4 research outputs found

    Improved Decoding of Expander Codes

    Get PDF
    We study the classical expander codes, introduced by Sipser and Spielman [M. Sipser and D. A. Spielman, 1996]. Given any constants 0 < ?, ? < 1/2, and an arbitrary bipartite graph with N vertices on the left, M < N vertices on the right, and left degree D such that any left subset S of size at most ? N has at least (1-?)|S|D neighbors, we show that the corresponding linear code given by parity checks on the right has distance at least roughly {? N}/{2 ?}. This is strictly better than the best known previous result of 2(1-?) ? N [Madhu Sudan, 2000; Viderman, 2013] whenever ? < 1/2, and improves the previous result significantly when ? is small. Furthermore, we show that this distance is tight in general, thus providing a complete characterization of the distance of general expander codes. Next, we provide several efficient decoding algorithms, which vastly improve previous results in terms of the fraction of errors corrected, whenever ? < 1/4. Finally, we also give a bound on the list-decoding radius of general expander codes, which beats the classical Johnson bound in certain situations (e.g., when the graph is almost regular and the code has a high rate). Our techniques exploit novel combinatorial properties of bipartite expander graphs. In particular, we establish a new size-expansion tradeoff, which may be of independent interests

    Expander Graphs and Coding Theory

    Get PDF
    Expander graphs are highly connected sparse graphs which lie at the interface of many diļ¬€erent ļ¬elds of study. For example, they play important roles in prime sieves, cryptography, compressive sensing, metric embedding, and coding theory to name a few. This thesis focuses on the connections between sparse graphs and coding theory. It is a major challenge to explicitly construct sparse graphs with good expansion properties, for example Ramanujan graphs. Nevertheless, explicit constructions do exist, and in this thesis, we survey many of these constructions up to this point including a new construction which slightly improves on an earlier edge expansion bound. The edge expansion of a graph is crucial in applications, and it is well-known that computing the edge expansion of an arbitrary graph is NP-hard. We present a simple algo-rithm for approximating the edge expansion of a graph using linear programming techniques. While Andersen and Lang (2008) proved similar results, our analysis attacks the problem from a diļ¬€erent vantage point and was discovered independently. The main contribution in the thesis is a new result in fast decoding for expander codes. Current algorithms in the literature can decode a constant fraction of errors in linear time but require that the underlying graphs have vertex expansion at least 1/2. We present a fast decoding algorithm that can decode a constant fraction of errors in linear time given any vertex expansion (even if it is much smaller than 1/2) by using a stronger local code, and the fraction of errors corrected almost doubles that of Viderman (2013)

    Linear-time decoding of regular expander codes

    No full text
    corecore