28 research outputs found

    Tight Kernel Bounds for Problems on Graphs with Small Degeneracy

    Full text link
    In this paper we consider kernelization for problems on d-degenerate graphs, i.e. graphs such that any subgraph contains a vertex of degree at most dd. This graph class generalizes many classes of graphs for which effective kernelization is known to exist, e.g. planar graphs, H-minor free graphs, and H-topological-minor free graphs. We show that for several natural problems on d-degenerate graphs the best known kernelization upper bounds are essentially tight.Comment: Full version of ESA 201

    Meta-Kernelization using Well-Structured Modulators

    Get PDF
    Kernelization investigates exact preprocessing algorithms with performance guarantees. The most prevalent type of parameters used in kernelization is the solution size for optimization problems; however, also structural parameters have been successfully used to obtain polynomial kernels for a wide range of problems. Many of these parameters can be defined as the size of a smallest modulator of the given graph into a fixed graph class (i.e., a set of vertices whose deletion puts the graph into the graph class). Such parameters admit the construction of polynomial kernels even when the solution size is large or not applicable. This work follows up on the research on meta-kernelization frameworks in terms of structural parameters. We develop a class of parameters which are based on a more general view on modulators: instead of size, the parameters employ a combination of rank-width and split decompositions to measure structure inside the modulator. This allows us to lift kernelization results from modulator-size to more general parameters, hence providing smaller kernels. We show (i) how such large but well-structured modulators can be efficiently approximated, (ii) how they can be used to obtain polynomial kernels for any graph problem expressible in Monadic Second Order logic, and (iii) how they allow the extension of previous results in the area of structural meta-kernelization

    A structural approach to kernels for ILPs: Treewidth and Total Unimodularity

    Get PDF
    Kernelization is a theoretical formalization of efficient preprocessing for NP-hard problems. Empirically, preprocessing is highly successful in practice, for example in state-of-the-art ILP-solvers like CPLEX. Motivated by this, previous work studied the existence of kernelizations for ILP related problems, e.g., for testing feasibility of Ax <= b. In contrast to the observed success of CPLEX, however, the results were largely negative. Intuitively, practical instances have far more useful structure than the worst-case instances used to prove these lower bounds. In the present paper, we study the effect that subsystems with (Gaifman graph of) bounded treewidth or totally unimodularity have on the kernelizability of the ILP feasibility problem. We show that, on the positive side, if these subsystems have a small number of variables on which they interact with the remaining instance, then we can efficiently replace them by smaller subsystems of size polynomial in the domain without changing feasibility. Thus, if large parts of an instance consist of such subsystems, then this yields a substantial size reduction. We complement this by proving that relaxations to the considered structures, e.g., larger boundaries of the subsystems, allow worst-case lower bounds against kernelization. Thus, these relaxed structures can be used to build instance families that cannot be efficiently reduced, by any approach.Comment: Extended abstract in the Proceedings of the 23rd European Symposium on Algorithms (ESA 2015

