1,848 research outputs found

    Rendezvous of Heterogeneous Mobile Agents in Edge-weighted Networks

    Get PDF
    We introduce a variant of the deterministic rendezvous problem for a pair of heterogeneous agents operating in an undirected graph, which differ in the time they require to traverse particular edges of the graph. Each agent knows the complete topology of the graph and the initial positions of both agents. The agent also knows its own traversal times for all of the edges of the graph, but is unaware of the corresponding traversal times for the other agent. The goal of the agents is to meet on an edge or a node of the graph. In this scenario, we study the time required by the agents to meet, compared to the meeting time TOPTT_{OPT} in the offline scenario in which the agents have complete knowledge about each others speed characteristics. When no additional assumptions are made, we show that rendezvous in our model can be achieved after time O(nTOPT)O(n T_{OPT}) in a nn-node graph, and that such time is essentially in some cases the best possible. However, we prove that the rendezvous time can be reduced to Θ(TOPT)\Theta (T_{OPT}) when the agents are allowed to exchange Θ(n)\Theta(n) bits of information at the start of the rendezvous process. We then show that under some natural assumption about the traversal times of edges, the hardness of the heterogeneous rendezvous problem can be substantially decreased, both in terms of time required for rendezvous without communication, and the communication complexity of achieving rendezvous in time Θ(TOPT)\Theta (T_{OPT})

    Rendezvous in Networks in Spite of Delay Faults

    Full text link
    Two mobile agents, starting from different nodes of an unknown network, have to meet at the same node. Agents move in synchronous rounds using a deterministic algorithm. Each agent has a different label, which it can use in the execution of the algorithm, but it does not know the label of the other agent. Agents do not know any bound on the size of the network. In each round an agent decides if it remains idle or if it wants to move to one of the adjacent nodes. Agents are subject to delay faults: if an agent incurs a fault in a given round, it remains in the current node, regardless of its decision. If it planned to move and the fault happened, the agent is aware of it. We consider three scenarios of fault distribution: random (independently in each round and for each agent with constant probability 0 < p < 1), unbounded adver- sarial (the adversary can delay an agent for an arbitrary finite number of consecutive rounds) and bounded adversarial (the adversary can delay an agent for at most c consecutive rounds, where c is unknown to the agents). The quality measure of a rendezvous algorithm is its cost, which is the total number of edge traversals. For random faults, we show an algorithm with cost polynomial in the size n of the network and polylogarithmic in the larger label L, which achieves rendezvous with very high probability in arbitrary networks. By contrast, for unbounded adversarial faults we show that rendezvous is not feasible, even in the class of rings. Under this scenario we give a rendezvous algorithm with cost O(nl), where l is the smaller label, working in arbitrary trees, and we show that \Omega(l) is the lower bound on rendezvous cost, even for the two-node tree. For bounded adversarial faults, we give a rendezvous algorithm working for arbitrary networks, with cost polynomial in n, and logarithmic in the bound c and in the larger label L

    Move-optimal partial gathering of mobile agents in asynchronous trees

    Get PDF
    In this paper, we consider the partial gathering problem of mobile agents in asynchronous tree networks. The partial gathering problem is a generalization of the classical gathering problem, which requires that all the agents meet at the same node. The partial gathering problem requires, for a given positive integer g, that each agent should move to a node and terminate so that at least g agents should meet at each of the nodes they terminate at. The requirement for the partial gathering problem is weaker than that for the (well-investigated) classical gathering problem, and thus, we clarify the difference on the move complexity between them. We consider two multiplicity detection models: weak multiplicity detection and strong multiplicity detection models. In the weak multiplicity detection model, each agent can detect whether another agent exists at the current node or not but cannot count the exact number of the agents. In the strong multiplicity detection model, each agent can count the number of agents at the current node. In addition, we consider two token models: non-token model and removable token model. In the non-token model, agents cannot mark the nodes or the edges in any way. In the removable-token model, each agent initially leaves a token on its initial node, and agents can remove the tokens. Our contribution is as follows. First, we show that for the non-token model agents require Ω(kn) total moves to solve the partial gathering problem, where n is the number of nodes and k is the number of agents. Second, we consider the weak multiplicity detection and non-token model. In this model, for asymmetric trees, by a previous result agents can achieve the partial gathering in O(kn) total moves, which is asymptotically optimal in terms of total moves. In addition, for symmetric trees we show that there exist no algorithms to solve the partial gathering problem. Third, we consider the strong multiplicity detection and non-token model. In this model, for any trees we propose an algorithm to achieve the partial gathering in O(kn) total moves, which is asymptotically optimal in terms of total moves. At last, we consider the weak multiplicity detection and removable-token model. In this model, we propose an algorithm to achieve the partial gathering in O(gn) total moves. Note that in this model, agents require Ω(gn) total moves to solve the partial gathering problem. Hence, the second proposed algorithm is also asymptotically optimal in terms of total moves

    Rendezvous on a Line by Location-Aware Robots Despite the Presence of Byzantine Faults

    Full text link
    A set of mobile robots is placed at points of an infinite line. The robots are equipped with GPS devices and they may communicate their positions on the line to a central authority. The collection contains an unknown subset of "spies", i.e., byzantine robots, which are indistinguishable from the non-faulty ones. The set of the non-faulty robots need to rendezvous in the shortest possible time in order to perform some task, while the byzantine robots may try to delay their rendezvous for as long as possible. The problem facing a central authority is to determine trajectories for all robots so as to minimize the time until the non-faulty robots have rendezvoused. The trajectories must be determined without knowledge of which robots are faulty. Our goal is to minimize the competitive ratio between the time required to achieve the first rendezvous of the non-faulty robots and the time required for such a rendezvous to occur under the assumption that the faulty robots are known at the start. We provide a bounded competitive ratio algorithm, where the central authority is informed only of the set of initial robot positions, without knowing which ones or how many of them are faulty. When an upper bound on the number of byzantine robots is known to the central authority, we provide algorithms with better competitive ratios. In some instances we are able to show these algorithms are optimal

    Optimal deterministic ring exploration with oblivious asynchronous robots

    Get PDF
    We consider the problem of exploring an anonymous unoriented ring of size nn by kk identical, oblivious, asynchronous mobile robots, that are unable to communicate, yet have the ability to sense their environment and take decisions based on their local view. Previous works in this weak scenario prove that kk must not divide nn for a deterministic solution to exist. Also, it is known that the minimum number of robots (either deterministic or probabilistic) to explore a ring of size nn is 4. An upper bound of 17 robots holds in the deterministic case while 4 probabilistic robots are sufficient. In this paper, we close the complexity gap in the deterministic setting, by proving that no deterministic exploration is feasible with less than five robots whenever the size of the ring is even, and that five robots are sufficient for any nn that is coprime with five. Our protocol completes exploration in O(n) robot moves, which is also optimal
    • 

    corecore