886 research outputs found

    Advancing fluorescent contrast agent recovery methods for surgical guidance applications

    Get PDF
    Fluorescence-guided surgery (FGS) utilizes fluorescent contrast agents and specialized optical instruments to assist surgeons in intraoperatively identifying tissue-specific characteristics, such as perfusion, malignancy, and molecular function. In doing so, FGS represents a powerful surgical navigation tool for solving clinical challenges not easily addressed by other conventional imaging methods. With growing translational efforts, major hurdles within the FGS field include: insufficient tools for understanding contrast agent uptake behaviors, the inability to image tissue beyond a couple millimeters, and lastly, performance limitations of currently-approved contrast agents in accurately and rapidly labeling disease. The developments presented within this thesis aim to address such shortcomings. Current preclinical fluorescence imaging tools often sacrifice either 3D scale or spatial resolution. To address this gap in high-resolution, whole-body preclinical imaging tools available, the crux of this work lays on the development of a hyperspectral cryo-imaging system and image-processing techniques to accurately recapitulate high-resolution, 3D biodistributions in whole-animal experiments. Specifically, the goal is to correct each cryo-imaging dataset such that it becomes a useful reporter for whole-body biodistributions in relevant disease models. To investigate potential benefits of seeing deeper during FGS, we investigated short-wave infrared imaging (SWIR) for recovering fluorescence beyond the conventional top few millimeters. Through phantom, preclinical, and clinical SWIR imaging, we were able to 1) validate the capability of SWIR imaging with conventional NIR-I fluorophores, 2) demonstrate the translational benefits of SWIR-ICG angiography in a large animal model, and 3) detect micro-dose levels of an EGFR-targeted NIR-I probe during a Phase 0 clinical trial. Lastly, we evaluated contrast agent performances for FGS glioma resection and breast cancer margin assessment. To evaluate glioma-labeling performance of untargeted contrast agents, 3D agent biodistributions were compared voxel-by-voxel to gold-standard Gd-MRI and pathology slides. Finally, building on expertise in dual-probe ratiometric imaging at Dartmouth, a 10-pt clinical pilot study was carried out to assess the technique’s efficacy for rapid margin assessment. In summary, this thesis serves to advance FGS by introducing novel fluorescence imaging devices, techniques, and agents which overcome challenges in understanding whole-body agent biodistributions, recovering agent distributions at greater depths, and verifying agents’ performance for specific FGS applications

    Integration of anatomical and hemodynamical information in magnetic resonance angiography

    Get PDF
    +118hlm.;24c

    Monitoring of Immune Cell Response to B Cell Depletion Therapy and Nerve Root Injury Using Spio Enhanced MRI

    Get PDF
    Magnetic resonance (MR) is a robust platform for non-invasive, high-resolution anatomical imaging. However, MR imaging lacks the requisite sensitivity and contrast for imaging at the cellular level. This represents a clinical impediment to greater diagnostic accuracy. Recent advances have allowed for the in vivo visualization of populations and even of individual cells using superparamagnetic iron oxide (SPIO) MR contrast agents. These nanoparticles, commonly manifested as a core of a single iron oxide crystal or cluster of crystals coated in a biocompatible shell, function to shorten proton relaxation times. In MR imaging these constructs locally dephase protons, resulting in a decrease in signal (hypointensity) localized to the region of accumulation of SPIO. In the context of immune cell imaging, SPIO can provide insight into the cellular migration patterns, trafficking, temporal dynamics and progression of diseases and their related pathological states. Furthermore, by visualizing the presence and activity of immune cells, SPIO-enabled cellular imaging can help evaluate the efficacy of therapy in immune disorders. This thesis examines the production, modification and application of SPIO in a range of in vitro and in vivo immune-response-relevant cellular systems. The role of different nanoparticle characteristics including diameter, surface charge and concentration are investigated in the labeling of T cells in culture. Following optimization of SPIO loading conditions for lymphocytes, the effect these particles have on the activation of primary B cells are elucidated. B cells are tracked using a variety of modalities, with and without the application of B cell depleting therapy. This is to evaluate the efficacy of SPIO as in vivo marker for B cell distribution. Unmodified SPIO were applied to monitor macrophage infiltration in a transient nerve root compression model, with implications for neck pain diagnosis and treatment. Nanoparticle accumulation and MR hypointensity was correlated to the presence of activated macrophage at the site of injury. Taken together, the application of SPIO to study nanoparticle uptake in vitro and visualization of immune cells in vivo provide a basis for advanced study and diagnosis of diverse pathologies

