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Abstract 
 

This paper illustrates a framework for applying formal methods techniques, which 
are symbolic in nature, to specifying and verifying neural networks, which are sub-
symbolic in nature. The paper describes a communicating automata [Bowman & 
Gomez, 2006] model of neural networks. We also implement the model using timed 
automata [Alur & Dill, 1994] and then undertake a verification of these models using 
the model checker Uppaal [Pettersson, 2000] in order to evaluate the performance of 
learning algorithms. This paper also presents discussion of a number of broad issues 
concerning cognitive neuroscience and the debate as to whether symbolic processing 
or connectionism is a suitable representation of cognitive systems. Additionally, the 
issue of integrating symbolic techniques, such as formal methods, with complex 
neural networks is discussed. We then argue that symbolic verifications may give 
theoretically well-founded ways to evaluate and justify neural learning systems in the 
field of both theoretical research and real world applications. 
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Part 1 Introduction 
 
It is stated in [O’Reilly & Munakata, 2000] that cognitive neuroscience is the study of how cognition is 
derived from neural physiology. Cognition generally includes attention, perception, memory, language 
and reasoning [Eysenck, ]. Cognitive neuroscience differs from neuroscience because it stresses 
general principles underlying cognitive phenomena and the neurobiological mechanisms involved. 
Furthermore these principles can be embedded into models, which are abstractions of such 
experimentally identified phenomena expressed at a suitable level of biological detail. The models are 
explicit computational models that help researchers evaluate proposed mechanisms underlying 
observed human behaviour. Models also help to illustrate the causes of disordered behaviour since 
modification of the models can help to interpret the underlying mechanisms involved. 
 
There are two major streams of research on cognitive modelling: connectionism and the symbolic 
paradigms. In this section we introduce both paradigms, point out their limitations for modelling 
cognitive systems and for real world applications. Finally, we discuss the issue of integrating symbolic 
computation with connectionism. Note that, in the context of this paper, we use connectionism, neural 
network and sub-symbolic computation as synonyms. 
 
1.1 Connectionism 
 
In the first part of this section, we briefly explain a popular computational model of cognitive 
neuroscience: neural networks. In the second part of the section, we point out the limitations of 
connectionism. 
 
1.1.1 Neural Networks 
 
As recognized in [Zeidenberg, 1990], a neural network is a computational model, which is a directed 
graph composed of nodes and connections between the nodes. The nodes represent neurons or units. 
Each node is associated with a number that refers to the activation of the neuron. Another number is 
also associated with each connection. It is called the weight. Among these nodes, there are some 
special nodes with their activation set externally. These neurons are called the input neurons. There are 
some nodes that are distinguished as output neurons. The rest of the nodes are hidden neurons. The 
behaviour of the network is a function of the activations of nodes and of the weights on the 
connections. 
 
The activation of each neuron is based on the activation of the nodes that have directed connections to 
it, the weights on those connections and the neuron’s bias. The activations are then updated according 
to a rule. Therefore many computational models of nerve systems are directly based on such an 
approach. For example, the membrane potential updating rule of a prominent current connectionist 
modelling system PDP++ can be found in [O’Reilly & Munakata, 2000]. It is as follows: 
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which is a discrete simplification of the Hodgkin-Huxley equations [Koch, 1999]. Readers should refer 
to Appendix A for justification of this. In equation 1.1,  and )(tvm )1( +tvm  denote the membrane 
potential at time t and t+1 respectively. ,  and  denote the reversal potentials of excitatory, 
inhibitory and leak channels respectively.  ,  and  denote the excitatory, inhibitory and 
leak conductance respectively. As it is defined in [O’Reilly & Munakata, 2000], “the time constant 

 slows the potential change, capturing the corresponding slowing of this change in a neuron 
primarily as a result of the capacitance of the cell membrane”. Note, Equation 1.1 is recursive since the 
membrane potential is a function of itself. Given a constant input and other parameters, the membrane 
potential will always settle into a stable value, which is called the equilibrium membrane potential. If 
we assume that the inputs are presented to the network for a sufficient amount of time in order to allow 
the membrane potential to settle, we do not have to compute the membrane potential directly from 
Equation 1.1. Instead, we can compute the equilibrium membrane potential as follows: 
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Note, the equilibrium membrane potential is not a function of time. In the rest of the paper, we use V  
instead of computing the membrane potential v . This is consistent with the calculation of voltage in 
[O’Reilly & Munakata, 2000]’s neural network simulations. The kind of computational model we are 
interested in is a simplification and abstraction of known biology. In addition to Equation 1.2, there are 
two other equations as follows: 
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In Equation 1.3, the excitatory input  is a weighted sum of all the pre-synaptic activations coming 
into the neuron.  denotes the weight between post-synaptic neuron j and pre-synaptic neuron i. 

eg

ijw , β  
denotes the bias weight, which is divided by the number of inputs N. This ensures that the bias weight 
has the same amount of impact as other inputs. The computation of inhibitory input  will be given in 
the relevant part during the paper. We assume that , ,  and  are constants. Now we can 
calculate the membrane potential using Equation 1.2. The next step is the calculation of the neuron 
activation using Equation 1.4, where Θ  denotes the nominal threshold, and 
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γ  denotes the steepness 
parameter, which determines the steepness of the output function.  
 
So far we have introduced the updating rule for the activations of each neuron, next we have to address 
that the activations would be updated individually, thus the neural networks are massively parallel 
systems. Another aspect of neural networks is their ability to learn, i.e. neural networks adjust their 
weights according to a learning rule. The aim of learning is to train the network to complete or classify 
an input pattern or to compute a function of its input. We expect that the network performs badly at the 
beginning of learning and it performs well afterwards. Neural networks have static architectures and 
the update and learning rules do not change. Only the weights change and they are not changed after 
learning unless new knowledge must to be learned. There are a variety of learning rules (e.g. Hebbian 
Learning (CPCA rule), delta rule, Backpropagation (BP learning) and the generalized recirculation 
algorithm (GeneRec) [O’Reilly & Munakata, 2000]), which essentially use statistical properties of a set 
of input/output pairs to generalize. We will explain each of these learning algorithms in the relevant 
sections. 
 
1.1.2 Limitations of Connectionism 
 
Neural networks are one of the most successful computational models of cognitive neuroscience, 
especially Parallel Distributed Processing Systems (PDPs) [McClelland & Rumelhart, 1987]. However 
it has been pointed out by [O’Reilly & Munakata, 2000] that there is much to be discovered about 
learning, processing, representation in the brain and about how cognition emerges from the underlying 
neural mechanisms. One issue is the capability of neural networks to handle high-level cognitive tasks, 
such as natural language processing. Moreover there are many debates on whether neural networks are 
a suitable representation of the mind. It is argued in [Fodor & Pylyshyn, 1988] that there are three 
important features lying at the centre of these limitations, which prevent connectionist models from 
being suitable models of the mind. Thus, from their perspective, connectionism, are best viewed as 
methods to implement classical cognitive architectures, such as systems based on symbolic paradigms.  
 

• Neural networks have limited compositional structures. It can be seen that connectionist 
theories acknowledge only casual connectedness, such as activations and weights, which are 
primitive relations among nodes. If connectionist models do not acknowledge the 
compositionality of mental representation, they can not explain the systematic and productive 
features of language and the mind, such as: Jack shot the deer eating the grass, which is of the 
syntactic type . However, classical theories acknowledge not only causal )),(,( cbgaf
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relations but also structural relations. It is argued in [Fodor & Pylyshyn,1988] that 
connectionist graphs are not structural descriptions of mental representations but the 
specifications of causal relations, i.e. an arc from node A to node B can only refer to the fact 
that the state of B is causally affected by the state of A. So it is not true to think that neural 
networks can represent the mind as a combinatorial constituent structure and a combinatorial 
semantics.  

 
• Neural networks are not sensitive to structure processing. It is stated in [Fodor & Pylyshyn, 

1988] that certain features of the syntactic structures in mental representation correspond 
systematically to certain of their semantic features. For example: ¬(P ∧ Q) is logically 
equivalent to (¬P ∨ ¬Q), the operation of distributing negation can be performed if it has the 
above form and the structural form is the only condition allowing the operation. So one can 
believe that the correct model of the mind would be able to apply the above inference to any 
representation with the form ¬(P ∧ Q) and transform it into a representation of the form (¬P 
∨ ¬Q). However it is argued by [Fodor & Pylyshyn, 1988] that neural networks do not have 
such ability because they can not constitute mental processes that are sensitive to the 
combinatorial structure of the representations on which they operate. 

 
• Finally, it is also difficult to abstract generalized expressions and extract knowledge (rules) 

from trained neural networks. The most important operation that neural networks have is 
learning, which is basically a form of statistical modelling. But the structure of the 
representation of an input is not a factor in determining a corresponding output due to the 
above limitations. Consequentially, current neural networks are unable to derive an inference 
through learning, such as: If Tom jumps, someone jumps, which is of the syntactic type 

. )()( xfxaf ⋅∃→
 
In addition, distributed representations are used in most of the connectionist models, such as PDP++ 
models. With a distributed representation, a neuron takes part in the representation of a concept or a 
number of concepts. In contrast, in a localist representation, individual neurons denote specific 
concepts. A drawback in using PDP++ neural network models to represent the mind is that distributed 
data in neural networks is hard to interpret. As discussed in [Callan, 1999], in order to learn something 
new from a trained network or to gain confidence in the network’s ability, we should know what 
knowledge the network is using to perform tasks. In order to view the knowledge, we need to know 
how the network reorients information. Then there is the question of what it is that individual neurons 
and weights represent. However, activations in the hidden layer with distributed representations are 
hardly interpretable and changing the value of a single parameter may have a significant but largely 
unpredictable effect in the whole network. The difficulty of interpreting distributed data within a neural 
network creates the problem that researchers may fail to implement a network which should achieve 
something useful as it was designed to, due to the fact that there are too many parameters which affect 
the whole network and have extremely complex interdependency. For example, it may take a long time 
to get the network into a stable state by tweaking parameters if an attracter network falls into an 
oscillatory behaviour. More seriously, the attractor network may not provide a parameter setting that 
makes it stable. 
 
1.2 Symbolic Paradigms 
 
There are many symbolic intelligent systems, for example an algorithm that is designed to perform 
searching, which is a fundamental part of traditional AI. Another class of symbolic system is the rule 
based production systems such as expert systems and programming languages like Prolog [Bratko, 
1986] or Lisp [Norvig, 1992]. There are also some production system based symbolic models of the 
mind, such as SOAR [Newell, 1990], ACT-R [Anderson, 1993] and EPIC [Meyer & Kieras, 1997]. We 
are interested in Formal Methods and it is the major symbolic technique we used in the current research 
to break new ground in cognitive neuroscience. In this part of the section we introduce symbolic 
processing in general and its limitations in respect of cognitive modelling. In the following section, we 
also discuss the issue of integrating connectionism with symbolic processing, especially applying 
Formal Methods to neural networks. 
 
1.2.1 Symbolic Processing 
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Symbols can be regarded as variables, which can refer to one thing at one moment and another at 
another. Furthermore, a symbol is a representation of a thing at the conceptual level. Symbolic 
processing tends to have variables that denote concepts, such as “words”. A cognitive model is 
considered to be symbolic if it acknowledges Newell and Simon’s Physical Symbol System Hypothesis 
[Newell & Simon, 1976]. This hypothesis argues that intelligence is isomorphic with a physical system 
that manipulates symbols. So intelligent systems, by this definition, explicitly require the following 
features:  
 

• The systems have elements representing information in the external world. 
 

• Some other elements can manipulate that representation.  
 
This hypothesis states that symbolic processing is the key requirement of high-level cognition. Hence, 
it is discussed in [Callan, 1999] that traditional AI, such as symbolic paradigms, assumes that it is 
theoretically possible to construct a mind out of a computer. In order to use computer programmes to 
derive intelligent systems, research has to account for these topics, i.e. the representation of data, the 
ability to reason and the ability to learn.  
 
Symbolic systems are good at manipulating, explaining and reasoning about complex data structures. 
In [Callan, 1999] it is pointed out that there is some attraction to symbolic cognitive systems. Firstly, 
the knowledge or rules are visible. Secondly, large systems can be composed from small structures. 
Thirdly, symbolic representations facilitate generalization and the abstraction of knowledge. As we 
have explained in the previous sections, these points are not true for the mainstream of connectionist 
models. 
 
1.2.2 Limitations of Symbolic Paradigms 
 
The drawbacks of using symbolic processing to model the mind are as follows: 
 

• The representation of knowledge can be explicit or implicit. Symbolic processing requires 
knowledge to be represented explicitly using symbol structures. However, understanding how 
knowledge is represented in the brain is the theoretical basis for symbolic representations. 
Unfortunately, how symbols emerge from the brain remains unknown. This problem is more 
significant for representing implicit knowledge. Taking a procedural memory task as an 
example, it is not possible to produce a document about how to ride a bicycle that a child can 
read then recall to ride the bicycle successfully. Such knowledge is indeed obtained from 
experience of training, and it is unclear how such a set of rules could be represented 
symbolically. 

 
• Symbolic paradigms attempt to use a set of rules to guide programs to perform reasoning 

thereby handling novel situations and making “rational” decisions. However, a difficulty with 
this approach is that the knowledge domain to a target problem is sometimes unbounded, 
namely it is not possible to predict how many rules need to be included. It is hard for a 
designer to foresee how much knowledge is required and also hard to validate a design that 
performs adequately. It is even more difficult when we require implicit knowledge to be 
expressed by symbol structures. Hence, symbolic processing is at present unable to express 
solutions for all tasks explicitly through the formulation of a suitable computer program. 

 
• As discussed in [Lewis, 1999], symbolic paradigms are distinguished from connectionism 

because they require that cognitive systems have the ability of composing and manipulating 
symbols and their structures, extracting novel structures that may be composed and 
interpreted, and denoting executable processes according to their structures. This hypothesis 
attempts to explain the emergence of high-level cognition such as rational thinking, logical 
inference and natural language understanding. However it lacks grounding in biology, namely 
how symbols and symbolic processing that represents intelligent behaviours emerge from 
biological systems. It does not take into account how the low-level processes interact with 
high-level processes. 

 
1.3 Integration of Symbolic and Sub-symbolic Computations 
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As we have discussed in previous sections, neither symbolic nor sub-symbolic computations are 
completely appropriate models of the mind. This paper servers as an initial step towards integrating 
symbolic and neural computation. Our motivations are justified from a cognitive point of view on the 
one hand, and an engineering application point of view on the other hand. 
 
1.3.1 Cognitive Viewpoint 
  
[Barnard & Bowman, 2004] suggested that one of the motivations of integrating symbolic and sub-
symbolic computation is to specify and justify behavior of complex cognitive architectures in an 
abstract and suitable form.  
 

• Firstly, numerous theories assume that mental modules, or their neural substrates, are 
processing information at the same time. Hence, any realistic architecture of the mind must be 
concurrent at some level.  

 
• Secondly, the control of concurrent processing can be distributed. So, cognition should be 

viewed as the behavior that emerges from interaction amongst independently evolving 
modules. Most traditional AI approaches fail to acknowledge the requirements of concurrent 
and distributed control. This is because they tend to be prescriptive and are built around 
centralized memory and control algorithms [Newell, 1990; Anderson, 1993; Meyer & Kieras, 
1997]. 

 
• Finally, [Fodor & Pylyshyn, 1988] argued that hierarchical decomposition is needed in order 

to reflect the characteristics of the mind.  
 