    Simultaneous Feedback Vertex Set: A Parameterized Perspective

    Get PDF
    Given a family of graphs F\mathcal{F}, a graph GG, and a positive integer kk, the F\mathcal{F}-Deletion problem asks whether we can delete at most kk vertices from GG to obtain a graph in F\mathcal{F}. F\mathcal{F}-Deletion generalizes many classical graph problems such as Vertex Cover, Feedback Vertex Set, and Odd Cycle Transversal. A graph G=(V,i=1αEi)G = (V, \cup_{i=1}^{\alpha} E_{i}), where the edge set of GG is partitioned into α\alpha color classes, is called an α\alpha-edge-colored graph. A natural extension of the F\mathcal{F}-Deletion problem to edge-colored graphs is the α\alpha-Simultaneous F\mathcal{F}-Deletion problem. In the latter problem, we are given an α\alpha-edge-colored graph GG and the goal is to find a set SS of at most kk vertices such that each graph GiSG_i \setminus S, where Gi=(V,Ei)G_i = (V, E_i) and 1iα1 \leq i \leq \alpha, is in F\mathcal{F}. In this work, we study α\alpha-Simultaneous F\mathcal{F}-Deletion for F\mathcal{F} being the family of forests. In other words, we focus on the α\alpha-Simultaneous Feedback Vertex Set (α\alpha-SimFVS) problem. Algorithmically, we show that, like its classical counterpart, α\alpha-SimFVS parameterized by kk is fixed-parameter tractable (FPT) and admits a polynomial kernel, for any fixed constant α\alpha. In particular, we give an algorithm running in 2O(αk)nO(1)2^{O(\alpha k)}n^{O(1)} time and a kernel with O(αk3(α+1))O(\alpha k^{3(\alpha + 1)}) vertices. The running time of our algorithm implies that α\alpha-SimFVS is FPT even when αo(logn)\alpha \in o(\log n). We complement this positive result by showing that for αO(logn)\alpha \in O(\log n), where nn is the number of vertices in the input graph, α\alpha-SimFVS becomes W[1]-hard. Our positive results answer one of the open problems posed by Cai and Ye (MFCS 2014)

    An FPT algorithm and a polynomial kernel for Linear Rankwidth-1 Vertex Deletion

    Get PDF
    Linear rankwidth is a linearized variant of rankwidth, introduced by Oum and Seymour [Approximating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514--528, 2006]. Motivated from recent development on graph modification problems regarding classes of graphs of bounded treewidth or pathwidth, we study the Linear Rankwidth-1 Vertex Deletion problem (shortly, LRW1-Vertex Deletion). In the LRW1-Vertex Deletion problem, given an nn-vertex graph GG and a positive integer kk, we want to decide whether there is a set of at most kk vertices whose removal turns GG into a graph of linear rankwidth at most 11 and find such a vertex set if one exists. While the meta-theorem of Courcelle, Makowsky, and Rotics implies that LRW1-Vertex Deletion can be solved in time f(k)n3f(k)\cdot n^3 for some function ff, it is not clear whether this problem allows a running time with a modest exponential function. We first establish that LRW1-Vertex Deletion can be solved in time 8knO(1)8^k\cdot n^{\mathcal{O}(1)}. The major obstacle to this end is how to handle a long induced cycle as an obstruction. To fix this issue, we define necklace graphs and investigate their structural properties. Later, we reduce the polynomial factor by refining the trivial branching step based on a cliquewidth expression of a graph, and obtain an algorithm that runs in time 2O(k)n42^{\mathcal{O}(k)}\cdot n^4. We also prove that the running time cannot be improved to 2o(k)nO(1)2^{o(k)}\cdot n^{\mathcal{O}(1)} under the Exponential Time Hypothesis assumption. Lastly, we show that the LRW1-Vertex Deletion problem admits a polynomial kernel.Comment: 29 pages, 9 figures, An extended abstract appeared in IPEC201

    Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion

    Full text link
    Given a graph GG and a parameter kk, the Chordal Vertex Deletion (CVD) problem asks whether there exists a subset UV(G)U\subseteq V(G) of size at most kk that hits all induced cycles of size at least 4. The existence of a polynomial kernel for CVD was a well-known open problem in the field of Parameterized Complexity. Recently, Jansen and Pilipczuk resolved this question affirmatively by designing a polynomial kernel for CVD of size O(k161log58k)O(k^{161}\log^{58}k), and asked whether one can design a kernel of size O(k10)O(k^{10}). While we do not completely resolve this question, we design a significantly smaller kernel of size O(k12log10k)O(k^{12}\log^{10}k), inspired by the O(k2)O(k^2)-size kernel for Feedback Vertex Set. Furthermore, we introduce the notion of the independence degree of a vertex, which is our main conceptual contribution
    corecore