4,357 research outputs found

    Linear predictive receivers for phase-uncertain channels

    Full text link
    In this paper, we propose linear predictive receivers for phaseuncertain channels. These receivers are attractive from a conceptual viewpoint because they generalize previous solutions based on noncoherent sequence detection. On the practical side, the proposed algorithms lend themselves to the implementation of adaptive receivers capable of copying with possible time variations of the statistics of the underlying phase model. 1

    Soft metrics and their Performance Analysis for Optimal Data Detection in the Presence of Strong Oscillator Phase Noise

    Get PDF
    In this paper, we address the classical problem of maximum-likelihood (ML) detection of data in the presence of random phase noise. We consider a system, where the random phase noise affecting the received signal is first compensated by a tracker/estimator. Then the phase error and its statistics are used for deriving the ML detector. Specifically, we derive an ML detector based on a Gaussian assumption for the phase error probability density function (PDF). Further without making any assumptions on the phase error PDF, we show that the actual ML detector can be reformulated as a weighted sum of central moments of the phase error PDF. We present a simple approximation of this new ML rule assuming that the phase error distribution is unknown. The ML detectors derived are also the aposteriori probabilities of the transmitted symbols, and are referred to as soft metrics. Then, using the detector developed based on Gaussian phase error assumption, we derive the symbol error probability (SEP) performance and error floor analytically for arbitrary constellations. Finally we compare SEP performance of the various detectors/metrics in this work and those from literature for different signal constellations, phase noise scenarios and SNR values

    Advanced tracking systems design and analysis

    Get PDF
    The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk

    On receiver design for an unknown, rapidly time-varying, Rayleigh fading channel

    Get PDF

    Crustal structure between the Knipovich Ridge and the Van Mijenfjorden (Svalbard)

    Get PDF
    The Alfred Wegener Institute of Polar and Marine Research, the University of Bergenand the Hokkaido University acquired new seismic refraction data along a transect fromthe Knipovich Ridge to the inner Van Mijenfjorden in southern Svalbard. A close spacing ofon- and offshore receivers and a dense marine shot pattern provide the data for a high resolutionp-wave velocity model for geological interpretation. Additional new seismic reflection data(University of Bergen) yield structural information for a more reliable analysis.Crustal thickness along the Van Mijenfjorden is 33 to 34 km. Seismic velocities of 5.0 km/sare observed within the upper crustal section of the Tertiary Central Spitsbergen Basin.A Paleozoic sedimentary basin with a depth of 8 to 10 km is associated with the Nordfjorden Block.The seismic velocities are up to 6.0 km/s. Paleozoic sedimentary rocks are expected furtherto the west of the Hornsund Lineament since seismic velocities reveal a similar range here.West of the Bellsund the continental crust thins gradually over a 90 km wide rifted zone.The velocity structure within this section is very complex and comprises zones of decreasedvelocities below the West Spitsbergen Fold Belt (down to 20 km depth) and slightly elevatedvelocities (7.2 km/s) at the crust-mantle transition. The first structure is interpreted as intensivelyfractured rocks linked to post-Late Paleocene transpressive orogenic activity and subsequentlyaffected by transtension during break-up from Greenland. The faster deep-crustal velocities aresupposed to express magmatic intrusions of an unidentified origin. Melts could either be channelled by theSpitsbergen Shear Zone from more distant sources, or originate in magmatic interaction between the northern Knipovich Ridgeand the neighbouring young rifted crust.Oceanic crust each side of the Knipovich Ridge is thin (~3.5 km) and is characterised by theabsence of oceanic layer 3 (3.5/4.1 to 4.7 km/s). The oceanic section exhibits zones of verythin crust (~1 km) that are interpreted as fracture zones. Beneath these we observed decreasedmantle velocities (~7.3 km/s) indicating probable serpentinization of peridotites along thesefracture zones. Thickness variations further provide information about the segmentationand magma supply along the northern Knipovich Ridge

    Multitransient electromagnetic demonstration survey in France

    Get PDF
    corecore