Although connectionist networks are commonly regarded as concurrent and distributed, they are 
typically limited to only one level of concurrently evolving modules. The primitive elements of neural 
networks are neurons but not neural networks. To some degree, it is hard to construct and understand 
large architectures without hierarchical structuring. In certain respects, modeling based on neural 
networks is low-level in character, i.e. it is hard to relate to primitive constructs and data structures 
found in high-level notations preferred by the symbolic modeling community. We have stated in the 
previous sections that a major problem with neural networks is their lack of compositional structure. It 
has been agued by [Fodor & Pylyshyn, 1988] that compositional structure is one of the key features 
required in order to represent cognition. For example, box and arrow diagrams are usually used to 
represent interactions between mental modules or subsystems. The box and arrow diagram 
representations are essentially compositional structures, i.e. each box represents a mental module, 
which may be composed to express larger modules.  
 
It has been argued by [Barnard & Bowman, 2000] that computational formalisms and tools are needed 
for modelling complex mental architectures. Related work has been performed by [Barnard & 
Bowman, 2000] and [Gibson, 1993] at different levels of abstraction in order to show the power of 
such formalisms. Although their work has little in common, they both use the same formal language: 
LOTOS [Bolognesi & Brinksma, 1988]. The former has discussed the relationship between such 
formalisms and neural networks approaches, particularly the pitfalls of using neural networks to 
construct big mental architectures such as Interactive Cognitive Subsystems (ICS) [Barnard & 
Bowman, 2000]. They also provided an illustration of modeling a high-level cognitive architecture 
using formal methods. Their model contains a set of top-level modules that are connected by 
communication channels. Modules interact by exchanging data items along channels. Control is 
distributed and each module evolves independently. They also suggested encoding low-level neural 
networks using the same method, and formally relating models at different levels of abstraction.  
 
In this paper, key constructs within neural networks are encoded at two levels of description, which 
have characteristics of symbolic systems. The low-level descriptions use neural networks encoded in 
communicating automata. We argue that this formalism sits between classical forms of symbolic 
systems arising from programming languages such as Lisp and Prolog, and connectionist networks. We 
will explain these models in Part 2 and 3. The high-level descriptions contain a set of properties, which 
are expressed in logical formulae. They are abstract descriptions of global properties, which do not 
prescribe internal details of how those properties are realized. We will explain these models in Part 4. 
Computer scientists have developed a number of theories and tools to automatically justify the 
relationship between different levels of description within a formal framework. Our models prescribe 
low-level internal structure, which we hypothesis can be used to explore complex interactions within 
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neural networks and to justify whether high-level properties can emerge from low-level constructs. 
Examples of this approach are demonstrated in Part 5.  
 
1.3.2 Application Viewpoint 
 
Symbolic systems are good for manipulating, explaining and reasoning about complex data structures, 
but neural networks are good at dealing with complex highly non-linear systems, especially in handling 
catastrophic changes or gradual degradations. It is argued by [Schumann et al., 2003] that neural 
networks can be applied to extending traditional controllers, which are ineffective in some systems, 
including aircrafts, spacecrafts, robotics and flexible manufacturing systems. These systems are 
sometimes called adaptive systems, which mean that their functions evolve over time and they are able 
to improve their performance through learning. Furthermore, adaptive systems are autonomous, i.e. 
they have to deal with unforeseen circumstances using local capabilities. Neural network based 
controllers have demonstrated a superior ability to control adaptive systems, which sometimes includes 
on-line learning systems [Napolitano et al., 1998]. These controllers are most often used in 
safety/mission critical domains. However, the correctness of adaptive on-line learning systems must be 
guaranteed. This is because it is not possible to adapt toward controllable behaviours when the system 
has changed beyond a critical point. This is also because the system has to dynamically react to 
changes within short periods of time, e.g. the controller has to output the control signal within the 
periodical sampling interval. So, this requires that the learning processes converge before a pre-
specified deadline. 
 
Unfortunately, the slow speed of learning is one of the greatest limitations of current learning 
algorithms. For example, the standard BP algorithm often requires the training patterns to be presented 
hundreds or thousands of times in order to solve a relatively simple task. Furthermore, connectionist 
networks rarely provide any indication of the accuracy and reliability of their predictions. As long ago 
as 1988, [Fodor and Pylyshyn, 1988] pointed out that the neural networks approach remained almost 
entirely experimental. Although a great deal of mathematical work has been done, it is still not 
sufficient from the analytical point of view to justify that certain configurations of neural networks and 
their mechanisms are reliable. It is also critical to provide safety, especially stable, guarantees to 
learning algorithms. Integrating neural networks with symbolic paradigms, e.g. traditional AI, 
Predicate Calculus or Formal Methods, could overcome these issues, thus in the latter part of this work 
we try to apply a strongly mathematically based technique, Formal Methods, to encoding and analyzing 
neural networks. Why we have chosen this approach will become clear shortly. 
 
1.4 Formal Methods and Model Checking 
 
Following the discussion in [Ibrahim et al, 1990], a specification expresses the functional and non-
functional requirements of a system, which could be a piece of software or a neural network. It states 
what the target system is intended to achieve and the attributes or features the system must possess. 
Such specifications are used for validation and verification purposes. It is validated to assure that the 
specification represents the intended use of the system and that the system as specified will meet its 
objectives. Hence, the specification forms a basis for developing a design of a system that can be 
verified against the validated specification. 
 

refine 
done 

check nextmodify 

formalisingmodelling 

Real System Requirements 

Verifier 

Model of System 
(possible behaviours)

Requirements Spec.
(desired behaviours)

Counter-example Yes 

 
Figure 1 Model Checking 

 
In resent years, model checking has become a useful technique for verifying properties of finite state 
concurrent systems, i.e. systems in which the variables range over finite domains. The methodology of 
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traditional model checking is presented schematically in Figure 1. The real systems such as neural 
networks or cognitive systems modelled in other forms are modelled using a formal language, which 
describes the possible behaviour of the system. The initial model may not be accurate. We also propose 
a set of requirements of the system. They are expressed in logical formulae. Computer scientists have 
developed a number of theories and tools, such as verifiers. The model and requirement specifications 
are inputted to the verifier. The verifier automatically assesses the relationship between them and 
outputs either a positive or a negative result, if there are sufficient resources. The verifier also has the 
facilities for generating traces, such as witnesses/counter-examples. 
 
One question is, can we use formal methods and their rich tool support to develop computational 
models of neuroscience from the scope of a single neuron to high-level cognitive mechanisms. 
Moreover is it possible to apply automatic checking and analytical methods such as model checking to 
understand the complicated behaviour of neural networks? Another question is, can we develop 
methods, which integrate the advantages of both formal methods and conventional techniques used by 
neuroscientists, such as box and arrow diagrams and neuron networks. The aim of this paper is not to 
solve any of these questions completely, but to discuss the possible ways of looking at these questions 
and determining what is the most critical area, where we need to integrate different techniques.  
 
As a preliminary assessment of our approach, this paper also describes a study, which applies formal 
methods techniques to evaluating learning using automatic analysis, i.e. model checking. Formal 
methods are strongly based on logic and they have rich tool support. Formal methods have shown their 
power in software engineering and various areas, where correctness and effectiveness of computer 
systems need to be guaranteed. So they can, for example, be used in designing distributed systems 
[Wu, Chanson & Gao, 1999] and [Bowman & Derrick, 2001], electronic hardware [Silver & 
Brzozowski, 2003] and traffic signal systems [Damm, 2001]. In these areas, there are similar problems 
and requirements in respect of modelling complex interactions among components with distributed 
control. Another advantage of using model checking to validate and verify on-line adaptive systems is 
that the model checker is autonomous. So, it can be applied along side the learning systems without 
human interaction. The learning systems may encounter unforeseen circumstances. Hence, any kind of 
prior verification may be infeasible. The model checker could validate the parts of the system, which 
will be affected by adaptive learning before the actual learning is committed. We will demonstrate a 
simplified model in Part 5. 
 
There are also many papers [Fodor & Pylyshyn, 1988] and [Callan, 1999] about the compositionality of 
neural networks and recursive auto-associative memories (RAAM) [Pollack, 1990]. They consider one 
or both of the two questions mentioned above. There is also work on integrating neural networks and 
symbolic rules. In [Garcez, Broda & Gabbay, 2002], symbolic systems provide the neural networks 
with the background information needed for learning, and the information embedded in neural 
networks is extracted in symbolic forms. In their work, logic is regarded as a very useful tool in helping 
to explain a neural network’s inference process and in formalising their learning and generalisation 
mechanisms. A similar framework to our approach was presented by [Smith, 1992] in a general 
mathematical setting. But his work did not consider automatic simulation or verification. 
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Part 2 Communicating Automata Model of Neural Networks 
 
In this section we present a general framework for modelling neurons. When modelling cognitive 
systems, abstractions are highly encouraged to just capture the most significant elements in the real 
system and omit implementation and biological details. This kind of abstraction is also a basic method 
in any science including computer science and neuroscience.   
 
In order to model a neural network, it is essential to specify the behaviour of a single neuron. We have 
chosen formal methods, especially communicating automata to specify neural networks. The system is 
a composition of communicating automata. Accordingly, a single neuron is modelled as an automaton. 
This model also needs to be general enough in order to capture the most important elements of a 
neuron. This formalism of connectionist networks is a symbolic system, which can be used to 
understand connectionist systems. The models are formalisations of neuron networks, which can be 
used to see whether this abstraction can perform the computations that real neuron networks can 
perform.  
 
2.1 Communicating Automata and Notations 
 
Before we present the model, we introduce the specification notation used. It contains features of timed 
automata [Alur & Dill, 1994], along with features from classic communicating automata, such as data 
passing communication channels. This kind of notation is a form of communicating automata, which 
has data passing actions and mathematical equations associated with transitions. This notation includes 
signatures, which define the data structures of the automata, and a behaviour expression, which is 
represented in graphs like timed automata. We will explain the graphs at relevant parts during the 
section. 
 
In the context of this paper, a communicating automaton is a tuple ),,( TlL , where: 
 

L defines a finite set of locations, which are denoted as nodes in diagrams. 
 
l  is an initial location, which is denoted as a node with a smaller circle inside, see the Input 
location in Figure 2. 
 
T is a transition relation, elements of which have the form ),,,,( lagl ′E , in which , g 

is a guard, 

Lll ∈′,

A∈a  is an action, )(}{ DG ×∪= τA , which defines the set of all data passing 
declarations, where ∗=DD , i.e. all tuples that can be generated from elements of D .  is an 
effect set. When guard g holds, action a can be performed and if it is performed, assignments 
in set  will be made. a can be either a communication action or an internal action, denoted 

E

E
τ . Communication actions have the following general form: 

 

mde ,  
 

where e is a gate name, i.e. G∈e , G  denotes the set of all gate names, mm ddd L1=  is a 
vector of data passing declarations. There are two types of declarations: a value declaration 
and a variable declaration, as follows:  
 

nDeclaratioVariablenDeclaratioValue __ ∪=D . 
 

A value declaration is defined as the following: 
 

ExnDeclaratioValue !:_ , 
 

where Ex is a value expression, e.g. ! )35( + , ! )6( ×y  and ! .  )(true
 
A variable declaration is defined as the following: 
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xnDeclaratioVariable ?:_ , 
 

where  is a name of a variable and Name represents all the names of variables 
appearing in the network.  

Namex ∈

 
Note that communication actions are similar to value passing actions in LOTOS [Bolognesi & 
Brinksma, 1988], but we do not introduce new variables in actions. Data and their types have 
to be defined in the data declaration. So unlike value passing actions in LOTOS, 
communication actions in our notation do not reference types. 
 

The notation we use to describe our communicating automata contains a number of conventions. In 
particular, we use a Parameterised Loop notation, i.e. 
 

E
a
g

XZ ∈
 

 
where , g is a guard, a is an action,  is an effect and each of g, a and E  typically 
contain references to Z. The above notation denotes that there are n self loops; each of them is 
associated with an instantiation of the variable Z with an element from the set X. In addition, the scope 
of Z only applies to this self loop and expressions associated with this self loop, such as g, a and E . 
Thus the following are equivalent. 

},,,{ 21 nxxxX L= E

 

E
a
g LL

XZ ∈ ≡

}{
}{
}{

Zx
Zxa
Zxg

n

n

n

E
}{
}{
}{

1

1

1

Zx
Zxa
Zxg

E

}{
}{
}{

2

2

2

Zx
Zxa
Zxg

E

 
 
where }{ yxt  denotes a substitution, which replaces all occurrences of y in the expression t by x. We 
will give semantics to the communicating automata after an example, which is shown in the next 
section. 
 
2.2 Neuron Automaton 
 
In this section, we explain one example of how to model neural networks, inspired by [O’Reilly & 
Munakata, 2000], using communicating automata. This model is biologically plausible in one 
important sense, i.e. the neurons are automata and control of the network is distributed into each 
individual neuron rather than centralized. This is in contrast with traditional neural network 
simulations, which act over a globally accessible model of the entire network. In other senses, this 
model is biologically plausible for the following reasons. The excitatory and inhibitory inputs are 
explicitly separated and weights do not change sign during learning.  
 
2.2.1 Global Declarations 
 
Global declarations define the set of global constants and variables. In our communicating automata 
model of neural networks we define set G containing global constants that are shared by the whole 
network. Set G is defined as follows: 
 

}:,:,,,,{:: 1
0

+Θ= NR γglElEiEeG , 
 
where  is the reversal potential of excitatory channels,  is the reversal potential of inhibitory 
channels,  is the reversal potential of leak channels,  is the leak conductance, Θ  is the nominal 
firing threshold, 

Ee Ei
El gl

γ  is the steepness parameter, which determines the steepness of the output function, 
 denotes real values in the range 0 to 1, and  denotes the positive natural numbers. There are no 

global variables in this model. Explanation of these parameters has been presented previously. 

1
0R

+N
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2.2.2 Neuron Automaton Definition and Local Variable Declarations 
 
The signature or the “header” of a neuron automaton is defined as follows: 
 

],,[ EVCNEURON , 
 
where  are three sets of arguments for this automaton. This expression is called the signature of 
the neuron. We will explain each of these sets in detail. 

EVC ,,

 
Set C is the set of variables that are evaluated at the construction stage of each neuron automaton. 
Values in this set can vary between neurons but they can not be changed in the lifetime of each neuron. 
The lifetime of a neuron process starts from the construction of the process to the termination of the 
process, also any learning stage that might be included. Set C is defined as follows: 
 

)}(:,,:{:: IdpostIdspreIdsIdkC P= , 
 
where k is the identity of this neuron automaton. The type of the identity is Id, and neuron identities are 
assumed to be unique.  preIds is the set of pre-synaptic neuron identities and postIds is the set of post-
synaptic neuron identities. )(IdP  denotes the power set of Id.  
 
