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ABSTRACT 
 

Nowadays, quality control is an important problem for 
fabric manufacturers. Typically these operations have 
been carried out by humans operators. However, this 
method has numerous drawbacks such as low precision, 
performance and effectiveness. Therefore, automatic 
inspection systems have increased substantially in the last 
decade. This work evaluates the performance of some 
texture measures in textile defect detection applications. 
For classification a method based on leaving-one-out is 
used. Our study has been carried out using a large 
database of samples to take into account a wide spectrum 
of  fabrics and  multiple defects of different nature 
reported by specialized works and publications. A ranking 
with the effectiveness of best algorithms is presented for 
every type of fabric. In addition, the computation time of 
algorithms is compared. 

1. INTRODUCTION 
 

Quality inspection of textile products is an important 
problem for fabric manufacturers. Currently, quality 
control tasks are mostly carried out by human operators 
because of the flexibility of the human visual system. 
However these methods have numerous drawbacks and 
automatic inspection is usually desirable because of its 
superior reliability, effectiveness and performance [1].  

Numerous methods have been designed to solve 
particular texture inspection tasks: wood, paper, leather 
and metallic surfaces to mention just a few. In the same 
way, other measures related to texture properties have 
been proposed for the automatic inspection of specific 
fabrics: woven fabrics, cotton fabrics, dyed fabrics, 
etc…[2][3], however, due to the wide spectrum of textile 
products and defects [4] there is no unique solution. This 
work evaluates both the performance of some texture 
measures which have been successfully used in various 
applications and of some promising new approaches 
proposed recently. Our study has been carried out using a 
large database of samples to take into account a wide 
spectrum of  fabrics and multiple defects of different 
nature reported in specialized works and 
publications[5],[6]. The best results for every type of 
fabric are presented. In addition, the computations 

complexities of algorithms are compared by the output  
achieved using a PC-based implementation. 

2. TEXTURE MEASURES AND CLASSIFICATION 
ALGORITHMS 

2.1. First order statistics (FOH) 

These are statistical measures on the histogram of grey 
level probabilities of the texture: K moments (Mk), Energy 
(En),  Entropy(En), Skewness(Sk) and  Kurtosis (Kr). 
These measures were used as features for classification.  

2.2. Second order statistics (SOH) 

These statistics are based on grey level coocurrence 
matrix GLCM [7].. The coocurrence Pθ,d(i,j) of an  image 
is a function that expresses the relative frequency of pairs 
of pixels with grey values i and j, and at distance d along 
angular direction θ. GLCM will be a square matrix of side 
equal to the number of grey levels. A large number of 
textural features derived from the matrix have been 
proposed starting with the original fourteen features 
described by Haralick, however, only some of these are in 
general use: Energy (En), Entropy (Et) ,  Maximum 
Probability (Mp) , K moments (Mk), K Inv. moments(Imk), 
Cluster Shade(Cs), Clust. Prominence(Cp) and Haralick’s 
Correlation (Hc). The mentioned measures were 
computed for four angles (0º, 45º, 90º and 135º) using 
d=1,2, to form the feature vector.  

2.3. Sum and difference histograms (SMH, DFH) 

Similar to the coocurrence matrix, they depend on the 
displacements dx and dy , and are computed as the 
histograms of the sum and difference of all pixels dx and 
dy apart [8]. Similar features to coocurrence can be 
extracted combining sum and difference histograms. The 
parameters used were d=1,2.  

Additionally, the probability distribution of DFH can 
be used for texture classification [9]. This way, DIFFX 
and DIFFY are histograms of absolute grey level 
differences between neighboring pixels computed in 
horizontal and vertical directions, respectively, while 
DIFF2 accumulates absolute differences in vertical and 
horizontal and DIFF4 in all four principal directions 
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respectively, in a single histogram. The four histograms 
were used as features for classification. 

