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—— Abstract

We study the classical expander codes, introduced by Sipser and Spielman [10]. Given any constants
0 < a,e < 1/2, and an arbitrary bipartite graph with N vertices on the left, M < N vertices on
the right, and left degree D such that any left subset S of size at most aN has at least (1 — ¢)|S|D
neighbors, we show that the corresponding linear code given by parity checks on the right has distance
at least roughly % This is strictly better than the best known previous result of 2(1 —¢e)aN [11, 12]
whenever € < 1/2, and improves the previous result significantly when ¢ is small. Furthermore, we
show that this distance is tight in general, thus providing a complete characterization of the distance
of general expander codes.

Next, we provide several efficient decoding algorithms, which vastly improve previous results
in terms of the fraction of errors corrected, whenever ¢ < i. Finally, we also give a bound on the
list-decoding radius of general expander codes, which beats the classical Johnson bound in certain
situations (e.g., when the graph is almost regular and the code has a high rate).

Our techniques exploit novel combinatorial properties of bipartite expander graphs. In particular,
we establish a new size-expansion tradeoff, which may be of independent interests.
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1 Introduction and Our Results

Expander codes [10] are error-correcting codes derived from bipartite expander graphs that are
notable for their ultra-efficient decoding algorithms. In particular, all known asymptotically
good error-correcting codes which admit (almost) linear-time decoding algorithms for a
constant fraction of adversarial errors are based on expander codes. At the same time,
expander codes are closely related to low-density parity-check (LDPC) codes [6] — a random
LDPC code is an expander code with high probability. Over the last twenty years, LDPC
codes have received increased attention ([5, 4, 1, 3, 8] to name a few) because of their practical
performance. Along this line of research, the study of decoding algorithms for expander
codes, such as belief-propagation [6, 10, 7], message-passing [9], and linear programming
[5, 4, 13], has laid theoretical foundations and sparked new lines of inquiry for LDPC codes.

1 Part of this work is done while the author was at George Mason University.
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Improved Decoding of Expander Codes

In this work, we consider expander codes for adversarial errors. Briefly, given a bipartite
graph G with N vertices of degree D on the left, we say it is an (aN, (1 — £)D) expander
if and only if any left subset S with size at most aN has at least (1 — ¢)D - |S| distinct
neighbors. The code C of an expander G assigns a bit to each vertex on the left and views
each vertex on the right as a parity check over its neighbors. A codeword C' € C is a vector
in {0,1}" that satisfies all parity checks on the right. Moreover, the distance of C is defined
as the minimum Hamming distance between all pairs of codewords. For typical applications,
the parameters «, ¢ and D are assumed to be constants, and there exist explicit constructions
(e.g., [2]) of such expander graphs with M < N.

For expander codes defined by (alV, (1 — &) D)-expanders, the seminal work of Sipser and
Spielman [10] gave the first efficient algorithm to correct a constant fraction (i.e., (1—2¢)-aN)
of errors, when ¢ < 1/4. In fact, their algorithms are super efficient — they provide a linear
time algorithm called belief-propagation and a logarithmic time parallel algorithm with a
linear number of processors. Subsequently, Feldman et al. [4] and Viderman [13, 12] provided
%:gi - aN errors, when ¢ < 1/3. This fraction of
error is strictly larger than that of [10] whenever ¢ < 1/4. Viderman [12] also showed how to
correct N¥p.e.«(1) errors when e € [1/3,1/2), and that € < 1/2 is necessary for correcting
even 1 error. However, the following basic question about expander codes remains unclear.

improved algorithms to correct roughly

Question: What is the best distance bound one can get from an expander code defined
by arbitrary (aN, (1 — &) D)-expanders?

This question is important since it is well known that for unique decoding, the code can
and can only correct up to half the distance number of errors. In [10], Sipser and Spielman
showed that the distance of such expander codes is at least /N, while a simple generalization
improves this bound to 2(1 — £)aN (see e.g., [11] and [12]). Perhaps somewhat surprisingly,
this simple bound is the best known distance bound for an arbitrary expander code. In fact,
Viderman [12] asserted that this is the best distance bound one can achieve based only on
the expansion property of the graph, and hence when € converges to 0, the number of errors
corrected in [12], %:gz - alN converges to the half distance bound. Yet, no evidence was
known to support this claim. Thus it is natural to ask whether any improvement is possible,
and if so, can one design efficient algorithms to correct more errors?

In this work, we give affirmative answers to the above questions, as well as improved
linear time decoding algorithms. Our results can be summarized as follows.

» Theorem 1. Given any (aN, (1 — €)D)-expander, let C be the expander code defined by it.
The distance of C is at least 5= - N — Oc(1).

Moreover, for any constant ) > 0 there exists an (aN, (1 —e)D)-expander whose expander
code has distance at most (5= +n) - N.

Table 1 Summary of the distance and decoding radii for €.

e (0,322) | s [3=22 1/8) | £ € [1/8,1/4)
Distance from Theorem 1 of this work % -aN é -aN é -aN
. . 1—3. 1—3. 1-3
Decoding radius from [4, 12] =5 -aN =5 -aN = -aN
Decoding radius from this work ‘/2;1 -aN 12525 -aN % aN
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