Set V is the set of variables that are local to each neuron automaton. Values in this set are subject to 
change over time. These variables are key to describing the dynamics of the neuron. Set V is defined as 
follows: 
 

}:,,,,,:,:{:: 1
0

1
0

1
0 RRR hVmgigeIdIdwIdinV β→×→= , 

 
where in is a function, the domain of in is the set preIds, for example, in  would denote the pre-
synaptic activation with respect to a pre-synaptic identity 

sypre _

preIdssypre ∈_ . w is also a function, for 
example,  would denote the weight with respect to the identity of this neuron k and a pre-
synaptic neuron identity pre_sy. 

syprekw _,

β  is the bias weight that denotes the baseline differences in 
excitability between different neurons, ge  is the excitatory input conductance,  is the inhibitory 
input conductance, Vm  is the equilibrium membrane potential and h is the activation of this neuron.  It 
has been discussed previously that we do not compute the membrane potential directly using Equation 
1.1. We use the equilibrium membrane potential in Equation 1.2 instead, because we assume that the 
inputs are presented to the network for a sufficient amount of time in order to allow the membrane 
potential to settle.  

gi

 
There are other variables that are used in the automaton but they do not relate to neurobiology. These 
variables are included because of the requirements of modelling; therefore the elements may be 
different between implementations. We introduce them in the set E, which is defined as follows: 
 

},:,_,_),(:{:: LIdisypostsypreIdtempIdsE P= , 
 
where tempIds is a set of identities used temporally, it is the set of unprocessed pre-/post-synaptic 
neuron identities. pre_ sy is the identity of a specific pre-synaptic neuron and post_ sy is the identity of 
a specific post-synaptic neuron. i is used together with quantification. It should be noticed that the 
specification of this set is not completed because extra elements can be added in order to enable 
additional functionality to be incorporated, such as learning or other mechanisms, which can be seen 
later. 
 
2.2.3 The Graph Illustrations 
 
The behaviour expressions of communicating automata are defined in graphs. A neuron automaton can 
be seen in Figure 2. Initially the arguments are set to be as follows: (Most of these figures are 
employed in [O’Reilly & Munakata, 2000].) 
 

 11



• k can be assigned to any identity as long as it is distinct from any other neuron; 
 

• preIds and  postIds depend on the connectivity of the network; 
 

• ,  and  are 1.00, 0.15 and 0.15 respectively; Ee Ei El
 

•  can be initialised as required in specific models; gl
 

•  is set to be 0.25 in most of the models; Θ
 

• γ  is 10 for membrane potentials in the range between 0 and 1; 
 

• initially, 0:=⋅∈∀ ; iinpreIdsi
 

• in most of the models,  and syprekw _, β  are initially randomly distributed around 0.5, which 
allows the learning rule to effectively focus learning on those neurons which are more labile. 
These neurons are in the sensitive middle range of the sigmoid function. Consequently, a 
weight change will have a dramatic effect [O’Reilly & Munakata, 2000]; 

 
• ge , , Vm  and h are zero initially, however it is more plausible to set Vm  initially to the 

resting potential, which has the value of 0.15; 
gi

 
• initially, tempIds ; and preIds=:

 
• pre_ sy and post_ sy are zero initially. 

 
As is shown in Figure 2, the neuron automaton has three locations: Input, Middle and Output. In the 
initial location, Input, a neuron gets all inputs from its input channels. We express value passing actions 
as follows: 
 

sypreinksypreport _?!_! , 
 
where port is the gate name, ! ,  and  are data passing declarations. The data 
declarations identify the nature of the communication to be made, i.e. working from left to right, the 
first declaration denotes the pre-synaptic neuron with respect to this communication, the second 
declaration denotes the post-synaptic neuron and the third declaration receives the activation value 
transmitted over the link. In this particular case, !  and !  are value declarations, but ?  is 
a variable declaration. Value declarations in this channel are used to achieve value synchronisation, i.e. 
interactions are only allowed in which pre_ sy  (the identity of the pre-synaptic neuron) and k (the 
identity of this neuron) are in the appropriate slots. Then in  is bound to the appropriate value of 
the matched pre-synaptic neuron’s activation. This is called value passing. (We will come back to this 
point when we explain the Output location, where this value synchronisation and value passing will 
become clearer.) The associated effect is an assignment, that is, 

sypre _ k! syprein _?

sy_pre k

sy_

syprein _

pre

 
}_{: sypretempIdstempIds −= , 

 
which indicates the completion of getting input from the pre-synaptic neuron with identity pre_ sy, thus 
this identity can be subtracted from  the set tempIds. Once inputs have been made from all pre-synaptic 
neurons, the following guard will hold. 
 
 
 

φ=tempIds

Thereby, the neuron automaton takes a transition, computes the excitatory conductance  ge  and the 
membrane potential Vm  and then moves to the next location Middle. The computations of ge  and Vm  
are taken form [O’Reilly & Munakata, 2000]. They are as follows: 
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preIds
winge

preIdsi
iki #
)(: ,

β
+×= ∑

∈

 and (2.1) 

 

glgige
ElglEigiEegeVm

++
×+×+×

=: .  (2.2) 

 
From Equation 2.1, we can see that the products of activations and weights are computed post-
synaptically. If X is any finite set, #X is a natural number denoting the cardinality of, i.e. the number of 
elements in, X. The  in the function is reserved for future use, it is set to zero in this model. Finally, 
tempIds is assigned to postIds. 

gi

 
It is also important to know that the main function of a dendritic tree is to integrate information from its 
pre-synaptic neurons. The integration can be regarded as two basic simultaneous processes, i.e. space 
integration and time integration. Space integration is that the dendrite summarises the inputs from 
different pre-synaptic neurons at a given moment, while time integration deduces the result of space 
integration according to a function of time, typically through time averaging. The model we present 
ignores time integration. The neuron only “receives” its input at particular points of time, i.e. the 
moments that two neurons interact via value passing channels. Time integration could be modelled 
using timed automata, it would increase the state space of the system dramatically and automatic 
analysis is likely to be intractable. 
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Output

Input 

tempIds
sypre ∈_

preIdstempIds
tempIds

=
=
:

φ

tempIds
sypost

∈
_

postIdstempIds
glgige

ElglEigiEegeVm
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tempIds

preIdsi
iki

=
++

×+×+×
=

+×=

=

∑
∈

:

,:

,
#

)(: ,

β
φ

}_{:
!_!!

syposttempIdstempIds
hsypostkport

tempIds

−=

≠ φ

}_{:
?!_! _

sypretempIdstempIds
inksypreport

tempIds
sypre

−=

≠ φ

)(1
1

Θ+−+
=

Vme
h

γ

 
Figure 2 A General Neuron Automaton 

 
The activation h is evaluated using a soft threshold sigmoid non-linear function, as follows:  
 

)(1
1

Θ+−+
=

Vme
h

γ
. (2.3) 

 
This function is illustrated in Figure 3. 
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Figure 3 The Soft Threshold Sigmoid Non-linear Function, 10,25.0 ==Θ γ  

 
In the next location, Output, the neuron sends its activation through output channels. We express the 
value passing action as follows: 
 

hsypostkport !_!! , 
 
Where, as was the case previously, port is the gate name, ! , and  are data passing 
declarations. In this particular case, ! ,  and  are all value declarations. The value 
declaration of !  in this channel is used to achieve value synchronisation, i.e. only the matched 
post-synaptic neuron that has the identity 

k sypost _! h!
k sypost _! h!

sypost _
sypost _ can enable interaction on this channel. Through this 

synchronization, the value of k will be bound to the pre_ sy value in the matched post-synaptic neuron 
and h will be bound to in  in the post-synaptic neuron’s input. After passing the values, the 
identity post_ sy is subtracted from the unprocessed identities set tempIds, in order that activation is 
sent to a different post-synaptic neuron on the next cycle through the self-loop. However, the guard:  

sypre _

 
φ≠tempIds  

 
will be false when it finishes outputting to all its post-synaptic neurons. Then it will not be able to 
perform the self loops any more and will take the alternative transition. The guard of this transition,  
 

φ=tempIds  
 
holds at this point of time. Taking this transition involves assigning to the set tempIds:  
 

preIdstempIds =:  
 
and returns the neuron automaton to the initial location, Input. 
 
2.3 Semantics 
 
We assume our system of neural networks is described as a vector of communicating automata, which 
we semantically interpret as a labelled transition system ( , where  ),, 0 →sS
 

• Σ×××××⊆ )( 1 ni LLLS LL  defines the set of states in the labelled transition system.  
indicates the set of locations of the automaton i, and 

iL
Σ  denotes the set of all possible global 

data states. Explicitly, a state is represented as σ,nV , which denotes a vector of n locations, i.e. 

nll ,,1 L , applied to σ , Σ∈σ . Thus nV  is of the form nll ,,1 L  and a global state is 
indicated by the locations of each automaton and a global data state. 
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• ),,,,,( 10 σni llls LL=  defines the initial state. il  indicates the initial location of the 

automaton i and σ  indicates the initial data state. 
 

• SAS ××⊆→  is the transition relation defined by the following inference rules: 
 

Internal action rule: 
 

li
nn

g

VV
glili

′→→
′ →

)(,,

,, )(),(),(

σ
τ

σ

τ σ

E

E

, where 

 
•  indicates that automaton i is in location l; ),( li

 
• guards are interpreted as predicate functions, i.e. Booleang →Σ: ; 

 
• τ  is the internal action; 

 
• effects are interpreted as functions, i.e. Σ→Σ:E ; 

 
• li

nV ′→  defines a substitution notation as follows: 
 

n

li

ni llllll ,,,,,,,, 11 LLLL ′=
′→ . 

 
The consequence of substitution is that the automaton i is in location l′ . 

 
Communicating action rule: 

 

rjli
uun

uue
n

mmmmmm

degdeg

mm

mm

mm

VV
uudevaludevaluggji

rjrjlili

′→′→
′∝′

′Ω

′′′

 →
′=′=′=′≠

′ →′ →

,
))),,(((,

),(.
,

,,,,

),(),()()(
),(),(),(),(

σσ

σσσσ

EE

EE

&  

 
Where: 
 

mde  denotes a gate name e  and a vector of data passing declarations G∈ mm ddd ,,1 L= ; 
 

TupleValuePartialeval __)(: →Σ××× DD K , where D  denotes data passing declarations, 
which was defined previously and  is the set of all partially evaluated 
tuples, where elements of the tuples are either variable declarations or values, thus 

Tuple_ValuePartial _

 
),(,),,(),,,( 11 σσσ mm devaldevalddeval LL = , where 

 
)(),(! σσ ExExeval =  and 

xxeval ?),(? =σ , 
 
where expressions are interpreted as functions from global data states to values, i.e. 

valueEx →σ: . 
 

BooleanTupleValuePartialTupleValuePartial →×= ____:& , thus partial value tuples:  
 

mm uuuu ′′= ,,,, 11 L&L

?(()?? jj uyux
 iff 

)))?(()1( jjjj uuyuxumjj ′=⇒≠′∧≠∧=′∧=¬⋅≤≤∀ ; 
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TupleValueTupleValuePartialTupleValuePartial _____: →×Ω ,  
where Value )(_ valuevalueTuple ××= K  and: 
 

),(_,),,(_),,,( 1111 mmmm uuvalgetuuvalgetuuuu ′′=′′Ω LLL , where 
 

vuvvalget =),(_  and 
vvxvalget =),(?_ ; 

 
Σ→Σ××∝ TupleValuePartialTupleValuePartial ____: , thus  

 



 =′∧=∨=′∧=⋅≤≤∃

=

′′∝⋅∈∀

otherwisex
xuvuvuxumjjifv

xuuuuNamex
jjjj

mm

),(
))?()?(()1(,

))(,,,,( 11

σ

σLL
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Part 3 Timed Automata Models of Neural Networks 
 
In this section we change the notation from communicating automata to timed automata, which is 
necessary to enable simulation and verification in Uppaal. These two notations differ in their handling 
of value passing channels, which Uppaal timed automata do not support [Pettersson, 2000]. They also 
differ in the data types provided, i.e. Uppaal does not provide real numbers. In this section, leaning 
algorithms such as the CPCA rule, delta rule, BP learning and GeneRec algorithm [O’Reilly & 
Munakata, 2000] are explained and applied in these models. In addition, the environment of neural 
networks and kWTA inhibition are also explained and applied in the relevant models. These models are 
directly derived from the general neuron automaton that was presented in previous sections. Although 
these models are composed of neuron-like automata and other automata defining other mechanisms, it 
is not necessary to specify every system using neuron level units. We also introduce some additional 
notation for this section.  
 

• All Bold variables, e.g. , w test  and , represent global variables, which are visible to all 
automata. These variables are used for value passing between automata, and are employed 
because timed automata lack data passing channels. Variables written in other fonts are local 
variables that are only visible to each neuron automaton. 

a

 
• The expression:  (or ) is a half action, which denotes a point-to-point channel. 

See [Pettersson, 2000] for a definition of half actions. We use the notation:  (or 
) for a broadcast channel. Broadcast channels perform one-to-all communication, i.e. 

when a half action  is offered, it is available to all the automata in the system. Hence, 
all the half actions  are enabled. 

?Zport

Zport

Zport

!Zport
?Zport

!Zport
!
?

 
• The following defines the meaning of a bounded quantification. 

 
}{}2{}1{ iNPiPiPPNi ∧∧∧≡⋅≤∀ L , 

 
where P could be a predicate or an assignment. For example, the expression: ∀  is 
a guard, which denotes: 

itakeNi ⋅≤

 
Ntaketaketake ∧∧∧ L21 , 

 
where  is a function, which returns a Boolean. Another example is a set of assignments: 

, which denotes the following: 
take

takeN ⋅ Bi i =≤∀ :
 

BtakeBtakeBtake N =∧∧=∧= ::: 21 L , 
 

where B is a Boolean. 
 

• We can also define bounded existential quantification from bounded universal quantification 
in the usual way: 

 
PNiPNi ¬⋅≤¬∀≡⋅≤∃ . 

 
3.1 Value Passing and Data Types 
 
3.1.1 Value Passing Channels 
 
It is important to understand how neurons communicate in this model. The timed automata notation 
does not support value passing channels, so we implement communication using the following 
methods: 
 

• Each neuron in the network has associated with it a number a , which refers to the activation 
of the neuron. This is consistent with the definition of neural networks we explained in the 

k
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previous section. These numbers are global to all neurons, however the retrieval of activation 
is restricted by synchronization. Taking the automaton in Figure 4 as an example, the neuron 
has to communicate with all its pre-synaptic neurons via channels  in order to satisfy 
the precondition in the guard 

?Zport

itakepreIdsi ⋅∈∀ , then it retrieves pre-synaptic activations and 
computes the overall excitatory input. 

?Zport

+ 1
0

ψ
0N

ψ

}00
ψψ NN →×

ψ
0N

ik ,w

 
• On one hand, the neuron automaton offers  when it outputs. On the other hand, a 

neuron automaton gets input using parameterised loops, which offer a generalised choice to 
communicate with different pre-synaptic neurons. At each choice, the neuron can 
communicate on a broadcast channel  where port corresponds to the gate name and Z 
corresponds to the pre-synaptic identity. Note that the post-synaptic identity is omitted in the 
communication channel because the broadcasting channel is visible to all neurons.  

!kport

 
• Boolean variables  are tokens that are used as an alternative to the set subtraction 

mechanism used in the previous model. When receiving a pre-synaptic activation, the identity 
of the pre-synaptic neuron is then subtracted from tempIds (which is a copy of the pre-
synaptic identities) in the previous model. In this model, a token is set when a pre-synaptic 
activation is offered. In the previous model, the input terminates when tempIds is empty, 
whereas in this model, it terminates when the neuron has all the tokens. 