2.4. Fractal dimension measures(FD) 

The underlying assumption for the use of the fractal 
dimension for texture classification is that images are self 
similar. Then FD can be defined as 

FD= log (Nr)/log(r -1) 

Where Nr  is the number of nonoverlaping copies of a 
set similar to the original set , scaled down by a ratio r. 
FD can be approximated determining the slope of the 
least-squares linear fit of log(Nr) vs log(r –1). The 
differencial box-counting method outlined in [10] was 
used to compute the FD. 
 A second feature is based on multifractals, which are 
used for self-similar distributions exhibiting nonisotropic 
and inhomogeneous scaling properties. Let k and l be the 
minimum and   maximum gray level in the image centered 
at position (i,j), let nr(i,j)=l-k+1, and let Pr=(nr / Nr); then 
the multifractal , FD2 is defined by  
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The linear regression yields an estimate of FD2.  FD 
and FD2 were used to form the feature vector. 

2.5. Morphologic coefficient and Box counting (CM, 
BC) 

The original image is divided on several grey level planes 
and the morphologic properties of every plane are 
measured. This was made by counting the number of 
nonoverlaping copies of a square set (structuring element) 
that cover (Box counting) or semi-cover (Morphologic 
coefficient) [11], the plane. The features used were the 
MC and BC of every plane and the dimension of the 
structuring element. 

2.6. Geometric measures (GEO) 

The features computed were area, perimeter and 
compactness [12]. 

 
2.7. Edge density (EDG) 

The image was pre-processed using an edge detection 
filter (Laplacian, Sobel, Prewitt, etc…), then several 
parameters were computed for every sub-window: mean, 
variance, density of edge pixels, maximum and minimum 
edge level [12]. 

2.8 Laws’ texture measures (LAW)  

Each sub-window is convolved with nine different Laws’ 
masks [13]. Then the energy is computed as the sum of 
the squares or absolute values of the nine filtered images. 

The feature vector was formed with the nine energy 
values. The Laws filters used was: E5L5, E5R5, L5R5, 
L5E5, R5E5, R5L5, E5E5, L5L5 and R5R5.  

2.9 Thresholding (TH) 

Several thresholding methods [14] were used to segment 
the default areas:  Iterative selection thresholding, 
Minimum error thresholding, and Pun entropy. 
Subwindow classification is straightforward once the 
minimum area acceptable for the blobs derived from the 
thresholding has been determined.  

3. EXPERIMENTS AND DISCUSSION 

Two different types of image sets were used in the 
experiments: in the first experiment a set was formed with 
sample images from the TILDA textile defect image 
database created at the University of Freiburg, Germany; 
in the second, a database was created with images taken 
from defective fabrics from Drape-Cotti company, a 
Spanish textile manufacturer. Algorithms were applied on 
32x32 pixels sub-windows with G=256, 32, 16 grey 
levels. 

Every sample was classified in turn using the other 
samples as models, and the leave-one-out  approach was 
applied. The sample was assigned the label of the model 
using the K-nearest neighbour (K=3) or  thresholding 
method depending on the features. The metric used was 
the Euclidean distance for classification based on vectors 
of features, and Kullback’s cross-entropy for 
classification based on feature distribution. Finally the 
effectiveness  was calculated using the formula (1). Take 
notice that only the number of defective sub-windows was 
taking into account to calculate the effectiveness. 

E=(nº_defective_windows_detected – nº_ false_positive)/ 
nº _defective_windows;  (1) 

In the first experiment we tried to get a ranking of all 
the proposed algorithms, depending on their ability to 
detect defective sub-windows correctly regardless of the 
different kind of fabric. The results are shown in Table 1. 
The results are not very promising for implementing an 
accurate detection system, however their unreliability is 
due to the high variance (greater than 10% in all cases). 
We can conclude that if only one method is used for all 
fabric classes, the reliability of the system will be very 
poor.   

In the second experiment all the samples were 
manually classified, depending on the type of fabric, in 
the following classes: Uniform Dyed fabric (UDF), 
fabrics dyed with a uniform colour, Non Uniform Dyed 
Fabric (NUDF), for fabrics that present some type of 
stamp, Interwoven Fabric (IF), fabrics with visible 
interweave, Plush fabric (PF), fabrics that present a 



shaggy texture, and finally Embroidered Fabrics (EF) . 
About forty different textures were analysed.  

Table 1. Effectiveness ranking with  
TILDA data base. 

