1,914 research outputs found

    Diffusive behavior of a greedy traveling salesman

    Full text link
    Using Monte Carlo simulations we examine the diffusive properties of the greedy algorithm in the d-dimensional traveling salesman problem. Our results show that for d=3 and 4 the average squared distance from the origin is proportional to the number of steps t. In the d=2 case such a scaling is modified with some logarithmic corrections, which might suggest that d=2 is the critical dimension of the problem. The distribution of lengths also shows marked differences between d=2 and d>2 versions. A simple strategy adopted by the salesman might resemble strategies chosen by some foraging and hunting animals, for which anomalous diffusive behavior has recently been reported and interpreted in terms of Levy flights. Our results suggest that broad and Levy-like distributions in such systems might appear due to dimension-dependent properties of a search space.Comment: accepted in Phys. Rev.

    Uncapacitated Flow-based Extended Formulations

    Full text link
    An extended formulation of a polytope is a linear description of this polytope using extra variables besides the variables in which the polytope is defined. The interest of extended formulations is due to the fact that many interesting polytopes have extended formulations with a lot fewer inequalities than any linear description in the original space. This motivates the development of methods for, on the one hand, constructing extended formulations and, on the other hand, proving lower bounds on the sizes of extended formulations. Network flows are a central paradigm in discrete optimization, and are widely used to design extended formulations. We prove exponential lower bounds on the sizes of uncapacitated flow-based extended formulations of several polytopes, such as the (bipartite and non-bipartite) perfect matching polytope and TSP polytope. We also give new examples of flow-based extended formulations, e.g., for 0/1-polytopes defined from regular languages. Finally, we state a few open problems

    Domination Analysis of Greedy Heuristics For The Frequency Assignment Problem

    Get PDF
    We introduce the greedy expectation algorithm for the fixed spectrum version of the frequency assignment problem. This algorithm was previously studied for the travelling salesman problem. We show that the domination number of this algorithm is at least σn−⌈log⁡2n⌉−1\sigma^{n-\lceil\log_2 n\rceil-1} where σ\sigma is the available span and nn the number of vertices in the constraint graph. In contrast to this we show that the standard greedy algorithm has domination number strictly less than σne−5(n−1)144\sigma^{n}e^{-\frac{5(n-1)}{144}} for large n and fixed σ\sigma

    The Unreasonable Success of Local Search: Geometric Optimization

    Full text link
    What is the effectiveness of local search algorithms for geometric problems in the plane? We prove that local search with neighborhoods of magnitude 1/Ďľc1/\epsilon^c is an approximation scheme for the following problems in the Euclidian plane: TSP with random inputs, Steiner tree with random inputs, facility location (with worst case inputs), and bicriteria kk-median (also with worst case inputs). The randomness assumption is necessary for TSP

    Generalization of the convex-hull-and-line traveling salesman problem

    Get PDF
    Two instances of the traveling salesman problem, on the same node set (1,2 n} but with different cost matrices C and C, are equivalent iff there exist {a, hi: -1, n} such that for any 1 _i, j _n, j, C(i, j) C(i,j) q-a -t-bj [7]. One ofthe well-solved special cases of the traveling salesman problem (TSP) is the convex-hull-and-line TSP. We extend the solution scheme for this class of TSP given in [9] to a more general class which is closed with respect to the above equivalence relation. The cost matrix in our general class is a certain composition of Kalmanson matrices. This gives a new, non-trivial solvable case of TSP

    On Approximating Multi-Criteria TSP

    Get PDF
    We present approximation algorithms for almost all variants of the multi-criteria traveling salesman problem (TSP). First, we devise randomized approximation algorithms for multi-criteria maximum traveling salesman problems (Max-TSP). For multi-criteria Max-STSP, where the edge weights have to be symmetric, we devise an algorithm with an approximation ratio of 2/3 - eps. For multi-criteria Max-ATSP, where the edge weights may be asymmetric, we present an algorithm with a ratio of 1/2 - eps. Our algorithms work for any fixed number k of objectives. Furthermore, we present a deterministic algorithm for bi-criteria Max-STSP that achieves an approximation ratio of 7/27. Finally, we present a randomized approximation algorithm for the asymmetric multi-criteria minimum TSP with triangle inequality Min-ATSP. This algorithm achieves a ratio of log n + eps.Comment: Preliminary version at STACS 2009. This paper is a revised full version, where some proofs are simplifie

    A Positive Semidefinite Approximation of the Symmetric Traveling Salesman Polytope

    Full text link
    For a convex body B in a vector space V, we construct its approximation P_k, k=1, 2, . . . using an intersection of a cone of positive semidefinite quadratic forms with an affine subspace. We show that P_k is contained in B for each k. When B is the Symmetric Traveling Salesman Polytope on n cities T_n, we show that the scaling of P_k by n/k+ O(1/n) contains T_n for k no more than n/2. Membership for P_k is computable in time polynomial in n (of degree linear in k). We discuss facets of T_n that lie on the boundary of P_k. We introduce a new measure on each facet defining inequality for T_n in terms of the eigenvalues of a quadratic form. Using these eigenvalues of facets, we show that the scaling of P_1 by n^(1/2) has all of the facets of T_n defined by the subtour elimination constraints either in its interior or lying on its boundary.Comment: 25 page
    • …
    corecore