Ztake

 
3.1.2 Data Types 
 
Natural and real numbers are infinite sets, so systems containing natural and real variables can have an 
infinite number of states. These systems cannot be model checked, hence formal specification 
languages, such as, Uppaal timed automata, typically only provide bounded integer values. As a result, 
we use integer values to express weights, activation and other variables in the neural network. So, in 
the signature of neurons, the types N  and R  are replaced by the type . This denotes integer 
numbers ranged between 0 and ψ . The latter of these being the largest integer a system can offer. (In 
practice, we can choose a suitable number. It is set to 1000 in most of our models, which provides 
enough precession for the learning algorithms used.) Note that N is a finite set. If we restrict all data 
structures of our model to finite sets, we can define a system that has a finite number of states. 
Consequently, such systems can be model checked. However, there is the problem that an integer 
greater than 1 is not a unit of multiplication. For any two integers that are both bigger than 1, the 
product of the two is bigger then either. Therefore, we need to normalise the results after each 
multiplication, i.e. divide the result by 

ψ
0

 in order to keep the range of the result between 0 and ψ . For 
simplicity of presentation, we will omit the normalisation in the graph illustrations. In addition, Uppaal 
timed automata only provide array structures rather than sets. However, it is straightforward to map our 
sets into Uppaal’s arrays. See Appendix D for the formal definition of the number representations. 
 
3.2 Global Declaration and Neuron Automata 
 
In this model, the global declarations consist of a set of constants G and a set of global variables V: 
 

}:,,,,{:: 0
ψNΓΦ= glElEeG  and 
:,:{:: 000

ψψψ NNN →= waV . 
 
Elements in set G will be explained when they appear in the relevant equations. In set V,  is a 
function, for example,  would denote the pre-synaptic activation with respect to a pre-synaptic 
identity , where  by definition, and a  denotes the activation of this neuron 
(see signature below).  is a function, for example,  denotes the weight with respect to this neuron 
identity k and a pre-synaptic neuron identity i. 

a
ia

preIdsi ∈ ⊂preIds k

w

 
The signature of a single neuron is as follows: 
 

],,[ EVCNEURON , where 
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)}(:,:{:: ψψ
00 NPN preIdskC = , 

}:,,{:: ψβ 0NVmgeV =  and  
}:,,:{:: ψψ

00 NN iZBooleantakeE →= ,  
 
where similarly to the previous section, k denotes the identity of this neuron automaton, all neurons are 
uniquely identified. preIds is a set of pre-synaptic neuron identities. Elements in set V have been 
explained previously. In set E,  is a function; for example, take  indicates the reception of pre-
synaptic activation with respect to a pre-synaptic identity i, thereby its domain is preIds.  

take i

 
An automaton model of a single neuron is shown in Figure 4. In this model, the neuron automaton has 
three locations: Input, Middle and Output. In the initial location, Input, a neuron is waiting for all its 
inputs to be ready. There are  pre-synaptic neurons. When the half action  is offered, 
the neuron’s Zth input is ready. When an input is ready, the neuron produces a token by setting the 
Boolean variable  to true. The parameterised loop does not prevent the neuron from signalling 
availability of the same pre-synaptic activation twice, this is not a problem since the newly set 
activation will simply overwrite the previous one. However, the token mechanism prevents the neuron 
from progressing before all pre-synaptic neurons have set their activations at least once. 

preIds# ?Zport

Ztake

 

Input 
Output

Middle
glge

ElglEegeVm

preIds
ge

takepreIdsi

ik
preIdsi

i

i

+
×+×

=

+×=

⋅∈∀

∑
∈

:

,
#

)(: ,

βwa

preIdsZ ∈

truetakeZ

Z
=:
?port

Γ−

−
×Φ+

=
)

1
(1

1:

Vm
Vmka

falsetakepreIdsi i

k
=⋅∈∀ :

!port
 

Figure 4 A Neuron Automaton, which Preserves Distributed Control 
 
There is a transition between the Input and Middle locations. Once the neuron collects all its tokens, in 
other words, all its inputs are ready, the guard itakepreIdsi ⋅∈∀  will hold. The neuron then computes 
its overall excitatory input conductance ge , which is a sum of the product of its pre-synaptic 
activations and corresponding weights. This is based on Equation 2.1 and it is shown in Figure 4 as the 
following:  
 

preIds
ge ik

preIdsi
i #

)(: ,

β
+×= ∑

∈

wa . (3.1) 

 
After computing the overall input conductance ge , the equilibrium membrane potential Vm  can be 
evaluated. The function that determines Vm  is based on Equation 2.2 with 0=gi  (since we do not 
consider inhibition in this model) and it is shown in Figure 4 as follows: 
 

glge
ElglEegeVm

+
×+×

=: . (3.2) 

 
Having taken this transition, the neuron goes to the next location, Middle. 
 
In the Middle location, the neuron is ready to compute its output. The activation is computed by a soft 
threshold sigmoid non-linear function, shown in Figure 4 as the following:  
 

Γ−

−
×Φ+

=
)

1
(1

1:

Vm
Vmka , (3.3) 
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which is an approximation of the previous sigmoid function, i.e. Equation 2.3. We are not able to 
implement Equation 2.3 in Uppaal because it does not provide real numbers. In Equation 3.3, Φ  
denotes the gain parameter, Γ  denotes the steepness parameter and variable  is the output activation 
of this neuron. We assume that the output activation is 0.5 when 

ka
Θ=mV . So, let a  and 5.0=k Θ=mV  

in Equation 3.3, we are able to give the relation between Φ  and Θ  as the following: 
 

Γ

Γ

Φ+
Φ

=Θ 1

1

1
 (3.4) 

 
In Figure 5, we plot a set of sigmoid functions using the same steepness parameter  but different 
gain parameters, which are shown in the legend. Table 1 maps the gain parameters to thresholds when 
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Figure 5 Sigmoid Functions with Different Gain Parameters 

 
Gain Parameter  Φ 0.01 0.1 0.2 0.3 0.4 0.5 

Threshold  Θ 0.177 0.317 0.369 0.401 0.424 0.442 
 

Table 1 Mapping Between the Gain Parameters and the Thresholds, 3=Γ  
 
From the next location, Output, the neuron takes a transition, sends a signal to its post-synaptic neurons 
via a broadcast channel , which indicates its activation has been computed and can be used, it 
also resets its tokens and returns to the initial location. Based on this simple model, more complicated 
networks can be specified, for instance, learning, inhibitory competition and bi-directional activation 
can be added. In the following subsections we present neural network models that use different 
learning rules. 

!kport

 
3.3 the Conditional Principal Analysis (CPCA) Rule 
 
The conditional principal components analysis rule is a Hebbian form of model learning, which is 
based on pre/post-synaptic neural activation. Model learning attempts to develop an internal model of 
the world or the environment of the network. The biological mechanisms underlying model learning 
are long-term potentiation (LTP) and long-term depression (LTD) [Bliss & Lomo, 1973]. However, 
details of the biology are not presented in our computational model. The result of model learning is that 
neurons end up representing correlations, in other words, the general statistical structure in the 
environment. CPCA also requires a conditionalizing function [O’Reilly & Munakata, 2000]. This is 
achieved using inhibitory competition, which enables neurons to self-organize. In this model, the 
environment is a separate automaton sitting outside the network and the inhibitory mechanism, e.g. 
kWTA inhibition, is also modelled as a separate automaton. In similar fashion, cognitive control 
[Wyble et al., 2005] and other mechanism can be modelled. However, learning is distributed into each 
neuron automaton.  
 
The network has two layers and the kWTA inhibition automaton. The input layer is modelled as a 
single automaton called the InputLayer and the Output layer is a set of neuron automata. The reason 
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why we use the InputLayer, rather than specifying each input neuron individually is justified as 
follows: 
 

• Input neurons can be specified as neuron automata, as is shown in Figure 4 and we give them 
sufficient excitatory inputs externally in order to have them presenting the corresponding 
activation patterns. However, there can be a great number of input neurons in a system and 
their job is often simply to relay their inputs to their outputs. As a result, we would increase 
the state space dramatically if we specified each input neuron explicitly. 

 
• However, we may have to specify input neurons explicitly when the input layer receives 

feedback from other layers, because the activations of input neurons are dynamically 
changing. In those cases where feedback activation is not considered, we do not have to 
specify input neurons explicitly, instead we use a single automaton to define the overall 
behaviour of the input layer. Note that the automaton is not a neuron automaton, but it is still a 
timed automaton. The specification of this automaton is given later. 

 
For similar reasons, this model uses kWTA inhibition rather than lateral inhibition, i.e. because we 
want to reduce the state space of the system. The kWTA algorithm computes inhibitory input directly 
using mathematical functions, hence a single automaton that performs such computation is sufficient 
for our network, and this automaton can be shared by different layers. On the other hand, introducing 
several pools of inhibitory inter-neurons is computationally much more expensive. Although [O’Reilly 
& Munakata, 2000] suggest that the kWTA computation could be realised via combinations of 
feedforward and feedback inhibition. However, their justification for this is only informally made by a 
number of examples.  
 
3.3.1 Global Declaration 
 
The global declaration is as follows: 
 

}:,:,,,,,,{:: PPatternsglElEiEeG ψε 0NΓΦ=  and 
}:,:,:,:,{:: BooleantestgiwterncurrentPatgia,V ψψψψψψ

000000 NNNNNN →×→Θ=  
 
where ε  denotes the learning rate. Boolean variable test  decides if weights are updated in the 
network. terncurrentPat  is the current pattern being presented to the network.  denotes the 
inhibitory input for output neurons and 

gi
Θgi  is used by the kWTA automaton and will be explained in 

the relevant sections. A pattern is a function of type: N  in the case of communicating automata 
and  in the case of Uppaal timed automata. That is, patterns map neuron identifiers 
(actually, just input layer identifiers) to activation level. P is the set of all possible sets of patterns, 
where  in the case of communicating automata and P  in the case of 
Uppaal timed automata.  The neural network is trained with a task Patterns, which is an element of P. 

1+
0R→

ψ
0N→

)( 1
0RNP →= +

ψ
0

P

N

)( ψψ
00 NN →

 
3.3.2 Input Layer 
 
Some automata in the network are synchronised with InputLayer, see Figure 6. What the InputLayer 
does is to decide which input pattern the network experiences at the current moment. It sends its signals 
via broadcast channels, but when the system is written in other notations, it could be achieved with 
multi-way synchronisation. As a result, only the relevant neurons can synchronise with it. The 
environment can be modelled as a single automaton or a set of automata. In the simplest situation, the 
environment is just a set of patterns, which can be easily embedded within the InputLayer. Hence, for 
these models, InputLayer can also be viewed as the environment and input neurons integrated. 
 
The signature of InputLayer is shown as follows: 
 

],[ ECINPUTLAYER , where 
)}(:,,:{:: ψψπ 00 NPN outIdsinIdsC =  and 

}:,:,,:{:: PnstempPatteriZBooleantakeE ψψ
00 NN →= . 
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In the set C, π  denotes the identity of the input layer. InIds and outIds are the sets of identities of the 
input and output layers respectively. currentPa ternt  is the current pattern being presented to the 
network. 
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Figure 6 The Input Layer 

 
This automaton is an abstraction of the real input layer and it starts at the Begin location, where it 
decides whether to present the next pattern or to start testing, i.e. it presents the next pattern if not all 
the patterns have been presented, otherwise it starts to test the network. When the current pattern is 
presented, the inputs are then assigned as follows: 
 

iiinIdsi terncurrentPata =⋅∈∀ : . 
 
The next location is Present, where the automaton takes a transition signalling the output layer neurons 
of the availability of the inputs via a broadcast channel ! and initialises the tokens:  πport
 

falsetakeoutIdsi i =⋅∈∀ : . 
 
The InputLayer then goes to the next location, End, where it collects tokens in order to know that all 
the neurons have completed processing the pattern. The output layer neurons inform the input layer via 
point-to-point channels  when they have evaluated their activations. The InputLayer removes 
the presented pattern from tempPatterns and returns to the Begin location when it has all the tokens, i.e. 
when the following guard holds: 

?Znext

 
itakeoutIdsi ⋅∈∀  

 
To summarise, the InputLayer automaton defines how these patterns are presented at the input neurons. 

 and currentPat  are global variables, which are only modified by the InputLayer. This 
automaton is not a neuron automaton but an abstraction of the whole input layer in order to simplify the 
system. However, input neurons must be modelled explicitly as neuron automata if there are bi-
directional activation between the input and hidden layers. Thus, an explicit environment automaton is 
needed when we model input neurons explicitly or if the environment itself involves complicated 
structure, because one of the fundamental roles of neural networks is to interact with its environment 
such as the physical world or bodily states. InputLayer is reused in the following sections. 

test tern

 
3.3.3 Output Layer 
 
Since the CPCA rule is typically applied in two layer networks, we will not be including a hidden layer 
here. Thus, we move straight to discussing the output layer. The signature of an output neuron is shown 
as follows: 
 

],,[ EVCNEURON , where 
)}(:,:{:: ψψ

00 NPN preIdskC = , 
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}:,{:: ψ
0NVmgeV =  and  

}:{:: ψ
0NiE = . 

 
This neuron automaton has four locations, see Figure 7. In the Input location, the neuron is ready to 
compute its input and knows there are new inputs available when a signal  is broadcasted from 
InputLayer. Then it performs a transition, reads the input values and computes the excitatory input 
conductance 

?πport

ge . The function for computing the ge  is similar to the previous model, except that the 
bias weight is removed. It also computes kΘgi  using the function [O’Reilly & Munakata, 2000]:  
 

Ei
ElglEege

k −Θ
Θ−+Θ−

=Θ
)()(:gi , (3.5) 

 
where the  determines how much inhibition this neuron needs in order to make sure that its 
membrane potential is just below the threshold, i.e. the neuron is inactive. This function is derived from 
Equation 1.2 or 2.2, letting Vm . After it computes all the functions, it goes to the next location, 
Input.  

kΘgi

Θ=

 
In the Middle location, the neuron waits for a signal kwta_finish?, which denotes that the actual 
inhibition value for this layer  has been computed by the kWTA automaton. It then computes the 
equilibrium membrane potential Vm  using the following function and moves to the next location: 
Output. 

gi

 

glge
ElglEiEegeVm

++
×+×+×

=
gi

gi: , (3.6) 

 
In the Output location, the outgoing transition is synchronised with the InputLayer by the signal , 
which informs the InputLayer so that the next pattern can be presented.  

!knext
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Figure 7 an Output Neuron Automaton 

 
When the neuron is in the Learn location and the Boolean variable test is false, it takes the lower 
transition and modifies its weights according to the CPCA rule [O’Reilly & Munakata, 2000]:  
 

)(: ,,, ikikikikpreIdsi waaww −××+=⋅∈∀ ε ,  (3.7) 
 
where  is the post-synaptic activation,  is the pre-synaptic activation and ka ia ε  is the learning rate. If 
the Boolean variable test is true, the network is being tested for its outcomes, hence, the weights are 
unchanged. These transitions do not need to wait for signals but leave this location straightaway. 
Finally, the neuron automaton returns to the Input location. Note that explicitly encoding the test in a 
neuron automaton is not biologically plausible. It is a more pragmatic constraint in the model. 
However, we will discuss this issue in more depth in the case studies. 
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3.3.3 Other Automata 
 
Some mechanisms can be modelled as separate automata outside the representation of neurons. We just 
show a kWTA inhibition automaton in Figure 8 as an example to show how mechanisms can be added 
into the network. The kWTA algorithm is taken from [O’Reilly & Munakata, 2000]. 
 
The signature of the kWTA inhibition automaton is shown as follows: 
 

],[ ECINHIBITION , where 
}:,,{:: ψ

0NmKqC = ,  
}:,,{:: ψ

0NintempE = . 
 
