-2_16
http://dx.doi.org/10.1145/2370036.2145836
http://dx.doi.org/10.1145/2370036.2145836
http://dx.doi.org/10.1145/2398857.2384644

N.D. Kallimanis and E. Kanellou 27:17

35 Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the 14th
Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 204–213,
NY, USA, 1995. ACM.

36 Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and
Karsten M. Borgwardt. Weisfeiler-lehman graph kernels. J. Mach. Learn. Res., 12:2539–
2561, November 2011. URL: http://dl.acm.org/citation.cfm?id=1953048.2078187.

37 S. Taylor, J.R. Watts, M.A. Rieffel, and M.E. Palmer. The concurrent graph: basic techno-
logy for irregular problems. Parallel Distributed Technology: Systems Applications, IEEE,
4(2):15–25, Summer 1996. doi:10.1109/88.494601.

38 Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank. Wait-free linked-
lists. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), pages 309–310, NY, USA, 2012. ACM. doi:10.1145/
2145816.2145869.

39 Chung Yung, Jheng-Jyun Syu, and Shiang-Yu Yang. A graph-based algorithm of mostly
incremental garbage collection for active object systems. In International Computer Sym-
posium (ICS), pages 988–996, 2010. doi:10.1109/COMPSYM.2010.5685367.

OPODIS 2015

http://dl.acm.org/citation.cfm?id=1953048.2078187
http://dx.doi.org/10.1109/88.494601
http://dx.doi.org/10.1145/2145816.2145869
http://dx.doi.org/10.1145/2145816.2145869
http://dx.doi.org/10.1109/COMPSYM.2010.5685367

	Introduction
	Related Work
	Model
	Main Ideas
	Dense, a Concurrent Graph Implementation
	Proof of Correctness Sketch

	Discussion

