89 research outputs found

    High-Bandwidth Voltage-Controlled Oscillator based architectures for Analog-to-Digital Conversion

    Get PDF
    The purpose of this thesis is the proposal and implementation of data conversion open-loop architectures based on voltage-controlled oscillators (VCOs) built with ring oscillators (RO-based ADCs), suitable for highly digital designs, scalable to the newest complementary metal-oxide-semiconductor (CMOS) nodes. The scaling of the design technologies into the nanometer range imposes the reduction of the supply voltage towards small and power-efficient architectures, leading to lower voltage overhead of the transistors. Additionally, phenomena like a lower intrinsic gain, inherent noise, and parasitic effects (mismatch between devices and PVT variations) make the design of classic structures for ADCs more challenging. In recent years, time-encoded A/D conversion has gained relevant popularity due to the possibility of being implemented with mostly digital structures. Within this trend, VCOs designed with ring oscillator based topologies have emerged as promising candidates for the conception of new digitization techniques. RO-based data converters show excellent scalability and sensitivity, apart from some other desirable properties, such as inherent quantization noise shaping and implicit anti-aliasing filtering. However, their nonlinearity and the limited time delay achievable in a simple NOT gate drastically limits the resolution of the converter, especially if we focus on wide-band A/D conversion. This thesis proposes new ways to alleviate these issues. Firstly, circuit-based techniques to compensate for the nonlinearity of the ring oscillator are proposed and compared to equivalent state-of-the-art solutions. The proposals are designed and simulated in a 65-nm CMOS node for open-loop RO-based ADC architectures. One of the techniques is also validated experimentally through a prototype. Secondly, new ways to artificially increase the effective oscillation frequency are introduced and validated by simulations. Finally, new approaches to shape the quantization noise and filter the output spectrum of a RO-based ADC are proposed theoretically. In particular, a quadrature RO-based band-pass ADC and a power-efficient Nyquist A/D converter are proposed and validated by simulations. All the techniques proposed in this work are especially devoted for highbandwidth applications, such as Internet-of-Things (IoT) nodes or maximally digital radio receivers. Nevertheless, their field of application is not restricted to them, and could be extended to others like biomedical instrumentation or sensing.El propósito de esta tesis doctoral es la propuesta y la implementación de arquitecturas de conversión de datos basadas en osciladores en anillos, compatibles con diseños mayoritariamente digitales, escalables en los procesos CMOS de fabricación más modernos donde las estructuras digitales se ven favorecidas. La miniaturización de las tecnologías CMOS de diseño lleva consigo la reducción de la tensión de alimentación para el desarrollo de arquitecturas pequeñas y eficientes en potencia. Esto reduce significativamente la disponibilidad de tensión para saturar transistores, lo que añadido a una ganancia cada vez menor de los mismos, ruido y efectos parásitos como el “mismatch” y las variaciones de proceso, tensión y temperatura han llevado a que sea cada vez más complejo el diseño de estructuras analógicas eficientes. Durante los últimos años la conversión A/D basada en codificación temporal ha ganado gran popularidad dado que permite la implementación de estructuras mayoritariamente digitales. Como parte de esta evolución, los osciladores controlados por tensión diseñados con topologías de oscilador en anillo han surgido como un candidato prometedor para la concepción de nuevas técnicas de digitalización. Los convertidores de datos basados en osciladores en anillo son extremadamente sensibles (variación de frecuencia con respecto a la señal de entrada) así como escalables, además de otras propiedades muy atractivas, como el conformado espectral de ruido de cuantificación y el filtrado “anti-aliasing”. Sin embargo, su respuesta no lineal y el limitado tiempo de retraso alcanzable por una compuerta NOT restringen la resolución del conversor, especialmente para conversión A/D en aplicaciones de elevado ancho de banda. Esta tesis doctoral propone nuevas técnicas para aliviar este tipo de problemas. En primer lugar, se proponen técnicas basadas en circuito para compensar el efecto de la no linealidad en los osciladores en anillo, y se comparan con soluciones equivalentes ya publicadas. Las propuestas se diseñan y simulan en tecnología CMOS de 65 nm para arquitecturas en lazo abierto. Una de estas técnicas presentadas es también validada experimentalmente a través de un prototipo. En segundo lugar, se introducen y validan por simulación varias formas de incrementar artificialmente la frecuencia de oscilación efectiva. Para finalizar, se proponen teóricamente dos enfoques para configurar nuevas formas de conformación del ruido de cuantificación y filtrado del espectro de salida de los datos digitales. En particular, son propuestos y validados por simulación un ADC pasobanda en cuadratura de fase y un ADC de Nyquist de gran eficiencia en potencia. Todas las técnicas propuestas en este trabajo están destinadas especialmente para aplicaciones de alto ancho de banda, tales como módulos para el Internet de las cosas o receptores de radiofrecuencia mayoritariamente digitales. A pesar de ello, son extrapolables también a otros campos como el de la instrumentación biomédica o el de la medición de señales mediante sensores.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Juan Pablo Alegre Pérez.- Secretario: Celia López Ongil.- Vocal: Fernando Cardes Garcí