In the set C, K denotes the number of winners, m denotes the number of neurons in the output layer, 
and the q parameter determines where exactly to place the inhibition between the Kth and K+1th 
neurons [O’Reilly & Munakata, 2000]. This automaton is invoked every time the s have been 
computed over a certain layer and it decides the inhibitory input over this layer. The main job of this 
automaton is to sort the  values and then use either the basic kWTA or the average-based kWTA 
function [O’Reilly & Munakata, 2000] to get the final inhibition value .  

iΘgi

iΘgi
gi

 
The initial location of the kWTA automaton is Start. It takes a transition when the signal  is 
broadcast from the InputLayer. At this point, it also initializes two pointers i and n, and then goes to the 
next location L0. At this location and the next location L1, it specifies a sorting algorithm. In the L0 
location, it swaps the order of the ith output neurons 

?πport

iΘgi  and the i+1th output neurons  if 
, otherwise it maintains their order. The two transitions both go to the L1 location, where 

it decides whether the inner pointer i is at the end of the vector, i.e. 

1+Θ igi

1+Θ>Θ ii gigi
1−== ni . When it is at the end of 

the array, the last element in the array is the largest Θgi , and then the automaton resets the inner 
pointer i and decreases the outer pointer n by 1, in order to find the second biggest element. When it is 
not the end of the vector it simply increases the inner pointer i. 
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Figure 8 The kWTA Inhibition Automaton 

 
The automaton shown in Figure 8 specifies the basic kWTA function, so the sorting process only needs 
to indicate the and th largest K 1+K Θgi . As a result, in the L1 location, it checks if the sorting is 
completed for the kWTA function. When the guard K−< mn  holds, the sorting is finished and the 
actual inhibitory input for the hidden layer is computed by the function:  
 

)(: 1 KKK gigigigi −+−− Θ−Θ×+Θ= mmm q . (3.8) 
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When we specify the average-based kWTA function, we need to alter the model to sort the whole 
vector and change the function accordingly. (The average-based kWTA function can be found in 
[O’Reilly & Munakata, 2000].) 
 
When the final inhibition value  is computed, it goes to the next location L2. It is possible for some 
neural networks that the activation in the hidden layer is at a very low level and consequently, the 
number of activated neurons is less than . In this situation, the resulting inhibition input  
computed by the kWTA function is negative. It is not plausible for inhibitory neurons to output 
negative activation, so in the L2 location, it needs to check the sign of . When it is negative, it will 
be set to zero. These transitions also send signal  to the InputLayer notifying the 
completion of the process and returns the automaton to the Start location.  

gi

K gi

gi
!hkwta_finis

 
3.4 The Delta Rule 
 
As we have discussed in the previous section, the objective of model learning is to develop an internal 
representation of the environment. The CPCA learning rule attempts to discover the regularities (i.e. 
correlations) within the environment. Task learning is a different kind of learning, which attempts to 
solve specific problems or tasks. In other words, it attempts to produce appropriate outputs for given 
inputs. One would expect that a single learning mechanism is able to perform both model learning and 
task learning, but this is not always possible. For example, we will present several case studies in this 
paper, which will show some issues concerning the learnability, stability and biological plausibility of 
different learning algorithms.  
 
In this section, we show a neural network model, which performs error-driven task learning. This 
learning is also called supervised learning in contrast with the unsupervised model learning. The idea 
of error-driven learning is to adapt the weights such that the output of the network gets closer to the 
expected outcome. In order to perform such learning, we firstly need a measure of error. One of the 
popular measures is the summed squared error (SSE), which is the summed difference between the 
actual output a  and target activations currntPatt , where i is the index of the output neurons and j 
is the index of patterns: 

i iern

 

∑∑ −=
j i

iiSSE 2)( aterncurrentPat  (3.9) 

 
The goal of error-driven learning is to minimise the SSE and zero SSE indicates a perfect match 
between the outcome and the task expectation. The delta rule is an error-driven learning approach, 
which directly computes the derivative of the SSE with respect to the weights. The derivative shows 
how to change the weights. The detailed calculation of the derivative can be found in [O’Reilly & 
Munakata, 2000], we only present the learning rule, as follows: 
 

kk aterncurrentPat −=:δ ,   (3.10) 
 

δε ××+=⋅∈∀ iikikpreIdsi aww ,, :   (3.11) 
 

and δεββ ×+=:     (3.12) 
 

where δ  is an intermediate variable to evaluate error. 
 

3.4.1 Global Declaration 
 
The global declaration is as follows: 
 

}:,:,:,,,,{:: PPatternsglElEeG ψψε 00 NN ΓΦ=  and 
}:,:,:,:{:: ψψψψψψ δ 000000 NNNNNN BooleantestwterncurrentPata,V →×→=  

 
where all the parameters have been explained in the previous sections. 
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3.4.2 Input Layer 
 
As we have explained in the previous section, the input layer in this model is the same as it is in the 
previous model (see Figure 6).  
 
3.4.3 Output Layer 
 
Again, this network only contains two layers, as is consistent with the focus of the delta rule. Thus, we 
move to the output layer. The signature of the output neuron is as follows: 
 

],,[ EVCNEURON , where 
)}(:,:{:: ψψ

00 NPN preIdskC = , 
}:,,{:: ψβ 0NVmgeV =  and  

}:{:: ψ
0NiE = . 

 
This neuron automaton, as shown in Figure 9, is similar to the output neuron in the previous model.  
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Figure 9 an Output Neuron Automaton 

 
3.5 The Backpropagation (BP) Learning Algorithm 
 
In this section, we model the BP learning algorithm, which is used to train multi-layer neural networks 
with non-linear activation functions (sigmoids). Furthermore, the algorithm can be applied when the 
network contains any arbitrary number of layers. Thus, in addition to modelling input and output 
layers, we will specify a general hidden layer. We can divide the learning procedure into three stages:    
 

• Forward Propagation of Activation  
 
The activations of input layer neurons are determined by the input patterns and the activations 
of each layer are propagated forward to the next layer until the output layer. We have 
explained this in previous sections. 

 
• Backward Propagation of Error 
 

The error associated with neuron k is evaluated using a strategy called gradient descent, which 
minimizes the SSE.  
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where , is the derivative of the sigmoid function and j ranges over neurons in 
the successor layer. 

2)( kkk aa −=′ ησ

kη  denotes the net input of the neuron k. However, we do not compute 
this value in our models, so it is not included in the signature. In the graph illustrations, 

)( kησ ′  should be replaced by . 2
kk aa −

 
• Weight update 
 

In this paper, weights are adjusted after processing each pattern: 
 

jjkw akεδ=∆ ,  
 
3.5.1 Global Declaration 
 
The global declaration is as follows: 
 

}:,:,:,,,,{:: PPatternsglElEeG ψψε 00 NN ΓΦ=  and 
}:,:,:,,{:: BooleantestwterncurrentPatdaV ψψψψψ

00000 NNNNN →×→=  
 

where  denotes the error term sent from the output layer to the hidden layer with respect to hidden 
neuron identities.  

d

 
3.5.2 Input Layer 
 
The input layer is the same as previous models (see Figure 6). 
 
3.5.3 Hidden Layer 
 
The signature of a hidden neuron is shown as follows: 
 

],,[ EVCNEURON , where 
)}(:,:,{:: ψψπ 00 NPN postIdskC = , 

}:,,{:: ψβ 0NVmgeV =  and  
}:,,,:{:: ψψ δ 00 NN iZBooleantakeE →= , 

 
All the variables have been explained previously. 
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Figure 10 a Hidden Layer Neuron Automaton 

 
The hidden neuron is shown in Figure 10, which is similar to other neuron automata in previous 
models. However, the essential difference is in the learn location, where tokens need to be collected 
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before the weights are updated. The broadcast signals  are sent from the output layer neurons, 
they indicate that error terms d  are ready (we will explain the error term in the next section). In this 
model, weights and biases are updated according to the following learning rule [O’Reilly & Munakata, 
2000]: 

?Znext

z

 
)(: kk ησδ ′= d ,    (3.13) 

 
iikikpreIdsi aww ××+=⋅∈∀ δε,, :   (3.14) 

 
and δεββ ×+=: .   (3.15) 

 
3.5.4 Output Layer 
 
The signature of an output neuron is shown as follows: 
 

],,[ EVCNEURON , where 
)}(:,:{:: ψψ

00 NPN preIdskC = , 
}:,,{:: ψβ 0NVmgeV =

ψ

 and  
}:,,,:{:: ψδ 00 NN iZBooleantakeE →= . 

 
The output layer neurons are also neuron automata. One of them is shown in Figure 11. It is clear that 
the neuron automata in different layers have similar behaviour, so we skip some details. However, the 
output neurons are different from hidden neurons because they can update weights and biases 
immediately after outputting, while the hidden neurons need to wait for the error terms to be 
propagated from later layers.  
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Figure 11 an Output Layer Neuron Automaton 

 
In the Learn location, there are also two outgoing transitions. The behaviour of the neurons in this layer 
is similar to the hidden units except that the output layer neurons update their weights and biases using 
the following rules [O’Reilly & Munakata, 2000]: 
 

kk aterncurrentPat −=:δ ,   (3.16) 
 

iikikpreIdsi aww ××+=⋅∈∀ δε,, :   (3.17) 
 

and δεββ ×+=: .   (3.18) 
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Then the error terms, which get back-propagated to the hidden layer, are computed as follows 
[O’Reilly & Munakata, 2000]: 
 

ikiipreIdsi ,: wdd ×+=⋅∈∀ δ , (3.19) 
 
where   is built up for the hidden neuron i by summing id δ s per output neuron. The broadcast signal 

 is sent to hidden layer neurons. The signal informs the hidden neurons that the error terms are 
ready.  

!knext

 
3.6 the Generalized Recirculation Algorithm (GeneRec)  
 
GeneRec was considered by [O’Reilly, 1996], as an alternative to gradient algorithms such as the BP 
algorithm. This algorithm is promising due to its biological plausibility [O’Reilly, 1996]. Although the 
BP algorithm is powerful in respect of task learning, it suffers from biological implausibility. The 
essential problem is that the BP algorithm requires the backpropagation of the error term from the 
dendrite of the post-synaptic neuron to the axon of the pre-synaptic neuron via the synapse. However, 
there is no biological mechanism, which fulfils such a requirement. On the other hand, GeneRec can 
approximate BP learning using local activations. It avoids using the problematic error terms. Hence, it 
is a more plausible task learning algorithm, which could be employed by the brain.  
 
GeneRec requires bi-directional propagation of activations and the learning algorithm includes two 
activation phases: minus and plus phases. 
 

• In the minus phase, the input activations drive the network’s output, which is the actual 
response. This phase is the same as the forward propagation of activation in BP learning. 
Variables in this phase are denoted with superscripts, e.g. a . −

k

 
• In the plus phase, the outputs of the network are externally clamped to expected outcomes. So, 

both the input and output activations drive the network. Variables in this phase are denoted 
with superscripts, e.g. a . +

k

 
Instead of computing the error term, GeneRec calculates the difference of the two activation phases. It 
has been argued by [O’Reilly, 1996] and [O’Reilly & Munakata, 2000] that the difference of the two 
stages of activation  is a justifiable approximation of the error signal  used 
in the BP algorithm, where 

−+ − kk aa )()( −−+ ′−= kkkk ησηηδ
η  denotes the net input: 

 

∑∑ +=
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kjj
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ikik ,, wawaη ,  (3.20) 

 
where i ranges over input neurons and  j ranges over output neurons. The error term of hidden neurons 
in BP is based on Equations 3.13, 3.16 and 3.19, i.e. 
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jjk awaterncurrentPat σδ ′−= ∑ , (3.21) 

 
where  is not a local calculation, which is implausible. Assume the bi-directional 

connections are symmetric, i.e. . If we distribute the weights into the sum, we can obtain the 
following: 
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Note that a  is a perfect approximation of the error signal if the activation function is linear. The 
steeper the slope, the worse the approximation. Also, the larger , the worse the approximation. 

−+ − kk a
−+ − jj ηη

 
The network is similar to the previous model, the differences are: 
 

• The learning rule is the same for all neurons, as follows: 
 

−+ −= kk aa:δ ,    (3.23) 
 

iikikpreIdsi aww ××+=⋅∈∀ δε,, :   (3.24) 
 

and δεββ ×+=: .   (3.25) 
 

• The network is bi-directional with symmetric weights. 
 

• There is a separate automaton to implement the settling of the network and the two activation 
phases. However, we will skip the detail of this automaton and the corresponding changes 
made to other neuron automata.  

 30



Part 4 Requirements Language 
 
The high level behaviour of neural networks is described using a requirements language allowing 
logical formulae to be expressed. The network of automata evolves through a series of states, which 
form several paths. The system can evolve through different paths. The requirements language consists 
of state formulae, which describe individual states and path formulae, which quantify over paths of the 
model. Assuming ϕ  is a state formula, ∀ , ∃ , ◊  and  are operators of path formulae. The property 

ϕ∀  requires that all states satisfy ϕ , ϕ∃◊  requires that at least one reachable state satisfies ϕ , ϕ∃  
requires that at least along one path all states satisfy ϕ  and ϕ∀◊  requires that along all paths at least 
one state eventually satisfies ϕ . 
 
In this paper we are interested in learning. There is a set of properties, which we want the learning 
system to satisfy. These properties fall into three categories: Reachability, Safety and Liveness 
[Behrmann et al., 2004]. 
 

• Reachability Properties 
 

These ask whether there eventually exists a state in which something will happen. For example, 
the formula success is true when all the output neurons get their activations on the correct side of 
0.5. Thus,  checks if the learning process could eventually allow the network to output 
the correct answer. These properties validate the basic behaviour of the model, but do not 
guarantee the correctness of adaptive systems. 

success∃◊

 

• Safety Properties 
 

These ask whether something “bad” will ever happen. For example, the property deadlock 
evaluates to true at a state without successors. Thus, deadlock¬∀  justifies that the system is free 
from such situations. Safety properties can always be expressed as reachability properties, such as 

. Assuming approperate formulation of properties, neural networks, cognitive 
models or any dynamic systems will never reach “bad” states if they satisfy safety properties. 

deadlock¬∃◊

 

• Liveness Properties 
 
These ask whether the system eventually does something useful. So, we could check liveness 
properties such as ∀◊ , which justifies that the system can meet our requirements along all 
paths. By verifying these properties over learning algorithms, we can justify if they will eventually 
converge at desired situations. In order to understand learning algorithms or adaptive systems in 
general, we are also interested in whether the models can perform something infinitely often.  

success

 
Properties can be expressed by nesting different types of operators, such as . This 
property describes a complex behaviour that we require the learning process to possess. This behaviour 
is that the adaptive system starts with no knowledge of the task. At this time, success does not hold. 
During training with examples, it may sometimes show correct answers, i.e. success holds, but it may 
also show incorrect answers. When this happens, the system has found some solutions to the task but 
these solutions are not stable during further training. However, starting from some states during the 
training, it is able to show correct answers invariantly. Thereby, the above property is satisfied. In the 
next section, we will see that real-time properties can also be expressed. 

success∀◊∀
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Part 5 Case Studies 
 
These case studies show how to apply model checking to verify that different learning algorithms can 
achieve task learning of different difficulties. Firstly, we replicate a preliminary experiment, which has 
been performed by [O’Reilly & Munakata, 2000] using PDP++ simulations. We begin the investigation 
with the same tasks, configuration and initialisation of the networks as their work but show our results 
via model checking rather than simulations. This experiment is not intending to show the advantage of 
verification over PDP++ simulation, but it demonstrates the methodology of model checking using a 
simple and rather familiar example. Secondly, we focus on a particular and more interesting bench 
mark, i.e. the XOR problem. We have chosen the XOR problem due to its historical position and since 
it requires a small number of nodes and connections. This function is often used to test the ability of 
learning algorithms and this simple function has been much discussed. The XOR function returns 0 if 
the inputs are either {1,1} or {0,0}, and returns 1 if the input are either {1,0} or {0,1}. Finally, we 
relate this verification to a real-time application, which requires model checking of real-time properties 
expressed in Temporal Logic. 
 
