14,653 research outputs found

    A verified equivalent-circuit model for slotwaveguide modulators

    Get PDF
    We formulate and experimentally validate an equivalent-circuit model based on distributed elements to describe the electric and electro-optic (EO) properties of travellingwave silicon-organic hybrid (SOH) slot-waveguide modulators. The model allows to reliably predict the small-signal EO frequency response of the modulators exploiting purely electrical measurements of the frequency-dependent RF transmission characteristics. We experimentally verify the validity of our model, and we formulate design guidelines for an optimum trade-off between optical loss due to free-carrier absorption (FCA), electro-optic bandwidth, and {\pi}-voltage of SOH slot-waveguide modulators

    Quantum Modelling of Electro-Optic Modulators

    Full text link
    Many components that are employed in quantum information and communication systems are well known photonic devices encountered in standard optical fiber communication systems, such as optical beamsplitters, waveguide couplers and junctions, electro-optic modulators and optical fiber links. The use of these photonic devices is becoming increasingly important especially in the context of their possible integration either in a specifically designed system or in an already deployed end-to-end fiber link. Whereas the behavior of these devices is well known under the classical regime, in some cases their operation under quantum conditions is less well understood. This paper reviews the salient features of the quantum scattering theory describing both the operation of the electro-optic phase and amplitude modulators in discrete and continuous-mode formalisms. This subject is timely and of importance in light of the increasing utilization of these devices in a variety of systems, including quantum key distribution and single-photon wavepacket measurement and conformation. In addition, the paper includes a tutorial development of the use of these models in selected but yet important applications, such as single and multi-tone modulation of photons, two-photon interference with phase-modulated light or the description of amplitude modulation as a quantum operation.Comment: 29 pages, 10 figures, Laser and Photonics Reviews (in press

    Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles

    Get PDF
    Serving as a new two-dimensional plasmonic material, graphene has stimulated an intensive study of its optical properties which benefit from the unique electronic band structure of the underlying honeycomb lattice of carbon atoms. In classical electrodynamics, nanostructured graphene is commonly modeled by the computationally demanding problem of a three-dimensional conducting film of atomic-scale thickness. Here, we propose an efficient alternative two-dimensional electrostatic approach where all the calculation procedures are restricted to the plane of the graphene sheet. To explore possible quantum effects, we perform tight-binding calculations, adopting a random-phase approximation. We investigate the multiple plasmon modes in triangles of graphene, treating the optical response classically as well as quantum mechanically in the case of both armchair and zigzag edge termination of the underlying atomic lattice. Compared to the classical plasmonic spectrum which is "blind" to the edge termination, we find that the quantum plasmon frequencies exhibit blueshifts in the case of armchair edge termination, while redshifts are found for zigzag edges. Furthermore, we find spectral features in the zigzag case which are associated with electronic edge states not present for armchair termination. Merging pairs of such triangles into dimers, the plasmon hybridization leads to energy splitting in accordance with plasmon-hybridization theory, with a lower energy for the antisymmetric modes and a smaller splitting for modes with less confinement to the gap region. The hybridization appears strongest in classical calculations while the splitting is lower for armchair edges and even more reduced for zigzag edges. Our various results illustrate a surprising phenomenon: Even 20 nm large graphene structures clearly exhibit quantum plasmonic features due to atomic-scale details in the edge termination.Comment: 27 pages including 7 figures. Supplementary information available upon request to author

    Programmable unitary spatial modes manipulation

    Full text link
    Free space propagation and conventional optical systems such as lenses and mirrors all perform spatial unitary transforms. However, the subset of transforms available through these conventional systems is limited in scope. We present here a unitary programmable mode converter (UPMC) capable of performing any spatial unitary transform of the light field. It is based on a succession of reflections on programmable deformable mirrors and free space propagation. We first show theoretically that a UPMC without limitations on resources can perform perfectly any transform. We then build an experimental implementation of the UPMC and show that, even when limited to three reflections on an array of 12 pixels, the UPMC is capable of performing single mode tranforms with an efficiency greater than 80% for the first 4 modes of the TEM basis

    Oversampling PCM techniques and optimum noise shapers for quantizing a class of nonbandlimited signals

    Get PDF
    We consider the efficient quantization of a class of nonbandlimited signals, namely, the class of discrete-time signals that can be recovered from their decimated version. The signals are modeled as the output of a single FIR interpolation filter (single band model) or, more generally, as the sum of the outputs of L FIR interpolation filters (multiband model). These nonbandlimited signals are oversampled, and it is therefore reasonable to expect that we can reap the same benefits of well-known efficient A/D techniques that apply only to bandlimited signals. We first show that we can obtain a great reduction in the quantization noise variance due to the oversampled nature of the signals. We can achieve a substantial decrease in bit rate by appropriately decimating the signals and then quantizing them. To further increase the effective quantizer resolution, noise shaping is introduced by optimizing prefilters and postfilters around the quantizer. We start with a scalar time-invariant quantizer and study two important cases of linear time invariant (LTI) filters, namely, the case where the postfilter is the inverse of the prefilter and the more general case where the postfilter is independent from the prefilter. Closed form expressions for the optimum filters and average minimum mean square error are derived in each case for both the single band and multiband models. The class of noise shaping filters and quantizers is then enlarged to include linear periodically time varying (LPTV)M filters and periodically time-varying quantizers of period M. We study two special cases in great detail

    Modeling of strain-induced Pockels effect in Silicon

    Full text link
    We propose a theoretical model to describe the strain-induced linear electro-optic (Pockels) effect in centro-symmetric crystals. The general formulation is presented and the specific case of the strained silicon is investigated in detail because of its attractive properties for integrated optics. The outcome of this analysis is a linear relation between the second order susceptibility tensor and the strain gradient tensor, depending generically on fifteen coefficients. The proposed model greatly simplifies the description of the electro-optic effect in strained silicon waveguides, providing a powerful and effective tool for design and optimization of optical devices.Comment: typos corrected in eq. 29 with respect to the published versio
    • …
    corecore