    Mammography

    Get PDF
    In this volume, the topics are constructed from a variety of contents: the bases of mammography systems, optimization of screening mammography with reference to evidence-based research, new technologies of image acquisition and its surrounding systems, and case reports with reference to up-to-date multimodality images of breast cancer. Mammography has been lagged in the transition to digital imaging systems because of the necessity of high resolution for diagnosis. However, in the past ten years, technical improvement has resolved the difficulties and boosted new diagnostic systems. We hope that the reader will learn the essentials of mammography and will be forward-looking for the new technologies. We want to express our sincere gratitude and appreciation?to all the co-authors who have contributed their work to this volume

    Methods and adaptations required to perform small-animal MRI scanning using a large bore clinical MRI

    Get PDF
    Small-animal imaging has been widely implemented to study succession of disease, therapeutic treatments and the effects of environmental insults. The gold standard noninvasive technique for following progression of heart failure in small-animal models is magnetic resonance imaging (MRI). The aim of this project was to adapt a clinical MRI system to perform small-animal cardiac MRI. The first part of the thesis describes the adaptations required, which included design and construction of a small-animal radiofrequency (RF) coil, physical support (cradle), a core body temperature regulation system, and optimization of pulse sequences. The system was validated using a phantom and in-vivo in 5 healthy rats. The signal-to-noise ratio (SNR) in the phantom was 91% higher using the small-animal coil compared to the standard head coil. SNRs of 7 ± 2 and 18.9 ± 0.6 were achieved in myocardium and blood, respectively, in healthy rats and MR left ventricular mass (LVM) was highly correlated with (r=0.87) with post-mortem mass. In the second part of the study, left ventricular remodeling (LVR) was investigated in a nonreperfused model of myocardial infarction (MI) in 5 sham and 7 infarcted rats. Rats were scanned at 2 and 4 weeks post surgery to allow for global and regional functional and structural analyses of the heart. Images were of sufficient quality to enable semi-automatic segmentation using Segment. Significant increase in end-systolic volume (ESV) was observed in MI rats at 2 weeks post surgery. At 4 weeks post surgery, end-diastolic volume (EDV) and ESV of MI rats were significantly higher than in sham rats. Ejection fraction (EF) of MI rats dropped significantly at 2 weeks and a further significant drop was observed at 4 weeks indicating contractile dysfunction. Wall thickness (WTh) analyses in MI rats at 4 weeks revealed significant reduction in end-diastolic (ED) wall thickness in the anterior region due to necrosis of myocytes. In the posterior region, WTh was significantly higher due to LV hypertrophy. At end-systole (ES), the MI rats revealed significant decrease in WTh in the anterior and lateral regions. MI rats suffered reduction in systolic wall thickening in all regions of the heart, indicating global contractile dysfunction

    Digital Mammography

    Get PDF

    Imaging of the Breast

    Get PDF
    Early detection of breast cancer combined with targeted therapy offers the best outcome for breast cancer patients. This volume deal with a wide range of new technical innovations for improving breast cancer detection, diagnosis and therapy. There is a special focus on improvements in mammographic image quality, image analysis, magnetic resonance imaging of the breast and molecular imaging. A chapter on targeted therapy explores the option of less radical postoperative therapy for women with early, screen-detected breast cancers
    • …
    corecore