5.1 Verification 1: Model Checking the Learnability of the CPCA Rule, Delta 
Rule and BP Learning Algorithms 
 
We investigate the learnability of the Conditional Principal Components Analysis (CPCA) rule, delta 
rule and BP learning algorithms using the following three tasks, which are shown in Figure 12, where 
dark units represent “0” activation and light units represent “1” activation. Each task contains four 
patterns. A pattern has four inputs and two outputs. Note, these patterns were used by [O’Reilly & 
Munakata, 2000] in order to compare the learnability of different learning algorithms using PDP++ 
simulations. Note, we use BP learning instead of the GeneRec algorithm, which was used by [O’Reilly 
& Munakata, 2000]. In later sections, we will undertake a more detailed comparison of these two 
learning algorithms. In addition, we use model checking rather than simulations to obtain our results. 
Furthermore, this investigation replaces the “Impossible” patter in Figure 11(c) by the XOR problem, 
since it is in fact embedded within the “Impossible” patter. Thus this can be seen to elaborate on the 
issue of the class of networks and leaning algorithms that can learn “impossible”-style linearly 
inseparable problems [Sutherland & Rudy, 1989]. As we have explained previously, the XOR problem 
requires a small number of neurons and connections. So, it can avoid the scalability problems 
associated with model checking. We will discuss this problem in later parts. 
 

 

(a)   

 

(b)   

 

(c)  
Figure 12 (a) the “Easy” Pattern, (b) the “Hard” Pattern and (c) the “Impossible” Pattern 

 
For the sake of simplicity, we skip the detailed specification of these neural networks, but we show the 
results of the model checking. We test the systems on a standard PC, using Uppaal. We check the 
neural network using the following formulas:  
 

• : deadlock freedom.  deadlock¬∀
• : the network could eventually reach a state where it outputs the correct answer. success∃◊
• : the network can eventually output the correct answer along all possible traces. success∀◊

 
where success evaluates to true when all the output activations are on the correct side of 0.5 at the end 
of a test trail. The initial weights are set before the verification and the patterns are presented in a fixed 
order between epochs. As explained previously, the model checker could produce a trace as an 
example. In this case, Uppaal provides only a single trace and there is no branching in the transition 
system so produced. The network shows deterministic behaviour, because all communications are 
completed in the product of the system. Thus, we implement a java program, which generates initial 
weights randomly from Gaussian distributions with variance of 0.05 and mean of 0, 0.1, 0.2 and 0.3. 
Then it evokes Uppaal to verify the property success∃◊ . This approach aims to cover a broad region of 
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the initial weights space in order to approximately verify the property of success∀◊
∃◊

. Note, in the rest 
of the paper we give a percentage for the number of runs that satisfies the property , in order 
to infer to what extend the property 

success
success∀◊  will be satisfied. One can vary the mean and the 

variance of the Gaussian distribution in order to explore different regions of the initial weights space. 
In addition, some prior knowledge can guide the choice of the regions of exploration. For example, in 
most of the models, the initial weighs are set to small values.   
 
The result of verification can be seen in Table 2. Firstly, deadlock does not occur in any of these 
situations. Then we train the networks using the “Easy” patterns in Figure 12 (a). When the network 
only uses the CPCA learning rule, 80% of trials it learns successfully. However, if we test the same 
network using the “Hard” patterns in Figures 12 (b) and the XOR problem, the model checker will 
indicate that the network can learn these tasks for the given initial weights. We then modify the 
learning rule to the delta rule. The delta rule is used in learning and the “Easy” and the “Hard” patterns 
are presented to the network. It can be verified that in 76% and 9% of the trials, the delta rule can learn 
these patterns respectively, in which the “Hard” patterns could not be learned using the CPCA learning 
rule. We then use the delta rule to train the XOR problem, which is a linearly inseparable problem 
[O’Reilly & Munakata, 2000]. The result of verification is that it can never find a state in which the 
learning reaches success, given the initial weights that we use. Finally, we insert a hidden layer of three 
neurons into the network and use the BP learning algorithm. We skip the “Easy” and the “Hard” 
patterns because BP learning is a generalisation of the delta rule. So, the result of the delta rule can 
imply the result of BP learning for these patterns although the success percentage may be different. The 
verification shows that BP learning is successful in 18% of the trials. We will explain why some of 
these percentages are very small in the relevant part of the paper. 
 

“Easy” Patterns “Hard” Patterns XOR Problem  CPCA Delta BP CPCA Delta BP CPCA Delta BP 
deadlock¬∀  √ √ √ √ √ √ √ √ √ 
success∃◊  80% 76%  × 9%  × × 18% 

Table 2 √: satisfied or 100%, ×: not satisfied or 0%, : not relevant 
 
These results are consistent with [O’Reilly & Munakata, 2000]’s simulations. However, their 
simulations suggest the CPCA rule is not able to learn the “Hard” and “Impossible” patterns and the 
delta rule is not able to learn the “Impossible” pattern based on the fact that the network has not solved 
the task by the end of the simulation. Effectively, their simulations really have proved the following: 

, where N is the number of cycles in the simulation. On the other hand, model checking 
has mathematically proved that ¬∃◊  holds. It provides stronger theoretical arguments on the 
learnability of different learning algorithms. However, this verification is only for a finite set of initial 
weight settings. In order to obtain a more comprehensive proof, one has to be able to generalise the 
verification to any initial weight. One possible approach would be using abstract interpretation 
techniques [Cousot, 2001]. The idea is that the state space may be divided into several regions such that 
the property is uniform within each region. As a result, the verification can be performed at one initial 
weight in each region and the property is guaranteed to hold if it holds within every region. We will 
investigate this idea in future research.  

successN≤¬∃◊
success

 
5.2 Verification 2: Model Checking the Learnability and Stability of Learning 
the XOR Problem using Different Learning Algorithms  
 
In the previous section, we have demonstrated that model checking is able to replicate some 
experiments that are normally performed using simulations. In this section, we concentrate on one 
problem, i.e. the XOR problem. This investigation follows from those considered in the previous 
section. 
 
As shown in Figure 13, the basic network is described as a hierarchy of components. At the top-level it 
has two modules: Environment and NeuralNet. Each of which can be composed from a set of modules. 
For example, NeuralNet itself is composed of InputLayer, HiddenLayer and OutputLayer, each of 
which is also a module composed of a set of neurons. Neurons are fully connected between adjacent 
layers and BP learning is applied. The Environment automaton summarise the environment of the 
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NeuralNet. In a realistic model of a neural network based controller, this automaton may include the 
sensory and effecter systems, but in our simplified model these systems are absent. 
 

 

I1 

I2 

H1 

H2 

O1 Input 
Layer 

Hidden
Layer 

Output 
Layer 

NeuralNet 

Environment  
 

Figure 13 a Neural Network that computes the XOR Problem using the Standard BP learning Algorithm 
 
In following sections, we will investigate this network and different variations of it. They are 
characterised by the following: 
 

• BP - Each weights are integers, which range over [-1000,1000]; 
• BP Positive - The same network, but the weights range over [0,1000]; 
• BP kWTA - Weights range over [0,1000] and there is an additional module: kWTA, which 

computes the inhibitory activation for the hidden layer; 
• BP RNN - Weights range over [-1000,1000], but the connections between hidden and output 

layers are bi-directional; 
• GeneRec - The learning algorithm is the generalised recirculation algorithm [O’Reilly, 1996]. 

 
Why consider these classes of networks? To consider whether the class of network can learn linearly 
inseparable problems is a big scientific question. Especially when issues of biological plausibility are 
being considered. These different classes of neural network differ with respect to how they employ 
biological principles. We will elaborate on how these different classes relate to biological plausibility 
in the relevant sections.  
 
In the previous section, we have investigated the learnability properties using model checking. In this 
section we extend this investigated with a more complicated property, i.e. the stability property. In 
order to model check this property using Uppaal, we introduce an additional technique called the 
stability approximation algorithm. 
 
5.2.1 The Stability Approximation Algorithm 
 
Traditional techniques find it difficult to investigate stability properties, which may be characterised 
using an error function over learning. It is even more difficult to investigate the oscillatory behaviours 
of recurrent networks because small weight changes can lead to significantly different activation states. 
On the one hand, simulations are not able to test the entire state space. Hence, they are limited in their 
capacity to guarantee that the learning process is able to settle in a minimum and that oscillation can 
never happen. Most simulations stop training after a certain number of epochs or when a certain 
number of correct outputs have been obtained. This may not ensure that the network is stable 
afterwards. Note that turning the learning algorithm off and testing the behaviour of the network with 
learning off is not a realistic general assumption when considering animal cognition. That is, there is no 
evidence to support the hypothesis that in the general case animals alternate between phases in which 
learning is “turned on” and “turned off” (although such phases may arise in the context of specific 
brain structures and learning functions, see for example [Hasselmo et al., 2002]). A much more viable 
assumption is that learning is continuously active and, thus, candidate learning algorithms should be 
stable in the sense being considered here. Readers can also contrast this argument with the plasticity-
stability dilemma [Grossberg, 1976], which means animals have to continuously learn new changes in 
the world and maintain their obtained memories at the same time. The brain has to solve this problem 
in order to allow us to continue learning new knowledge in a stable fashion without catastrophic 
interference with our previous learned knowledge.   
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On the other hand, mathematical analysis is able to prove stability. For example, [Sprinkhuizen-Kuyper 
& Boers, 1996] has proved that the error surface of the network that computes the XOR problem has a 
single minimum. The network is trained using the BP algorithm with a single hidden neuron, which is 
the simplest network that computes the XOR problem. This work also demonstrates how difficult it is 
to mathematically prove a relatively simple network manually. Moreover, model checking is 
potentially able to prove some complex properties automatically and with mathematical rigour. We 
undertake verification and model checking of the following property: 
 

success∀◊∀  
 

which has been discussed in previous sections. This property tests both learnability and stability of 
learning algorithms. However, the Uppaal model checker does not in general support nesting of 
temporal operators in properties. The above property not only has nested temporal operators but is also 
an unbounded liveness property [Behrmann et al., 2004]. So it can not be checked even with a test 
automaton [Behrmann et al., 2004]. Thus, we introduce an algorithm to verify this property using 
Uppaal. The algorithm is shown in Figure 14. 
 

 

sucess∃◊
Yes No 

Restart

Stopsuccess∀
Yes No 

Start

success∃◊∀

success¬∀◊∀

Stop 

Restart

 
Figure 14 An Algorithm that Partially Verifies the Stability Property  

 
This algorithm is essentially working on an approximation of the statespace. Although Uppaal supports 
under and over approximate representation of the statespace, it is still unable to verify this property. So 
we have to extend the Java program, which we used in previous section, to implement our own 
approximation algorithm. It then invokes the Uppaal model checker. It also refines the trace files 
generated by Uppaal and outputs an Excel file. Note that this algorithm can not directly check the 
property , but it checks the property success∀◊∀ success∃◊∀  from a certain initial weights. We 
then run this algorithm several times from different initial weights. The result of the verification is a 
percentage of trials where the property success∃◊∀  holds. 
 
This algorithm begins at Start and invokes Uppaal to check the learnability property:  
 

success∃◊  
 
If this property is not satisfied, neither success∃◊∀  nor success∀◊∀  holds, otherwise the reached 
state (which is a possible solution, i.e. success is true) is identified via the trace file. Then the 
verification is restarted from the success state and checks the following property: 
 

success∀  
 
If this property is satisfied,  holds, otherwise the reached state (which is not a solution, 
i.e. success is false) is identified via the trace file. Then the verification is restarted from this state and 
returns to the Start. It is important to notice that the algorithm may return to the Start an infinite 
number of times if the learning performs some special oscillatory behaviour. Hence, this algorithm 
does not guarantee to terminate and it is only able to partially verify the stability property. In order to 
completely verify the stability property, we need to use model checkers that support nesting of 
operators, such as Kronos [Bozga et al., 1998] or LOTOS. However, we restrict the number of 

success∃◊∀
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iterations to 20 times. The program resets the initial weights when this algorithm terminates. In the rest 
of the paper, we will use this algorithm to verify the stability property.  
 
5.2.2 BP 
 
In this network, weights are integers, which range over [-1000,1000]. The gain parameter is  
and the learning rate is 

15.0=Φ
01.0=ε . The patterns are presented in a randomly selected order, which is 

unchanged between epochs. This is the same model we used in the previous section, where the 
verification demonstrated that the network could learn the XOR problem successfully in 18% of trials. 
We then model check the stability property: 
 

success∀◊∀  
 
The result is that the network is not only able to learn the XOR problem, but the learning is also stable 
in all successful trials. Furthermore, there are no oscillations of the error term during learning. This 
result is consistent with the results of [Sprinkhuizen-Kuyper & Boers, 1996]. They have proved that the 
error surface of the network that computes the XOR problem has a single minimum. Hence, the 
learning is stable. 
 
5.2.3 BP Positive 
 
In this section, we investigate, the same network as previously, but the weights range over [0,1000]. 
This neural network is a more biologically plausible model due to the following: 
 

• The weights in the previous section can be positive, zero or negative, but the weights here can 
only be zero or positive. 

• The weights do not change sign during learning. 
• Excitatory and inhibitory activations are treated separately from each other. 

 
These principles are more consistent with known neurobiology [O’Reilly & Munakata, 2000]. We then 
repeat the verification with the initial weights from the same regions as the previous approach and 
model check the following property: 
 

success∃◊  
 
The result is that the network could not learn the XOR problem successfully from the given initial 
weights. However, this verification is not able to prove that BP learning is unable to learn the XOR 
problem with only positive weights, because it only verifies the learning from a particular set of initial 
weight settings. This verification only proves that the standard BP learning algorithm can not learn the 
XOR problem with a particular initial weights. We will not check the stability property because it will 
definitely fail to hold if the learnability property is unsatisfied. 
 
5.2.4 BP kWTA 
 
In this section, the neural network is the same as the network in section 5.2.3, but there is an additional 
module: kWTA. This module computes the inhibitory activation for the hidden layer. It has been shown 
in the previous section that with some initial weights, standard BP learning is not able to learn XOR 
when the weights are restricted to be zero or positive. So we modify standard BP learning by 
introducing kWTA inhibition in the hidden layer. We justify that feedforward networks using this 
modified BP learning rule can learn XOR because the neural networks satisfy the learnability property 
in 24% of all trials, i.e. 
 

success∃◊  
 
The modified BP learning rule is able to learn XOR because: 
 

• When {0,0} is presented to the input neurons, there are no output activations in the input layer 
neurons. So the activations in hidden layer neurons are zero too. Whichever hidden neuron 
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wins the competition the kWTA (in this case, being 1WTA) inhibition mechanism does not 
increase the activations of winners. Hence the output neuron outputs zero. 

• When {0,1} or {1,0} is presented to the input neurons, one of the hidden layer neurons is 
strongly activated and the other activation is close to zero. In this case, there is little 
competition between the two hidden neurons because their activations are in the two extremes. 
The kWTA mechanism produces a small inhibitory activation. As a result, the activation of 
the winner is still strong. Hence, the BP learning can adjust the weights to output 1. 

