2,314 research outputs found

    On asymptotically good ramp secret sharing schemes

    Get PDF
    Asymptotically good sequences of linear ramp secret sharing schemes have been intensively studied by Cramer et al. in terms of sequences of pairs of nested algebraic geometric codes. In those works the focus is on full privacy and full reconstruction. In this paper we analyze additional parameters describing the asymptotic behavior of partial information leakage and possibly also partial reconstruction giving a more complete picture of the access structure for sequences of linear ramp secret sharing schemes. Our study involves a detailed treatment of the (relative) generalized Hamming weights of the considered codes

    Relative generalized Hamming weights of one-point algebraic geometric codes

    Get PDF
    Security of linear ramp secret sharing schemes can be characterized by the relative generalized Hamming weights of the involved codes. In this paper we elaborate on the implication of these parameters and we devise a method to estimate their value for general one-point algebraic geometric codes. As it is demonstrated, for Hermitian codes our bound is often tight. Furthermore, for these codes the relative generalized Hamming weights are often much larger than the corresponding generalized Hamming weights

    Refined analysis of RGHWs of code pairs coming from Garcia-Stichtenoth's second tower

    Full text link
    Asymptotically good sequences of ramp secret sharing schemes were given in [Asymptotically good ramp secret sharing schemes, arXiv:1502.05507] by using one-point algebraic geometric codes defined from asymptotically good towers of function fields. Their security is given by the relative generalized Hamming weights of the corresponding codes. In this paper we demonstrate how to obtain refined information on the RGHWs when the codimension of the codes is small. For general codimension, we give an improved estimate for the highest RGHW

    Higher Hamming weights for locally recoverable codes on algebraic curves

    Get PDF
    We study the locally recoverable codes on algebraic curves. In the first part of this article, we provide a bound of generalized Hamming weight of these codes. Whereas in the second part, we propose a new family of algebraic geometric LRC codes, that are LRC codes from Norm-Trace curve. Finally, using some properties of Hermitian codes, we improve the bounds of distance proposed in [1] for some Hermitian LRC codes. [1] A. Barg, I. Tamo, and S. Vlladut. Locally recoverable codes on algebraic curves. arXiv preprint arXiv:1501.04904, 2015

    Secret Sharing Schemes with a large number of players from Toric Varieties

    Full text link
    A general theory for constructing linear secret sharing schemes over a finite field \Fq from toric varieties is introduced. The number of players can be as large as (q−1)r−1(q-1)^r-1 for r≄1r\geq 1. We present general methods for obtaining the reconstruction and privacy thresholds as well as conditions for multiplication on the associated secret sharing schemes. In particular we apply the method on certain toric surfaces. The main results are ideal linear secret sharing schemes where the number of players can be as large as (q−1)2−1(q-1)^2-1. We determine bounds for the reconstruction and privacy thresholds and conditions for strong multiplication using the cohomology and the intersection theory on toric surfaces.Comment: 15 pages, 4 figures. arXiv admin note: text overlap with arXiv:1203.454

    Subquadratic time encodable codes beating the Gilbert-Varshamov bound

    Full text link
    We construct explicit algebraic geometry codes built from the Garcia-Stichtenoth function field tower beating the Gilbert-Varshamov bound for alphabet sizes at least 192. Messages are identied with functions in certain Riemann-Roch spaces associated with divisors supported on multiple places. Encoding amounts to evaluating these functions at degree one places. By exploiting algebraic structures particular to the Garcia-Stichtenoth tower, we devise an intricate deterministic \omega/2 < 1.19 runtime exponent encoding and 1+\omega/2 < 2.19 expected runtime exponent randomized (unique and list) decoding algorithms. Here \omega < 2.373 is the matrix multiplication exponent. If \omega = 2, as widely believed, the encoding and decoding runtimes are respectively nearly linear and nearly quadratic. Prior to this work, encoding (resp. decoding) time of code families beating the Gilbert-Varshamov bound were quadratic (resp. cubic) or worse

    Nearly optimal robust secret sharing

    Get PDF
    Abstract: We prove that a known approach to improve Shamir's celebrated secret sharing scheme; i.e., adding an information-theoretic authentication tag to the secret, can make it robust for n parties against any collusion of size ÎŽn, for any constant ÎŽ ∈ (0; 1/2). This result holds in the so-called “nonrushing” model in which the n shares are submitted simultaneously for reconstruction. We thus finally obtain a simple, fully explicit, and robust secret sharing scheme in this model that is essentially optimal in all parameters including the share size which is k(1+o(1))+O(Îș), where k is the secret length and Îș is the security parameter. Like Shamir's scheme, in this modified scheme any set of more than ÎŽn honest parties can efficiently recover the secret. Using algebraic geometry codes instead of Reed-Solomon codes, the share length can be decreased to a constant (only depending on ÎŽ) while the number of shares n can grow independently. In this case, when n is large enough, the scheme satisfies the “threshold” requirement in an approximate sense; i.e., any set of ÎŽn(1 + ρ) honest parties, for arbitrarily small ρ > 0, can efficiently reconstruct the secret
    • 

    corecore