1,613 research outputs found

    Low-degree tests at large distances

    Full text link
    We define tests of boolean functions which distinguish between linear (or quadratic) polynomials, and functions which are very far, in an appropriate sense, from these polynomials. The tests have optimal or nearly optimal trade-offs between soundness and the number of queries. In particular, we show that functions with small Gowers uniformity norms behave ``randomly'' with respect to hypergraph linearity tests. A central step in our analysis of quadraticity tests is the proof of an inverse theorem for the third Gowers uniformity norm of boolean functions. The last result has also a coding theory application. It is possible to estimate efficiently the distance from the second-order Reed-Muller code on inputs lying far beyond its list-decoding radius

    Property Testing via Set-Theoretic Operations

    Get PDF
    Given two testable properties P1\mathcal{P}_{1} and P2\mathcal{P}_{2}, under what conditions are the union, intersection or set-difference of these two properties also testable? We initiate a systematic study of these basic set-theoretic operations in the context of property testing. As an application, we give a conceptually different proof that linearity is testable, albeit with much worse query complexity. Furthermore, for the problem of testing disjunction of linear functions, which was previously known to be one-sided testable with a super-polynomial query complexity, we give an improved analysis and show it has query complexity O(1/\eps^2), where \eps is the distance parameter.Comment: Appears in ICS 201

    Robust self-testing of many-qubit states

    Get PDF
    We introduce a simple two-player test which certifies that the players apply tensor products of Pauli σX\sigma_X and σZ\sigma_Z observables on the tensor product of nn EPR pairs. The test has constant robustness: any strategy achieving success probability within an additive ε\varepsilon of the optimal must be poly(ε)\mathrm{poly}(\varepsilon)-close, in the appropriate distance measure, to the honest nn-qubit strategy. The test involves 2n2n-bit questions and 22-bit answers. The key technical ingredient is a quantum version of the classical linearity test of Blum, Luby, and Rubinfeld. As applications of our result we give (i) the first robust self-test for nn EPR pairs; (ii) a quantum multiprover interactive proof system for the local Hamiltonian problem with a constant number of provers and classical questions and answers, and a constant completeness-soundness gap independent of system size; (iii) a robust protocol for delegated quantum computation.Comment: 36 pages. Improves upon and supersedes our earlier submission arXiv:1512.0209

    Quantum Property Testing

    Get PDF
    A language L has a property tester if there exists a probabilistic algorithm that given an input x only asks a small number of bits of x and distinguishes the cases as to whether x is in L and x has large Hamming distance from all y in L. We define a similar notion of quantum property testing and show that there exist languages with quantum property testers but no good classical testers. We also show there exist languages which require a large number of queries even for quantumly testing

    On Local Testability in the Non-Signaling Setting

    Get PDF
    Non-signaling strategies are a generalization of quantum strategies that have been studied in physics for decades, and have recently found applications in theoretical computer science. These applications motivate the study of local-to-global phenomena for non-signaling functions. We prove that low-degree testing in the non-signaling setting is possible, assuming that the locality of the non-signaling function exceeds a threshold. We additionally show that if the locality is below the threshold then the test fails spectacularly, in that there exists a non-signaling function which passes the test with probability 1 and yet is maximally far from being low-degree. Along the way, we present general results about the local testability of linear codes in the non-signaling setting. These include formulating natural definitions that capture the condition that a non-signaling function "belongs" to a given code, and characterizing the sets of local constraints that imply membership in the code. We prove these results by formulating a logical inference system for linear constraints on non-signaling functions that is complete and sound

    Symmetries in algebraic Property Testing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 94-100).Modern computational tasks often involve large amounts of data, and efficiency is a very desirable feature of such algorithms. Local algorithms are especially attractive, since they can imply global properties by only inspecting a small window into the data. In Property Testing, a local algorithm should perform the task of distinguishing objects satisfying a given property from objects that require many modifications in order to satisfy the property. A special place in Property Testing is held by algebraic properties: they are some of the first properties to be tested, and have been heavily used in the PCP and LTC literature. We focus on conditions under which algebraic properties are testable, following the general goal of providing a more unified treatment of these properties. In particular, we explore the notion of symmetry in relation to testing, a direction initiated by Kaufman and Sudan. We investigate the interplay between local testing, symmetry and dual structure in linear codes, by showing both positive and negative results. On the negative side, we exhibit a counterexample to a conjecture proposed by Alon, Kaufman, Krivelevich, Litsyn, and Ron aimed at providing general sufficient conditions for testing. We show that a single codeword of small weight in the dual family together with the property of being invariant under a 2-transitive group of permutations do not necessarily imply testing. On the positive side, we exhibit a large class of codes whose duals possess a strong structural property ('the single orbit property'). Namely, they can be specified by a single codeword of small weight and the group of invariances of the code. Hence we show that sparsity and invariance under the affine group of permutations are sufficient conditions for a notion of very structured testing. These findings also reveal a new characterization of the extensively studied BCH codes. As a by-product, we obtain a more explicit description of structured tests for the special family of BCH codes of design distance 5.by Elena Grigorescu.Ph.D

    Smooth and Strong PCPs

    Get PDF
    Probabilistically checkable proofs (PCPs) can be verified based only on a constant amount of random queries, such that any correct claim has a proof that is always accepted, and incorrect claims are rejected with high probability (regardless of the given alleged proof). We consider two possible features of PCPs: - A PCP is strong if it rejects an alleged proof of a correct claim with probability proportional to its distance from some correct proof of that claim. - A PCP is smooth if each location in a proof is queried with equal probability. We prove that all sets in NP have PCPs that are both smooth and strong, are of polynomial length, and can be verified based on a constant number of queries. This is achieved by following the proof of the PCP theorem of Arora, Lund, Motwani, Sudan and Szegedy (JACM, 1998), providing a stronger analysis of the Hadamard and Reed - Muller based PCPs and a refined PCP composition theorem. In fact, we show that any set in NP has a smooth strong canonical PCP of Proximity (PCPP), meaning that there is an efficiently computable bijection of NP witnesses to correct proofs. This improves on the recent construction of Dinur, Gur and Goldreich (ITCS, 2019) of PCPPs that are strong canonical but inherently non-smooth. Our result implies the hardness of approximating the satisfiability of "stable" 3CNF formulae with bounded variable occurrence, where stable means that the number of clauses violated by an assignment is proportional to its distance from a satisfying assignment (in the relative Hamming metric). This proves a hypothesis used in the work of Friggstad, Khodamoradi and Salavatipour (SODA, 2019), suggesting a connection between the hardness of these instances and other stable optimization problems
    • …
    corecore