Method Mean Variance 
FOH 73,23 13,69 
SOH 73,14 12,23 
SMH 68,67 10,04 
DFH 65,88 10,93 
FD 62,22 12,80 
CM 73,99 12,62 
GEO 72,87 14,22 
EDG 68,36 10,34 
LAW 70,08 11,80 
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Fig 1. Samples of different fabrics and defects 

In the same way the defects were classified using 
ASTM committee (D3990-93 standard) [4]and the ITS 
catalogue [5] terminology. About fifty different faults 
were processed. Fig 1 shows some defective and non 

defective samples used in the experiments. All the fabrics 
were scanned with 300ppp resolution, the minimum size 
of the defective area encountered was 7,5mm and the 
maximum 67mm. 

 In order to estimate the importance of the intensity 
information for the classification of the defects, a first test 
was performed on the samples previously grey-scaled 
normalized. In the majority of the cases the faults 
disappeared after the equalization of the histogram and the 
results shows a very poor effectiveness for all the 
algorithms behind 50%. Only for the cases where the fault 
is a very defined structural defect without a significant 
variation of the grey scale, some algorithms shows an 
acceptable performance.  

In the second test Table 2 gives the classification rates 
of the best algorithms for every type of fabric. The 
algorithm effectiveness in detecting default windows was 
measured using formula (1). As a means of comparison, 
we contrast the classification results using all the features 
of one method and those using various feature subsets. 
The subsets were made by taking at random individual 
features or couples of features. Only the three bests 
algorithms are given. The experiment shows that more 
accurate results can be achieved when algorithms are 
applied taking the nature of the fabric into account.  

Finally, Table 3 gives a measure of the algorithm 
complexity. All algorithms were implemented using 
MMX-optimized software libraries (Matrox MIL) on a 
PentiumIII based workstation. Computation times were 
obtained for processing images of 512x512 pixels (256 
sub-windows of 32x32 pixels).  

Table 2. Effectiveness ranking depending on kind of 
fabric 

First Second Third Type 
of 

Fabr  
Meth Efec Meth Efec Meth. Efec 

IF  EDG 87,98 SOH 80,96 FOH 80,73 
UDF  EDG 

GEO 
86,80 FOH 85,36 TH 84,82 

NUD
F  

EDG 
GEO 

100 SMH 
CM 

97,56 BC 
TH 

92,31 

PF  FD 92,30 BC 
GEO 

87,82 FOH 84,67 

EF  SOH 
CM 

100 EDG 91,94 BC 91,16 

Comparing tables 2 and 3 we can see a trade-off 
between effectiveness and computation time for every 
class of textile. In this way, depending on the speed and 
accuracy requirements of the target application, it is 
possible to choose the most suitable algorithm. E.G. FD is 
the most accurate method for working with plush fabric 
but its computation time could be very high for specific 
applications; on the other hand, using BC it is possible to 
set more demanding time requirements while preserving 
an acceptable effectiveness rate.  



Table 3. Computation times 

Method FOH SOH SMH DFH 
t (msg) 14,56 2374,03 75,64 114,07 

Method FD CM TH FD 
t (msg) 340,98 50,38 5,30 340,98 

Method BC GEOM EDG LAW 
t (msg) 50,38 14,74 120,2 100,35 

 

5. CONCLUSIONS 

In this work,  various texture analysis methods have been 
studied for the automatic defect inspection of textile 
fabrics.  The experiments have shown that one-method 
based systems are unreliable due to the different nature of 
fabrics. A more specific study has been carried out on five 
classes of textiles in order to determine the best methods. 
The results show that there is not a winner between the 
algorithms and hence to implement a flexible inspection 
system several methods must be taken into account.  

On the other hand a test of algorithm complexity has 
been carried out by estimating the computation time in the 
analysis of standard images. This measure has been 
realized using the most common tools in the 
implementation of vision systems (PC-based workstation 
and MMX-optimised libraries). Hence, the results give a 
real point of view of the real-time possibilities of every 
method with the actual technology. 

Combining both tables can be observed a trade-off 
between effectiveness and computation time that allow us 
to select the most suitable algorithms regarding speed and 
reliability, in order to satisfy a wide spectrum of 
inspection systems. 
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