• When {1,1} is presented to the input neurons, both the hidden layer neurons are strongly 
activated. In this case, there is strong competition between the two hidden neurons because 
their activations are very close. The kWTA mechanism produces a strong inhibitory pressure 
between the activations of the two hidden neurons. As a result of strong competition in the 
hidden layer, the hidden layer activations become much lower. Hence, the BP algorithm can 
learn to output zero. 

 
We also model check the stability property: 
 

success∀◊∀  
 
The result is that the learning is stable in 83% of the successful trials and unstable in 17% of the 
successful trials. There is no trail that the program can not determine the stability. 
 
5.2.5 BP RNN 
 
Recurrent neural networks (RNNs) are attractive in biological or cognitive modelling, adaptive control 
and other important applications. RNNs are dynamic systems, so they need to be analysed for stability, 
which includes testing the resulting dynamical network behaviour and the learning algorithms. In this 
section, we concentrate on stability of the learning trajectory. The network is the same as in section 
5.2.2 except that the connections between hidden and output layers are bi-directional. The learning task 
is also XOR. In this section, the learning algorithm is error backpropagation with the symmetry 
preservation constraint. This means the feedback weights are copied from feedforward weights . 
In the next section, the learning algorithm we will consider is the generalized recirculation algorithm, 
which also enforces the symmetry preservation constraint, see [O’Reilly, 1996]. 

ijw jiw

 
We model check the learning algorithm using the stability approximate algorithm introduced 
previously. The learning trajectory is measured using summed squared error (SSE), which is explained 
in previous sections. The results of the verification have three general forms. With some initial weights 
(87% of all trials), the learning converges to non-solution local minima. Hence, the property 

 is not satisfied. With other initial weights (13% of all trials), the learning converges to 
solutions, but the leaning trajectories may have two different forms, which are shown in Figure 15. In 
most of the cases, i.e. about 80% of all the successful trials, the learning trajectory is a smooth, 
monotonically decreasing, line, as shown in Figure 15 (a). However, there exist some situations, about 
20% of all the successful trials, where the leaning trajectory shows oscillations, as illustrated in Figure 
15 (b). Note that in both smooth and oscillatory cases, the stability property 

success∃◊

success∀◊∀  may hold. 
If this property holds, it guarantees that there will be either no oscillation from some point of time or no 
oscillation that can potentially shake the network out of a solution. 
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Figure 15 Learning Trajectories for Recurrent Neural Networks that Compute the XOR Problem using the Error 
Backpropagation Algorithm with the Symmetry Preservation Constraint. (a and b) have Different Initial Weights 

 
So far, we have discovered only 1% of all trials such that the network satisfies the learnability property 

 but not the stability property success∃◊ success∀◊∀ . The cause of this 1% of trials is that the 
approximation representation algorithm exceeds 20 iterations, i.e. these trials are undecidable by our 
algorithm. We would be able to perform a more comprehensive verification if we could check the 
network from any initial weight in the future. 
 
This is a rather striking result because it is well known that the error function generated by RNNs 
during learning have an arbitrary unstable jumpy character [Bakker et al, 2000]. However, model 
checking is able to show that some RNNs can converge to stable states. The advantage of model 
checking as an analytical technique compared with testing based on simulation is the following. 
Testing a RNN using simulation, one can also obtain learning trajectories such as those shown in 
Figure 15. However, is that sufficient to say the learning in Figure 15 (a) will not oscillate in further 
training? Similarly, is that sufficient to say the learning in Figure 15 (b) will oscillate an infinite 
number of times and not become stable after further training? The answer is that, using simulation, one 
needs to be very careful in drawing such conclusions. 
 
5.2.6 GeneRec 
 
In this section, we verify the generalized recirculation algorithm (GeneRec). The results of the 
verification have five different forms: 
 

• In about 70% of all trials, the networks satisfy neither the learnability property ∃◊  nor 
the stability property , which indicates the learning converges to unsuccessful 
local minima. (In about 30% of all trials, the learnability property is satisfied.) 

success
success∀◊∀

• In less than 1% of successful trials, the networks satisfy both properties and the learning 
trajectories are smooth, as shown in Figure 16 (a). However, this is a very rare outcome. 

• In about 82% of successful trials, the networks satisfy both properties as shown in Figure 16 
(b).  

• In about 10% of successful trials, the networks satisfy the learnability property  but 
not the stability property 

success∃◊
success∀◊∀ , as shown in Figure 16 (c and d). 

• In about 7% of successful trials, the stability approximation algorithm is undetermined. 
 
This result is even harder to obtain from simulation without mathematical analysis. For example, the 
model checking has shown that there are no more “large” spikes after 330 epochs in Figure 16 (b). 
However, only based on the learning trajectory, one can not obtain such certainty. Looking at the 
trajectory in Figure 16 (c), between 180 and 420 epochs, one may say the learning is unsuccessful. But 
based on the trajectory between 420 and 470 epochs, one may say the learning is successful and some 
simulations will then stop at this point. As the learning continues, it becomes unsuccessful again. This 
suggests that the results from simulations may be misleading. Another example is shown in Figure 16 
(d). 
 
The reason why model checking is able to prove that RNNs can converge to stable states is that model 
checking is aiming to construct a compact representation of the entire statespace. When the model 
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checker finds that newly generated states are identical to previously visited states, it can determine that 
RNNs converge to stable states. 
 
It is argued in [Bakker et al., 2000], that after the network gets close to the global minimum, oscillation 
may occur. A possible reason for this is that RNNs are similar to chaotic systems and are thus very 
sensitive to the model parameters. He also mentioned noise, which can influence the appearance of the 
minimum. But our verification has shown that unstable characteristics can be found without 
introducing any noise.  
 
The oscillation may occur at any stage of learning. The cause of the oscillation may be as follows. The 
weights are updated after each pattern is presented, so the network is trained to satisfy different sets of 
constrains at each pattern. For linearly inseparable problems such as XOR, one set of constrains may 
move the weights in a completely opposite direction to the previous set of constraints. The key issue 
being that small weight changes have a dramatic affect on the behaviour of the style of recurrent 
network that GeneRec acts upon. Furthermore, there is no successful but unstable trail in BP RNN but 
nearly 10% of successful GeneRec trials are unstable. Also 7% of successful GeneRec trials have 
oscillations, which result in the failure of the stability approximation algorithm. In general, GeneRec 
has shown a much more unstable character compared with BP RNN learning. In Appendix B, we give a 
possible explanation of why these two learning algorithms perform differently. 
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Figure 16 Learning Trajectories for Recurrent Neural Networks that Compute the XOR Problem using the 

Generalized Recirculation Algorithm with the Symmetry Preservation Constraint. (a, b, c and d) have Different 
Initial Weights 

 
5.3 Verification 3: Model Checking the Speed of the Backpropagation Algorithm 
with Application to Neural Network based Controllers  
 
It is stated in [Menzies & Pecheur, 2004] that Artificial Intelligence (AI) is useful in real-world 
applications but developers must gain confidence of the correctness of such systems. However, it is 
hard to apply traditional verification and validation (V&V) techniques to AI systems. In their work, 
several readily available methods are investigated in order to evaluate their applicability to the V&V of 
AI systems. In their paper, the following techniques are discussed. 
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• Scenario based testing, 
• Run-time monitoring, 
• Static analysis, 
• Model checking and  
• Theorem proving. 

 
They pointed out that testing might be difficult and expensive for complex AI systems. One reason for 
this is that the input set of AI systems is normally huge and discontinuous. So, small changes in the 
input set may lead to significantly different performance of the system. Testing is aiming to test a 
minimum subset of the input set and infer that other inputs will behave similarly. In this case, it may be 
difficult and expensive to define a minimum subset and test it. Run-time monitoring is also discussed in 
[Menzies & Pecheur, 2004] and several case studies have been conducted at NASA. For example, 
[Artho et al., 2003] and [Barringer et al., 2004] have reported that run-time monitoring/verification can 
be used to monitor some temporal logic properties during a K9 planetary rover operation.  
 
It is reported by [Menzies & Pecheur, 2004] that model checking is widely used for the V&V of AI 
systems at NASA. For example, some parts of NASA’s Remote Agent Experiment (RAX) Executive 
have been converted to the Spin input language and model checked using the Spin model checker. Five 
concurrency errors were uncovered and fixed [Havelund et al., 2000]. Furthermore, model checking 
has also been applied to the K9 rover executive [Giannakopoulou et al., 2002]. They have also pointed 
out a limitation of model checking, which is that an AI system has to be transformed to the modeling 
language of a model checker. This transformation may be difficult and expensive. However, the 
architecture of connectionist networks is often homogeneous, hence, once a neuron has been specified, 
a bigger network is relatively easy to construct based on it. This is not always true for rule based AI 
systems. Static analysis and theorem proving are also discussed in [Menzies & Pecheur, 2004], but the 
former is labour-intensive, and the latter requires expert skills and effort. The other methods are largely 
automatic. In this section we will focus on model checking neural network based controllers, which 
perform on-line supervised learning.   
 
In some applications, the control architectures use pre-trained networks, which are numerical 
approximations of a function. The correctness of such systems can be verified [Rodrigues et al., 2001], 
but their verification does not consider the adaptability of the system. Other control architectures use 
on-line training of neural networks. This approach is attractive because it is able to handle dynamic 
adaptation, but it requires a high level of stability and correctness of the learning process. There are 
existing approaches to evaluating the performance of neural networks, such as [Schumann et al., 2003], 
which proposed a layered approach, i.e. run-time monitoring, to verify and validate neural network 
based controllers. The limitation of their work is that they only focus on monitoring the on-line 
adaptation but cannot guarantee stability and correctness at system design stages. In addition, it is not 
always feasible to replace formal stability guarantees with only empirical testing, due to limited 
resources and time.  
 
As we have explained previously, model checking is an alternative method to the V&V of AI systems, 
which includes rule-based systems and neural networks. Model checking can be applied along side the 
learning with little human interaction due to the fact that model checking is automatic. It is useful for 
deep space explorations, because the communication delay between the spacecraft and the base station 
may be hours and the on-line learning system has to deal with unforeseen circumstances. Therefore, 
any kind of prior verification may be infeasible. We propose to model check an abstract model of the 
on-line learning system before the actual learning is undertaken.  
 
5.3.1 Specification 
 
As already discussed, the BP algorithm is a supervised learning rule widely used in many applications, 
so study of this algorithm has practical value. We have chosen the XOR problem as our learning task 
due to its historical position. As previously considered, although it requires a small number of nodes 
and connections, it is characteristic of difficult linearly inseparable learning tasks. This simple problem 
is often used to test the ability of learning algorithms and it has been much discussed in this paper and 
by other researchers, e.g. [O’Reilly, 1996]. In terms of our larger ambition, analyses of neural network 
based controllers, this XOR verification serves as a preliminary assessment of our approach, which will 
be extended to realistic applications in future work. 
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Figure 17 Neural Automaton with Timing Constraints 

 
This network is identical to that shown in Figure 13 except that there is a Tester automaton, which is 
shown in Figure 18. We will explain the Tester in the next section. In this section, we focus on the 
neuron automaton shown in Figure 17, which is similar to the automaton in Figure 10. However, there 
are timing constraints attached to every neuron automata used here. 
 
The timing constraints in this model are the following. Ω≤t  is an invariant of the Middle location, and 
t is a local clock. Invariants are timing conditions, and automata can only stay in locations while the 
condition holds. Ω==t  is a guard, which is a condition allowing the transition to be taken. To 
summarize the time course of the neuron, it stays at the Input, Output and Learn locations while 
communication is completing, but it stays at the Middle location for exactly Ω  units of time, which we 
assume represents the time required to update net input and activation. In this case,  is 5 units of 
time. This assumption is made only for analytical reasons and is neither based on neuron physiology 
nor hardwire constrains. The timing constraints in output neurons are specified in similar fashion.  

Ω

 
5.3.2 Verification 
 
In this section, we verify this model in Uppaal. We assume that the deadline is 5000 units of time, the 
learning rate is 0.05. Note that the deadline and Ω  are both arbitrary numbers, which would be 
prescribed by a real application. We check the system for deadlock freedom using the following 
Temporal Logic formula:  

 
deadlock¬∀  

 
The result is that the system has no deadlocks for the XOR training set. We also verify the stability of 
the network using the following Temporal Logic formula, which contains timing: 

 
successdeadline∀∀◊≤  

 
Satisfaction of this formula means the system always reaches a successful state before the deadline, 
and success holds invariantly from that state. However, Uppaal does not support this formula. Hence, 
we introduce a test automaton in Figure 18. It begins at the Start location and moves to the next 
location, Deadline, when clock t equals the parameter deadline. When the test automaton is in this 
location, patterns are still presented to the neural network. If learning is successful when deadline 
becomes true and remains stable during further training, the next location, Fail, is unreachable. With 
this test automaton, we are able to verify the previous property using the following Temporal Logic 
formula: 

 
FailTester.¬∀  

 
The result of the verification is that the system satisfies the above property and is guaranteed to learn 
XOR according to the required timing constraints. It also guarantees the learning process eventually 
stabilises.  
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FailDeadlineStart 

deadlinet ≤

deadlinet == success¬

 
Figure 18 The Test Automaton, Tester 

 
If the above properties are not satisfied, the result can be feedback to the controller and parameters can 
be adjusted accordingly. In critical situations, an alarm can be raised. When adaptation is not possible, 
the model checker may even abort the mission. 
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Part 6 Discussion and Future Work 
 
In this paper, we present a framework to specify neural networks and learning algorithms using formal 
methods, i.e. communicating automata. We argue that this formalism sits between classical forms of 
symbolic systems arising from programming languages such as Lisp and Prolog, and connectionist 
networks. In the case study, we verify neural networks over a set of properties expressed in Temporal 
Logic. Our models and properties can be regarded as symbolic descriptions of the system behaviour at 
different levels of abstraction. The low-level descriptions use neural networks encoded in 
communicating automata. The high-level descriptions contain a set of properties, which are expressed 
in logical formulae. They are abstract descriptions of global properties, which do not prescribe internal 
details of how those properties are realised. Verifications may give theoretically well-founded ways to 
evaluate and justify the learning capacity and determine whether cognitive properties can emerge from 
neural-level architectures. This work also servers as a preliminary assessment of the V&V of neural 
network based controllers. 
 
In traditional neural network simulations, semantically interpretable elements are patterns of activation. 
The states of neural networks are expressed in numerical form, such as a landscape, in a multi-
dimensional space. However, the states of the neural networks in our models are represented as the 
locations in the product automaton, which is automatically generated by the model checker. The 
locations have the characteristics of symbol systems. Model checking is based on symbolic 
manipulation of the product automaton, which maps to the landscape in the multi-dimensional space. 
We also argue that most of the properties that we have verified are hard to justify by simulation. This is 
because simulations can only test that something occurs but are unable to test that something can never 
occur. Simulations are also not able to test if something is (in)valid forever. Therefore, simulations are 
insufficient to justify safety and liveness properties without explicit mathematical analyses. Our 
verification approach on the other hand, explicitly and formally describes the system and properties, so 
safety and liveness properties can be verified. 
 
Based on the verifications in our case studies, we observe that none of the learning algorithms 
considered can perform all kinds of learning in a stable fashion. This seems to suggest that animals 
might use different learning mechanisms or combinations of different algorithms and other neural 
mechanisms such as inhibition. We have seen in one of our case studies, that kTWA inhibition can play 
a key role in task learning under certain circumstances. 
 
However, there are a number of limitations of the Uppaal based approach used here.  
 