    Design and Simulation of SIGMA DELTA ADC

    Get PDF
    Analog-to-digital converters play an essential role in modern RF receiver design.Conventional Nyquist converters require analog components that are precise andHighly immune to noise and interference. In contrast, oversampling converters can be implemented using simple and high-tolerance analog components. Moreover,Sampling at high frequency eliminates the need for abrupt cutoffs in the analog antialiasing filters. A technique of noise shaping is used in Ó-Ä converters in addition to oversampling to achieve a high-resolution conversion. A significant advantage of the method is that analog signals are converted using simple and high-tolerance analog circuits, usually a 1-bit comparator, and analog signal processing circuits having a precision that is usually much less than the resolution of the overall converter. In this paper, the design technique for a low-cost first order narrow band sigma-delta modulator in a standard 0.9ìm CMOS technology is described .This circuitry performs the function of an analog-to-digital converter. A first-order 1-bit sigma-delta (Ó-Ä) analog-to-digital converter is designed and simulated using Cadence 0.9ìm CMOS process technology with power supply of 1.8 V through Cadence. The analysis of sigma-delta modulator structures and the design flow were given. The modulator is proved to be robustness, the high performance in stability .The simulation are compared with those from a traditional analog-to-digital converter to prove that sigma-delta is performing better in the case of weak signals acquisition. The design flow consist of a op-amp one of the key component of sigma delta adc which is used for designing of integrator and summing circuit , followed by a high speed comparator and a digital -to-analog convertor in the feedback path

    First order sigma-delta modulator of an oversampling ADC design in CMOS using floating gate MOSFETS

    Get PDF
    We report a new architecture for a sigma-delta oversampling analog-to-digital converter (ADC) in which the first order modulator is realized using the floating gate MOSFETs at the input stage of an integrator and the comparator. The first order modulator is designed using an 8 MHz sampling clock frequency and implemented in a standard 1.5µm n-well CMOS process. The decimator is an off-chip sinc-filter and is programmed using the VERILOG and tested with Altera Flex EPF10K70RC240 FPGA board. The ADC gives an 8-bit resolution with a 65 kHz bandwidth

    Design techniques for sigma-delta modulators in communications applications

    Get PDF
    Specialised design techniques for sigma-delta modulators are described in this thesis with all of the examples coming from modern communications systems. The noise shaping and the signal transfer functions can be optimised using a weighted least squares approach. Numerical problems arising in the optimisation as a result of high oversampling rates are overcome through the use a simple transformation. The application to digitising audio is discussed, with the conclusion that Butterworth response noise shaping is preferable to inverse Chebyshev noise shaping for audio applications. An example of optimising the signal transfer function to provide immunity to instability brought about by large out-of-band signals is also presented. The use of redundant arithmetic in the implementation of very high speed sigma-delta modulators is introduced, together with a DAC / filter combination suitable for reconstructing an analogue signal from the redundant arithmetic SDM. An improved topology for a speech compander is described which offers a number of significant advantages over existing published methods. This uses no external components for ac coupling or setting the response time-constant, yet is robust and insensitive to parasitic components and process variations. This has been integrated on a CMOS IC process and the results are compared with the high level simulations. A simulation method which allows the verification of switched-capacitor schematics with several orders of magnitude speed improvements over commercially available simulation tools is discussed. The method assumes ideal components, with internally controllable switches and reduces the schematic netlist to the few key equations that an experienced designer would derive manually. This process is fully automated and consequently is useful for providing confidence in implementations of complex SC systems
    corecore