230 research outputs found

    Defect detection in textured materials using optimized filters

    Get PDF
    The problem of automated defect detection in textured materials is investigated. A new approach for defect detection using linear FIR filters with optimized energy separation is proposed. Performance of different feature separation criterion with reference to fabric defects has been evaluated. The issues relating to the design of optimal filters for supervised and unsupervised web inspection are addressed. A general web inspection system based on the optimal filters is proposed. The experiments on this new approach have yielded excellent results. The low computational requirement confirms the usefulness of the approach for industrial inspection.published_or_final_versio

    A comparative study of texture analysis algorithms in textile inspection applications

    Get PDF
    Nowadays, quality control is an important problem for fabric manufacturers. Typically these operations have been carried out by humans operators. However, this method has numerous drawbacks such as low precision, performance and effectiveness. Therefore, automatic inspection systems have increased substantially in the last decade. This work evaluates the performance of some texture measures in textile defect detection applications. For classification a method based on leaving-one-out is used. Our study has been carried out using a large database of samples to take into account a wide spectrum of fabrics and multiple defects of different nature reported by specialized works and publications. A ranking with the effectiveness of best algorithms is presented for every type of fabric. In addition, the computation time of algorithms is compared.This work is partially backed by the European Community (FEDER project)

    Mixtures of Skew-t Factor Analyzers

    Get PDF
    In this paper, we introduce a mixture of skew-t factor analyzers as well as a family of mixture models based thereon. The mixture of skew-t distributions model that we use arises as a limiting case of the mixture of generalized hyperbolic distributions. Like their Gaussian and t-distribution analogues, our mixture of skew-t factor analyzers are very well-suited to the model-based clustering of high-dimensional data. Imposing constraints on components of the decomposed covariance parameter results in the development of eight flexible models. The alternating expectation-conditional maximization algorithm is used for model parameter estimation and the Bayesian information criterion is used for model selection. The models are applied to both real and simulated data, giving superior clustering results compared to a well-established family of Gaussian mixture models

    An Extended Review on Fabric Defects and Its Detection Techniques

    Get PDF
    In Textile Industry, Quality of the Fabric is the main important factor. At the initial stage, it is very essential to identify and avoid the fabrics faults/defects and hence human perception consumes lot of time and cost to reveal the fabrics faults. Now-a-days Automated Inspection Systems are very useful to decrease the fault prediction time and gives best visualizing clarity- based on computer vision and image processing techniques. This paper made an extended review about the quality parameters in the fiber-to-fabric process, fabrics defects detection terminologies applied on major three clusters of fabric defects knitting, woven and sewing fabric defects. And this paper also explains about the statistical performance measures which are used to analyze the defect detection process. Also, comparison among the methods proposed in the field of fabric defect detection

    Mixtures of Common Skew-t Factor Analyzers

    Full text link
    A mixture of common skew-t factor analyzers model is introduced for model-based clustering of high-dimensional data. By assuming common component factor loadings, this model allows clustering to be performed in the presence of a large number of mixture components or when the number of dimensions is too large to be well-modelled by the mixtures of factor analyzers model or a variant thereof. Furthermore, assuming that the component densities follow a skew-t distribution allows robust clustering of skewed data. The alternating expectation-conditional maximization algorithm is employed for parameter estimation. We demonstrate excellent clustering performance when our model is applied to real and simulated data.This paper marks the first time that skewed common factors have been used

    Fabric Fault Detection Using Digital Image Processing

    Get PDF
    This paper helps to detect the fault in fabric. For the good quality of fabric the inspection of fabric is very important .The faults in fabric causes poor quality in fabric. This may affects the economical growth of the Industry. The old methods which are used for fault detection such as Human Visual Inspection, Regular Band based Methodology, Gabor Wavelet Filter Methodology etc which are time consuming &stressful. So to reduce time and stress the new method introduced is Automatic Fabric fault inspection .Due to this method, at the time of manufacturing itself we get high quality fabric it implies the high speed of production.The detection of local fabric defects is one of the most problems in computer vision.For this problem the solution is that at the time of manufacturing fabric in textile the faults present on fabric are identified by MATLAB software using some Image Processing techniques. Image Processing is very helpful because all the techniques applied on the faulty image is useful to acquire fault free image

    Bayesian Cluster Enumeration Criterion for Unsupervised Learning

    Full text link
    We derive a new Bayesian Information Criterion (BIC) by formulating the problem of estimating the number of clusters in an observed data set as maximization of the posterior probability of the candidate models. Given that some mild assumptions are satisfied, we provide a general BIC expression for a broad class of data distributions. This serves as a starting point when deriving the BIC for specific distributions. Along this line, we provide a closed-form BIC expression for multivariate Gaussian distributed variables. We show that incorporating the data structure of the clustering problem into the derivation of the BIC results in an expression whose penalty term is different from that of the original BIC. We propose a two-step cluster enumeration algorithm. First, a model-based unsupervised learning algorithm partitions the data according to a given set of candidate models. Subsequently, the number of clusters is determined as the one associated with the model for which the proposed BIC is maximal. The performance of the proposed two-step algorithm is tested using synthetic and real data sets.Comment: 14 pages, 7 figure
    corecore