• Firstly, the model checking approach does not scale very well when there are more 
connections. For example, the verification of about 4000 initial weights will run for more than 
7 hours for more difficult tasks, e.g. the XOR problem and for about one or two hours for 
relatively easy tasks, such as the “Easy” patterns in Figure 12(a). 

 
• Secondly, unbounded liveness properties, such as the stability property, can not be model 

checked using Uppaal. However, it could be checked using other model checkers, e.g. a 
LOTOS based approach via the CADP model checker [Garavel et al, 2002].  

 
• Thirdly, both the communicating automata model and the Uppaal timed automata models have 

only one level of decomposition. However, it is stated in earlier sections that decompositional 
structure is required for cognitive modelling. So, one could believe that the process algebra 
approach, such as LOTOS, could support top-down hierarchical specification of more 
complicated models. 

 
• Fourthly, decompositional structure could be validated compositionally enabling the model 

checking approach to scale better. 
 

• Lastly, other verification methods, such as the CADP tool that verifies LOTOS models, could 
provide real numbers. This enables more accurate modelling of neural networks. It also 
improves gradient based learning compared with integer weights. (Integer weights are 
considered as one of the reasons why our gradient based learning, such as our delta rule and 
BP learning, have very low success rates compared with the rates obtained by other 
researchers, e.g. [O’Reilly, 1996].) 
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Whether this architecture is a suitable representation of a mental system and whether such an approach 
can resolve any of the limitations discussed in Part 1 is still under investigation. A lot of work needs to 
be carried out in the future in order to discover solutions to the limitations of neural networks and 
therefore provide new architectures to model complex mental systems. We are also interested in 
investigating the potential of this approach in integrating symbolic and sub-symbolic computations, 
enforcing hierarchical compositional structure over neural networks, building or justifying brain-level 
models and model checking realistic neural network based controllers.  
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Appendix A 
 
The most realistic rule that determines the action potential is based on the bioelectric phenomena that 
were discovered by Hodgkin and Huxley. They wrote down a set of equations to describe action 
potential generation. In [Koch, 1999] the single equation for all the currents flowing across a patch of 
axonal membrane is as follows: 
 

)()()()( 43 tIVVGVEnGVEhmG
dt
dVC injrestmKKNaNam +−+−+−= . (A.1) 

 
There are two voltage dependent ionic conductances, a sodium conductance, G , and a potassium 
conductance, . They are independent from each other. A leak conductance, G , is independent of 
the membrane potential. The sodium and potassium conductances are expressed as maximum 
conductances, 

Na

mKG

NaG  and K

NaE

G , multiplied by numerical coefficients,  and , which represent the 
fraction of the maximum conductance actually open. However, we will not explain these coefficients in 
this paper and full details of them can be found in [Koch, 1999] and [Plonsey & Fleming, 1969]. The 
ionic reversal potentials  and  are given by Nernst’s equation for the appropriate ionic species. 
They depend on the concentration difference of the ions and the electrical field across the cell 
membrane.  is the membrane capacitance, V is the membrane potential relative to the resting 
potential  V  and   is the current that is injected via an intracellular electrode. The injected current 
is not a function of V, it is determined externally. 
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Having Equation A.1 we can describe the change of membrane potential without considering the 
underlying ionic channels. Therefore many computational models of nerve systems are directly based 
on such an approach. For example the membrane potential updating rule of a prominent current 
connectionist modelling system PDP++ can be found in [O’Reilly & Munakata, 2000]. It is as follows: 
 

)])(()())(()())(()([)()1( lmllimiiemeevmmm EtVgtgEtVgtgEtVgtgdttVtV −+−+−−=+  (A.2) 
 
this is a discrete simplification of the Hodgkin-Huxley equations. In order to justify that Equation A.2 
is a discrete simplification of Equation A.1, we transform it into a continuous equation and compare it 
with Equation A.1. Note that eg , ig  and lg  are set to 1 in the model, thus they are ignored in the other 
sections. This is consistent with the simulations in [O’Reilly & Munakata, 2000]. 
 
If we rearrange Equation A.2, we get the following: 
  

)])(()())(()())(()([)()1( lmllimiiemeevmmm EtVgtgEtVgtgEtVgtgdttVtV −+−+−−=−+  (A.3) 
 
and it can be shown that V  is equal to  )()1( tVt mm −+ 1=∆∆ tmV , which denotes the amount of change of 

 relative to an interval of 1 unit of time. We then replace the left side of the equation with mV 1=∆∆ tmV  
and distribute the negation on the right side of the equation into the brackets. Finally we divide both 
sides of the above equation by  and swap all the  and vmdt )(tge eg  ( )(tgi ig , and  )(tgl lg ) around, 
resulting in the following:  
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We then evaluate the limit of both sides of Equation A.4 with t∆  tending towards zero. Taking the 
limit of a discrete equation converts the equation into a continuous equation. The limit of the right side 
of Equation A.4 is the original value of the right side. We show the limit of the left side as follows: 
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where  is the time constant in [O’Reilly & Munakata, 2000]. The limit of a constant  is the 
value of the constant itself. The continuous form of Equation A.2 is as follows:  

vmdt vmdt

 

))()(())()(())()(( tVEtggtVEtggtVEtgg
dt

dV
dt
dt

mlllmiiimeee
m

vm

−+−+−=×  (A.5) 

 
Now we compare Equation A.5 with Equation A.1. It should be noticed that the right side of both 
equations are equivalent if the injected current  is zero,  and  are set to the appropriate 
coefficients and 

injI )(tge )(tgi

lg  is set to 1 (which is its typical value). The left side of both equations will be equal 
if the following holds. 
 

m
vm

C
dt
dt

=   or 
m

vm C
dtdt =  (A.6) 

 
As it is defined in [O’Reilly & Munakata, 2000], the time constant 10 << vmdt  slows the potential 
change, capturing the corresponding slowing of this change in a neuron primarily as a result of the 
capacitance of the cell membrane. Hence we believe that Equations A.6 and A.7 hold according to the 
definition of . Hence, we have justified that Equation A.2 is a discrete simplification of Equation 
A.1. 

vmdt
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Appendix B 
 
Comparing the Generalized Recirculation and the Backpropagation Algorithms 
 
It is interesting that the learning trajectories of GeneRec are generally much jumpier than error 
backpropagation in RNNs. This may suggest that the two algorithms sometimes compute different 
error gradients. It has been mathematically verified by [O’Reilly, 1996] and [O’Reilly & Munakata, 
2000] that the difference of the two stage activations −  is a justifiable approximation of the 

error signal  used in the BP algorithm. The reason is illustrated in Figure B1. 
Note that it is a perfect approximation if the activation function is linear. The steeper the slope, the 
worse the approximation. Finally, the larger , the worse the approximation. 

)( −+ − jj aa

)()( −−+ ′−−= jjjj ησηηδ

−+ − jj ηη
 

 

Net Input

A
ct

iv
at

io
n

−+ −






jj aa
)()( −−+ ′− jjj ησηη









+
ja

−
ja

−
jη +

jη

)( jησ
)( −′ jησ

 
Figure B1 The difference in activation approximates the difference in net input times the derivative of the sigmoid 

activation function  
 

It is important to note that the fundamental aspect of error driven learning is the credit assignment 
problem, i.e. to what extend a neuron is in error relative to other neurons in the same layer. This means 
that the absolute error is not essential to the credit assignment problem because there is also a learning 
rate parameter. The importance of the problem is the relation between errors among neurons. Failure to 
solve the credit assignment problem correctly may result in jumpy learning trajectories, to our 
knowledge, there is no formal proof of the credit assignment strategy in GeneRec. This is why we need 
to analyse it here. Assuming there are two neurons i and j in the hidden layer. We illustrate the credit 
assignment problem in Figure B2. Assume neuron i is less active than neuron j and the following holds: 
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 are equally distant from the centre of the sigmoid. 

 
We know that: 
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Hence, the following may not always hold. 
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This equation only holds if . However, it is more interesting to analyse the general 

situation without making the assumptions, such as . It is argued by [O’Reilly, 1996] 
that GeneRec will compute a good approximation of error derivatives of backpropagetion if the 
following holds: 

)()( −− ′=′ ij ησησ
−+−+ −=− iijj ηηηη
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• The reciprocal weights are symmetric. 
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Figure B2 The difference in activation approximates the difference in net input times the derivative of the sigmoid 
 
From Figure B1 we can see that  only if  is small enough and both 

 and  are tending towards zero. As a result, the following holds. 
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This means that GeneRec and BP learning may use different credit assignment strategies. These two 
strategies are good approximations of each other only if all neurons in the same layer have similar 
derivatives of the sigmoid  at the minus phase. Unfortunately, this condition is not always valid 
during learning. In order to fully understand this difference we want to perform model checking to 
compare these two algorithms in respect of the credit assignment. 
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Appendix C 
 
Consequences of Varying the Gain Parameter 
 
In this section, we investigate the same network as in Figure 13 and try to obtain a set of suitable 
parameters, which allow the network to satisfy the stability property within the given deadline. Every 
trail of the experiment, the network is trained with a sequence of patterns. Between trials, we vary the 
gain parameter . If the learning is successful, we can obtain the training epoch from the trace, which 
is generated by the model checker. We only consider the training epoch but not real-time, because we 
assume that the training data is pre-collected, i.e. it is always available. In this case, counting how 
many epochs have been trained is easier than verifying a real-time property. In a realistic situation, 
where the training data is generated on-line and outside the neural network, a real-time property may be 
considered.  

Φ

 
Figure C1 shows the changes of learning speed, in terms of the epochs required, against different gain 
parameters. The network is not able to learn the XOR when 01.0≤Φ , i.e. verification found no 
satisfactory state. When , it takes 281 epochs to learn the XOR problem. As we increase the 
gain parameter to around 0.04, the learning speed increases significantly. It reaches a lower bound, 26 
epochs, when the gain parameter is around 0.1. The learning speed remains steady until the gain 
parameter is around 0.25, then it slows down gradually as the gain parameter increases. The learning is 
unsuccessful when . 
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Figure C1 Learning speed vs. Gain parameter 

 
The reason why the learning is unsuccessful when 01.0≤Φ  and 44.0≥Φ  is the following. In the 
standard BP algorithm, as the error is propagated through the network, we multiply the error by the 
derivative of the sigmoid function .  This derivative is maximal when the activation of 
the neuron is around 0.5. It is minimal when the activation of the neuron is at the two extremes, i.e. 0 or 
1. In this case, the weight change could be tiny even if the actual error is maximal. Moreover, the 
weight change could be zero when integer weights are used.  

2)( iii aaa −=′σ

 
Consequences of Varying both the Learning Rate and the Gain Parameter 
 
In this section we replicate the verification in the previous section, but we vary the learning rate and the 
gain parameter at the same time. Figure C2 (a) shows the result of training epochs with respect to 
different gain parameters and learning rates. Based on the original data, we plot how the covariance 
between training epoch and the reciprocal of the learning rate changes with different gain parameters in 
Figure C2 (b). Covariance measures the extent to which two sets of variables vary together. We use the 
following to examine whether greater learning rate accompanies greater learning speed.  
 

)))(())(((),( 111 −−− −⋅−= εµεµµε EpochEpochEpochCov , 
 

where ()µ  denotes the mean of the data set. A positive covariance indicates that higher learning speed 
tends to be paired with higher learning rate and greater covariance indicates a stronger relationship. In 
contrast, a negative covariance indicates that higher learning speed tends to be paired with lower 
learning rate and smaller covariance indicates stronger relationship. However, zero covariance does not 
necessarily indicate the two data sets are independent. It only indicates that there is a weak relationship. 
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Furthermore, it is difficult to compare covariances among data sets with different scales. We are in this 
situation. In order to overcome this limitation, we normalise the covariance to the product of the 
standard deviations of the data sets. The result is called the correlation coefficient. We also plot the 
correlation coefficient between training epoch and reciprocal of learning rate with different gain 
parameters in Figure C2 (c). The correlation coefficient determines the relationship between two sets of 
data. It is and is only a measure of linear association between variables, but not a measure of the 
strength of causality. We use the following to examine whether the learning rate and the learning speed 
are linearly related.  
 

)()(
),(),( 1

1
1

−

−
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⋅
=

ε
εερ

varEpochvar
EpochCovEpoch , 

 
where var() denotes the standard deviation of the data set. The correlation coefficient ranges between 

 and 1. When , there is a perfect positive linear correlation between learning speed 
and learning rate. When , there is a perfect negative linear correlation between 
learning speed and learning rate. A zero correlation coefficient means there is no linear correlation, i.e. 
it is not always true that increase of learning rate leads to increase of learning speed. It is shown that 
learning speed and learning rate tend to linearly correlate in most of the cases except when the gain 
parameter is around 0.29.  

1− 1),( 1 =−ερ Epoch
(ρ Epoch 1), 1 −=−ε

 
This investigation points out that the parameters are important factors causing the change of learning 
speed when the BP learning is used to solve the XOR problem. The learning quality, e.g. speed, 
accuracy and generalization, are highly dependent on a set of parameters, i.e. initial state, learning rate, 
threshold/gain parameter, number of hidden layers and hidden neurons. Verification can justify and 
help the selection of correct parameters, especially when there are both neural and non-neural 
components in the same controller. 
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Figure C2 (a) Training Epochs with Different Gain Parameters and Learning Rates, (b) Covariance between 

Training Epoch and Reciprocal of Learning Rate with Different Gain Parameters and (c) Correlation Coefficient 
between Training Epoch and Reciprocal of Learning Rate with Different Gain Parameters.  
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Appendix D 
 
Range 1 is denoted , where  and  operations are 1R N⊂= ],0[1 MaxR 1R ÷×−+ ,,, , and relations 

are  and operator [] , where =≤< ,, Max
0

 

yelse
thenyifelse

MaxthenMaxyify Max

00
][ 0

<
>=

 

 
Range 2 is denoted  and is the Uppaal arithmetic, where 2R Z⊂−= ],[2 uu MaxMaxR  and  

is the Uppaal maximum integer value and 
uMax

uMaxMax < .  operations are 2R ×′−′ ÷′+′ ,,, , and  

relations are 
2R

=′≤′′ ,,< , where  is integer division, i.e. ÷′ }|max{ accba ≤ b÷∈=÷′ N . Thus, 
 rounds down, e.g. 3  not 1. ÷′ 04 =÷′

 
Note, Uppaal checks a value is in range at the point at which on assignment is made, e.g.  

 
1: += uMaxd  

 
is invalid and will generate a run time error, but 
 

1)1(: −+= uMaxd  
 

is valid. Similarly,  
 

for 2, Rba ∈ , bad ×′=:   
 

is potentially invalid, but 
 

Maxbad ÷′×′= )(:  
 

is certainly valid. 
 
By contraction,  
 

1,,, Rbabababa ∈÷×−+ , 
 

1R  operations: 
 

1, Rba ∈∀ , 
Maxbaba 0][ˆ +′=+  

Maxbaba 0][ˆ −′=−∧  

Maxbaba ÷′×′=×∧ )(ˆ  
MaxbMaxaba 0])[(ˆ ÷′×′=÷∧  

 
In order to ensure maximum discrimination we ensure that the truncation of ÷′  and the ceiling and 
flooring of []  is applied at top-level of expressions. In addition, Max

0

 

1, Rba ∈∀  
baba =′== ˆ  
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baba <′=<∧ ˆ  
baba ≤′=<∧ ˆ  

 
The approach is also generalised as required to a Z⊂− ], MaxMax[  range in the obvious way. 
 
Mapping between these two ranges: 
 

21: RRf →  defined as 
Max

aaf =)(  
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