7,457 research outputs found

    Model Creation and Equivalence Proofs of Cellular Automata and Artificial Neural Networks

    Full text link
    Computational methods and mathematical models have invaded arguably every scientific discipline forming its own field of research called computational science. Mathematical models are the theoretical foundation of computational science. Since Newton's time, differential equations in mathematical models have been widely and successfully used to describe the macroscopic or global behaviour of systems. With spatially inhomogeneous, time-varying, local element-specific, and often non-linear interactions, the dynamics of complex systems is in contrast more efficiently described by local rules and thus in an algorithmic and local or microscopic manner. The theory of mathematical modelling taking into account these characteristics of complex systems has to be established still. We recently presented a so-called allagmatic method including a system metamodel to provide a framework for describing, modelling, simulating, and interpreting complex systems. Implementations of cellular automata and artificial neural networks were described and created with that method. Guidance from philosophy were helpful in these first studies focusing on programming and feasibility. A rigorous mathematical formalism, however, is still missing. This would not only more precisely describe and define the system metamodel, it would also further generalise it and with that extend its reach to formal treatment in applied mathematics and theoretical aspects of computational science as well as extend its applicability to other mathematical and computational models such as agent-based models. Here, a mathematical definition of the system metamodel is provided. Based on the presented formalism, model creation and equivalence of cellular automata and artificial neural networks are proved. It thus provides a formal approach for studying the creation of mathematical models as well as their structural and operational comparison.Comment: 13 pages, 1 tabl

    Formal Modeling of Connectionism using Concurrency Theory, an Approach Based on Automata and Model Checking

    Get PDF
    This paper illustrates a framework for applying formal methods techniques, which are symbolic in nature, to specifying and verifying neural networks, which are sub-symbolic in nature. The paper describes a communicating automata [Bowman & Gomez, 2006] model of neural networks. We also implement the model using timed automata [Alur & Dill, 1994] and then undertake a verification of these models using the model checker Uppaal [Pettersson, 2000] in order to evaluate the performance of learning algorithms. This paper also presents discussion of a number of broad issues concerning cognitive neuroscience and the debate as to whether symbolic processing or connectionism is a suitable representation of cognitive systems. Additionally, the issue of integrating symbolic techniques, such as formal methods, with complex neural networks is discussed. We then argue that symbolic verifications may give theoretically well-founded ways to evaluate and justify neural learning systems in the field of both theoretical research and real world applications

    Weighted Automata Extraction from Recurrent Neural Networks via Regression on State Spaces

    Full text link
    We present a method to extract a weighted finite automaton (WFA) from a recurrent neural network (RNN). Our algorithm is based on the WFA learning algorithm by Balle and Mohri, which is in turn an extension of Angluin's classic \lstar algorithm. Our technical novelty is in the use of \emph{regression} methods for the so-called equivalence queries, thus exploiting the internal state space of an RNN to prioritize counterexample candidates. This way we achieve a quantitative/weighted extension of the recent work by Weiss, Goldberg and Yahav that extracts DFAs. We experimentally evaluate the accuracy, expressivity and efficiency of the extracted WFAs.Comment: AAAI 2020. We are preparing to distribute the implementatio

    A New Oscillating-Error Technique for Classifiers

    Full text link
    This paper describes a new method for reducing the error in a classifier. It uses an error correction update that includes the very simple rule of either adding or subtracting the error adjustment, based on whether the variable value is currently larger or smaller than the desired value. While a traditional neuron would sum the inputs together and then apply a function to the total, this new method can change the function decision for each input value. This gives added flexibility to the convergence procedure, where through a series of transpositions, variables that are far away can continue towards the desired value, whereas variables that are originally much closer can oscillate from one side to the other. Tests show that the method can successfully classify some benchmark datasets. It can also work in a batch mode, with reduced training times and can be used as part of a neural network architecture. Some comparisons with an earlier wave shape paper are also made
    • …
    corecore